Ctenosaura Defensor (Cope, 1866)

Total Page:16

File Type:pdf, Size:1020Kb

Ctenosaura Defensor (Cope, 1866) Ctenosaura defensor (Cope, 1866). The Yucatecan Spiny-tailed Iguana, a regional endemic in the Mexican Yucatan Peninsula, is distributed in the Tabascan Plains and Marshes, Karstic Hills and Plains of Campeche, and Yucatecan Karstic Plains regions in the states of Campeche, Quintana Roo, and Yucatán (Lee, 1996; Calderón-Mandujano and Mora-Tembre, 2004), at elevations from near “sea level to 100 m” (Köhler, 2008). In the original description by Cope (1866), the type locality was given as “Yucatán,” but Smith and Taylor (1950: 352) restricted it to “Chichén Itzá, Yucatán, Mexico.” This lizard has been reported to live on trees with hollow limbs, into which they retreat when approached (Lee, 1996), and individuals also can be found in holes in limestone rocks (Köhler, 2002). Lee (1996: 204) indicated that this species lives “mainly in the xeric thorn forests of the northwestern portion of the Yucatán Peninsula, although they are also found in the tropical evergreen forests of northern Campeche.” This colorful individual was found in low thorn forest 5 km N of Sinanché, in the municipality of Sinanché, in northern coastal Yucatán. Wilson et al. (2013a) determined its EVS as 15, placing it in the lower portion of the high vulnerability category. Its conservation status has been assessed as Vulnerable by the IUCN, and as endangered (P) by SEMARNAT. ' © Javier A. Ortiz-Medina 263 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The Herpetofauna of the Mexican Yucatan Peninsula: composition, distribution, and conservation status VÍCTOR HUGO GONZÁLEZ-SÁNCHEZ1, JERRY D. JOHNSON2, ELÍ GARCÍA-PADILLA3, VICENTE MATA-SILVA2, DOMINIC L. DESANTIS2, AND LARRY DAVID WILSON4 1El Colegio de la Frontera Sur (ECOSUR), Chetumal, Quintana Roo, Mexico. E-mail: [email protected] 2Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mail: [email protected], [email protected], and [email protected] 3Oaxaca de Juárez, Oaxaca 68023, Mexico. E-mail: [email protected] 4Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] ABSTRACT: The herpetofauna of the Mexican Yucatan Peninsula is comprised of 145 species, including 22 anurans, three salamanders, two crocodylians, 102 squamates, and 16 turtles. We examined the state-level distribution of the herpetofauna of this region, which revealed that the largest number of amphibian spe- cies (24 of 25) is recorded for Campeche, followed by Quintana Roo (22), and then by Yucatán (17). The largest number of crocodylians, squamates, and turtles is reported for Quintana Roo (107 of 120), with the next highest number in Campeche (104) and then in Yucatán (88). We documented the distribution of the herpetofauna among the six physiographic regions recognized herein, including four mainland regions and two insular ones. The total number of species in these six regions ranges from 43 in the Gulf Islands region to 120 in the Karstic Hills and Plains of Campeche. The individual species inhabit from one to six regions (x– = 3.7). The largest number of single-region species (five) is restricted to the Yucatecan Karstic Plains. We constructed a Coefficient of Biogeographic Resemblance (CBR) matrix that demonstrates the number of shared species ranging from 26 between the Caribbean Islands and Gulf Islands to 104 between the Karstic Hills and Plains of Campeche and the Yucatecan Karstic Plains. The CBR values range from 0.44 between the Karstic Hills and Plains of Campeche and the Caribbean Islands to 0.88 between the Gulf Islands and the Karstic Hills and Plains of Campeche. Based on the CBR data we constructed an Unweighted Pair Group Method with Arithmetic mean (UPGMA) dendrogram, which indicates that the four mainland physiographic regions are fairly closely related to one another because they share a sizable number of broadly distributed species, and are fairly distantly related to the two insular groupings perhaps because of the dispersal ability bias seen among members of the mainland herpetofauna. Only about 24% of the herpetofauna is distributed in one or two of the six regions, demonstrating the relatively broad dis- tribution of many species on the peninsula. We placed the members of the herpetofauna into four distribu- tional categories, of which the largest number (127 of 145) is allocated to the non-endemic category; rela- tively small numbers are placed in the regional endemic category (11), followed by the non-native species (six) and the country endemic category (one). We identified the principal environmental threats as agri- culture and deforestation, hurricanes and other tropical storms, forest fires, tourist development, infectious diseases, invasive species, climate change, illegal collecting, oil mining, killing on roads, and other forms Mesoamerican Herpetology 264 June 2017 | Volume 4 | Number 2 González-Sánchez et al. Herpetofauna of the Mexican Yucatan Peninsula of direct and incidental killing. We assessed the conservation status of the native species by employing the SEMARNAT (NOM-059), IUCN, and Environmental Vulnerability Score (EVS) systems, of which the EVS proved to be the most useful. The number of species in the three EVS categories decreased from low (57) through medium (51) to high (26). We also used the EVS rankings to determine how species in the IUCN Not Evaluated (NE) and Least Concern (LC) categories might be evaluated more informatively. In addition, we used a means of determining Relative Herpetofaunal Priority (RHP), a simple method for ascertaining the rank order of a physiographic regional herpetofauna based on the number of peninsular and national endemic species, as well as the number of high vulnerability EVS species. Using these mea- sures, we concluded that the Yucatecan Karstic Plains ranked as the highest priority region, in both cases. Moreover, we discuss the capability of the protected areas of the Mexican Yucatan Peninsula to provide protection for members of the herpetofauna. Based on our analysis, we erected a set of conclusions and recommendation for the perpetual protection of the peninsular herpetofauna. Key Words: Anurans, caudates, physiographic regions, protected areas, protection recommendations, squamates, turtles RESUMEN: La herpetofauna de la Península de Yucatán mexicana consiste de 145 especies, incluyendo 22 anuros, tres salamandras, dos cocodrílidos, 102 escamosos y 16 tortugas. Examinamos la distribución de la herpetofauna a nivel estatal, la cual reveló que el mayor número de anfibios (24 de 25) se encuentra en Campeche, seguido por Quintana Roo (22) y Yucatán (17). El mayor número de cocodrílidos, escamosos y tortugas está reportado en Quintana Roo (107 de 120), seguido por Campeche (104) y después por Yucatán (88). Documentamos la distribución de la herpetofauna entre las seis regiones fisiográficas aquí recono- cidas, incluyendo cuatro regiones continentales y dos insulares. El número total de especies en estas seis regiones va de 43 en la región de las Islas del Golfo, a 120 en Carso y Lomeríos de Campeche. Las espe- cies ocupan de una a seis regiones (x– = 3.7). El número más grande de especies que se encuentran en una sola región (cinco) está restringido a la región Carso Yucateco. Construimos una matriz de Coeficientes de Similitud Biogeográfica (CBR) que demuestra que el número de especies compartidas va de 26 entre las Islas del Caribe y las Islas del Golfo a 104 entre Carso y Lomeríos de Campeche y Carso Yucateco. Los valores de CBR van de 0.44 entre Carso y Lomeríos de Campeche y las Islas del Caribe a 0.88 entre las Islas del Golfo y Carso y Lomeríos de Campeche. De acuerdo con los datos del CBR, construimos un dendrograma basado en el método de UPGMA, el cual indica que las cuatro regiones fisiográficas en tierra firme están estrechamente relacionadas porque comparten un número significativo de especies con amplia distribución, y están distantemente relacionadas con los dos grupos insulares, probablemente debido a la capacidad sesgada de dispersión entre miembros de la herpetofauna en tierra firme. Solamente alrededor del 24% están distribuidas en una o dos de las seis regiones, demostrando la relativamente amplia distri- bución de muchas especies en la península. Ubicamos a los miembros de la herpetofauna en cuatro cate- gorías de distribución, de los cuales el número más grande (127 de 145) está asignado a la categoría de es- pecies no endémicas; números relativamente menores están ubicados en la categoría de endémicas a nivel regional (11), seguidos por las especies no nativas (seis) y las endémicas al país (una). Identificamos las amenazas ambientales principales como la agricultura y deforestación, huracanes y tormentas tropicales, incendios forestales, desarrollo turístico, enfermedades infecciosas, especies invasoras, cambio climático global, colección ilegal, actividad petrolera, muerte por atropellamiento, y otras formas de eliminación directa o indirecta. Estimamos el estatus de conservación de las especies nativas empleando los sistemas de SEMARNAT (NOM-059), IUCN, y Valor de Vulnerabilidad Ambiental (EVS), de los cuales el sistema de EVS mostro ser más útil. El número de especies en las tres categorías de EVS disminuyó de la baja (57), media (51) a la alta categoría (26). También usamos los rangos del sistema de EVS para determinar cómo las especies en las categorías de No Evaluadas (NE) y de Preocupación Menor (Least Concern [LC]) de la UICN
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Identifying Amphibians and Reptiles in Zoos and Aquariums ZOO VIEW
    290 ZOO VIEW Herpetological Review, 2015, 46(2), 290–294. © 2015 by Society for the Study of Amphibians and Reptiles Identifying Amphibians and Reptiles in Zoos and Aquariums PLUS ҫa ChanGe, PluS C’eST la même ChoSe [The more ThinGS ChanGe, Snakes and their allies were traditionally placed in the genus THE MORE THEY STAY THE SAME] Elaphe but were recently referred to Pantherophis based on their —JEAN-BAPTISTE ALPHONSE KARR, 1849 close relationship to other lampropeltine colubrids of the New World (Burbrink and Lawson 2007). Different combinations are Reptiles and amphibians are relatively unique in the sense used by different authors and my colleagues are struggling with of constantly changing taxonomies. That phenomenon simply is these differences; in other words, which names should they use? not a big operative problem for bird and mammal zoo person- Some biologists believe that there is a rule that the most recent nel. To gain a sense of why this is happening, refer to Frost and taxonomic paper should be the one used but there is no such Hillis (1990). There is confusion caused by changes in both stan- established convention in the Code (The International Code of dard and scientific names in herpetology. The general principle Zoological Nomenclature). Recently, a convincing description of in a zoo is that one wants to be talking about the same species the dangers of taxonomic vandalism leading to potential desta- when putting live animals together for breeding or exhibit or bilization has appeared in the literature (Kaiser et al. 2013) and analyzing records for genealogy or research.
    [Show full text]
  • Ctenosaura Similis (Gray, 1831) (Squamata: Iguanidae) in Venezuela
    HERPETOTROPICOS Vol. 4(1):41 Herpetological Notes / Notas Herpetologicas Copyright © 2008 Univ. Los Andes129 Printed in Venezuela. All rights reserved ISSN 1690-7930 FIRST RECORD OF THE SPINY-TAILED IGUANA CTENOSAURA SIMILIS (GRAY, 1831) (SQUAMATA: IGUANIDAE) IN VENEZUELA DIEGO FLORES 1 AND LUIS FELIPE ESQUEDA 2 1 Biology student, Escuela de Ciencias, Universidad de Oriente, Cumaná, Venezuela. E-mail: [email protected] 2 Research associate, Laboratorio de Biogeografía, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes, Mérida 5101, Venezuela. E-mail: [email protected] The spiny-tailed iguanas of the genus Ctenosaura Wiegmann, 1828, range from coastal central Mexico to Panama, inhabiting tropical arid and moist lowlands below 500 m, along Atlantic and Pacific coasts. They comprise about 17 species (Queiroz 1987, Buckley and Axtell 1997, Köhler et al. 2000). Most species posses restricted distributions, although some, like Ctenosaura acanthura, C. hemilopha, C. pectinata and C. similis, show a wider distribution. The later has the greatest distribution, being present from the Mexican isthmus of Tehuantepec, to Colombia, including southern Mexico, Nicaragua, Guatemala, El Salvador, Honduras, Belize, Costa Rica, Panama, Providence and San Andres islands (Smith and Taylor 1950, Smith 1972, Henderson 1973, Köhler 1995a,b). The first author spotted a population of Ctenosaura iguanas in eastern Venezuela, specifically in Anzoátegui state, at the borders of municipios Diego Bautista Urbaneja, Sotillo, and Bolívar. A collected specimen, deposited in the herpetological collection of the Laboratory of Biogeography at University of Los Andes in Mérida (museum number ULABG 7315), substantiates the distribution record. Morphological details and coloration of the specimens (Fig.
    [Show full text]
  • Roatán Spiny-Tailed Iguana (Ctenosaura Oedirhina) Conservation Action Plan 2020–2025 Edited by Stesha A
    Roatán spiny-tailed iguana (Ctenosaura oedirhina) Conservation action plan 2020–2025 Edited by Stesha A. Pasachnik, Ashley B.C. Goode and Tandora D. Grant INTERNATIONAL UNION FOR CONSERVATION OF NATURE IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,400 government and NGO members and almost 15,000 volunteer experts in some 160 countries. IUCN’s work is supported by around 950 staff in more than 50 countries and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org IUCN Species Programme The IUCN Species Programme supports the activities of the IUCN Species Survival Commission and individual Specialist Groups, as well as implementing global species conservation initiatives. It is an integral part of the IUCN Secretariat and is managed from IUCN’s international headquarters in Gland, Switzerland. The Species Programme includes a number of technical units covering Wildlife Trade, the Red List, Freshwater Biodiversity Assessments (all located in Cambridge, UK), and the Global Biodiversity Assessment Initiative (located in Washington DC, USA). IUCN Species Survival Commission The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of more than 9,000 experts.
    [Show full text]
  • RHINOCEROS IGUANA Cyclura Cornuta Cornuta (Bonnaterre 1789)
    HUSBANDRY GUIDELINES: RHINOCEROS IGUANA Cyclura cornuta cornuta (Bonnaterre 1789) REPTILIA: IGUANIDAE Compiler: Cameron Candy Date of Preparation: DECEMBER, 2009 Institute: Western Sydney Institute of TAFE, Richmond, NSW, Australia Course Name/Number: Certificate III in Captive Animals - 1068 Lecturers: Graeme Phipps - Jackie Salkeld - Brad Walker Husbandry Guidelines: C. c. cornuta 1 ©2009 Cameron Candy OHS WARNING RHINOCEROS IGUANA Cyclura c. cornuta RISK CLASSIFICATION: INNOCUOUS NOTE: Adult C. c. cornuta can be reclassified as a relatively HAZARDOUS species on an individual basis. This may include breeding or territorial animals. POTENTIAL PHYSICAL HAZARDS: Bites, scratches, tail-whips: Rhinoceros Iguanas will defend themselves when threatened using bites, scratches and whipping with the tail. Generally innocuous, however, bites from adults can be severe resulting in deep lacerations. RISK MANAGEMENT: To reduce the risk of injury from these lizards the following steps should be followed: - Keep animal away from face and eyes at all times - Use of correct PPE such as thick gloves and employing correct and safe handling techniques when close contact is required. Conditioning animals to handling is also generally beneficial. - Collection Management; If breeding is not desired institutions can house all female or all male groups to reduce aggression - If aggressive animals are maintained protective instrument such as a broom can be used to deflect an attack OTHER HAZARDS: Zoonosis: Rhinoceros Iguanas can potentially carry the bacteria Salmonella on the surface of the skin. It can be passed to humans through contact with infected faeces or from scratches. Infection is most likely to occur when cleaning the enclosure. RISK MANAGEMENT: To reduce the risk of infection from these lizards the following steps should be followed: - ALWAYS wash hands with an antiseptic solution and maintain the highest standards of hygiene - It is also advisable that Tetanus vaccination is up to date in the event of a severe bite or scratch Husbandry Guidelines: C.
    [Show full text]
  • Conservation Matters: CITES and New Herp Listings
    Conservation matters:FEATURE | CITES CITES and new herp listings The red-tailed knobby newt (Tylototriton kweichowensis) now has a higher level of protection under CITES. Photo courtesy Milan Zygmunt/www. shutterstock.com What are the recent CITES listing changes and what do they mean for herp owners? Dr. Thomas E.J. Leuteritz from the U.S. Fish & Wildlife Service explains. id you know that your pet It is not just live herp may be a species of animals that are protected wildlife? Many covered by CITES, exotic reptiles and but parts and Damphibians are protected under derivatives too, such as crocodile skins CITES, also known as the Convention that feature in the on International Trade in Endangered leather trade. Plants Species of Wild Fauna and Flora. and timber are also Initiated in 1973, CITES is an included. international agreement currently Photo courtesy asharkyu/ signed by 182 countries and the www.shutterstock.com European Union (also known as responsibility of the Secretary of the How does CITES work? Parties), which regulates Interior, who has tasked the U.S. Fish Species protected by CITES are international trade in more than and Wildlife Service (USFWS) as the included in one of three lists, 35,000 wild animal and plant species, lead agency responsible for the referred to as Appendices, according including their parts, products, and Convention’s implementation. You to the degree of protection they derivatives. can help USFWS conserve these need: Appendix I includes species The aim of CITES is to ensure that species by complying with CITES threatened with extinction and international trade in specimens of and other wildlife laws to ensure provides the greatest level of wild animals and plants does not that your activities as a pet owner or protection, including restrictions on threaten their survival in the wild.
    [Show full text]
  • Ctenosaura Defensor (Cope, 1866)
    Ctenosaura defensor (Cope, 1866). The Yucatecan Spiny-tailed Iguana, a regional endemic in the Mexican Yucatan Peninsula, is distributed in the Tabascan Plains and Marshes, Karstic Hills and Plains of Campeche, and Yucatecan Karstic Plains regions in the states of Campeche, Quintana Roo, and Yucatán (Lee, 1996; Calderón-Mandujano and Mora-Tembre, 2004), at elevations from near “sea level to 100 m” (Köhler, 2008). In the original description by Cope (1866), the type locality was given as “Yucatán,” but Smith and Taylor (1950: 352) restricted it to “Chichén Itzá, Yucatán, Mexico.” This lizard has been reported to live on trees with hollow limbs, into which they retreat when approached (Lee, 1996), and individuals also can be found in holes in limestone rocks (Köhler, 2002). Lee (1996: 204) indicated that this species lives “mainly in the xeric thorn forests of the northwestern portion of the Yucatán Peninsula, although they are also found in the tropical evergreen forests of northern Campeche.” This colorful individual was found in low thorn forest 5 km N of Sinanché, in the municipality of Sinanché, in northern coastal Yucatán. Wilson et al. (2013a) determined its EVS as 15, placing it in the lower portion of the high vulnerability category. Its conservation status has been assessed as Vulnerable by the IUCN, and as endangered (P) by SEMARNAT. ' © Javier A. Ortiz-Medina 263 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The Herpetofauna of the Mexican Yucatan Peninsula: composition, distribution, and conservation status VÍCTOR HUGO GONZÁLEZ-SÁNCHEZ1, JERRY D. JOHNSON2, ELÍ GARCÍA-PADILLA3, VICENTE MATA-SILVA2, DOMINIC L. DESANTIS2, AND LARRY DAVID WILSON4 1El Colegio de la Frontera Sur (ECOSUR), Chetumal, Quintana Roo, Mexico.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]
  • Molecular Systematics & Evolution of the CTENOSAURA HEMILOPHA
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 9-1999 Molecular Systematics & Evolution of the CTENOSAURA HEMILOPHA Complex (SQUAMATA: IGUANIDAE) Michael Ray Cryder Follow this and additional works at: https://scholarsrepository.llu.edu/etd Part of the Biology Commons Recommended Citation Cryder, Michael Ray, "Molecular Systematics & Evolution of the CTENOSAURA HEMILOPHA Complex (SQUAMATA: IGUANIDAE)" (1999). Loma Linda University Electronic Theses, Dissertations & Projects. 613. https://scholarsrepository.llu.edu/etd/613 This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. LOMA LINDAUNIVERSITY Graduate School MOLECULARSYSTEMATICS & EVOLUTION OF THECTENOSAURA HEMJLOPHA COMPLEX (SQUAMATA: IGUANIDAE) by Michael Ray Cryder A Thesis in PartialFulfillment of the Requirements forthe Degree Master of Science in Biology September 1999 0 1999 Michael Ray Cryder All Rights Reserved 11 Each person whose signature appears below certifies that this thesis in their opinion is adequate, in scope and quality, as a thesis for the degree Master of Science. ,Co-Chairperson Ronald L. Carter, Professor of Biology Arc 5 ,Co-Chairperson L. Lee Grismer, Professor of Biology and Herpetology - -/(71— William Hayes, Pr fessor of Biology 111 ACKNOWLEDGMENTS I would like to express my appreciation to the institution and individuals who helped me complete this study. I am grateful to the Department of Natural Sciences, Lorna Linda University, for scholarship, funding and assistantship.
    [Show full text]
  • 0616 Sauromalus Varius.Pdf
    REPTILIA: SQUAMATA: SAURIA: IGUANIDAE r'- Catalogue of American Amphibians and Reptiles. Lawler, H.E., K.R. Beaman, and L.L. Grismer. 1995. Sauro- malus varius. Sauromalus varius Dickerson Piebald Chuckwalla Sauromalus Townsend, 1916:428. Sauromalus varius Dickerson, 1919:464. qpe-locality, "San Esteban Island, Gulf of California, [Sonora] Mexico." Ho- lotype, National Museum of Natural History (USNM) 64441, adult male, collected by C.H. Townsend on 13 April 191 1 (not examined by authors). See Comment. Content. This species is monotypic. Definition. Sauromalus varius is a large. stout-bodied, sexu- ally dimorphic species, with maximum head and body size of adult males and females 324 mm and 314 mm SVL, respec- tively (Case, 1982). Adults may reach a length of 600 mm total length (Shaw, 1945). This species is the largest member of the genus. The head and body are much depressed, the latter being very broad. The top of the head is covered with smooth, irregu- - Map. Distribution of Sauromalus varius (see text). lar scales, which are larger in the frontal and parietal regions and become tubercular in the latter region. The superciliaries and the supraoculars are small and juxtaposed. Aseries of short, ~ntofour hexagonal scales. The symphyseal is long and nar- smooth suboculars, following the contour of the orbit, pass up- row. A series of enlarged sublabials merge with the granular ward and posteriorly to the anterior border of the ear opening. gular scales. The lateral neck fold, posterior to the ear opening, The labials are minute and juxtaposed. The rostra1 is divided 1s covered by small tubercular or subconical scales.
    [Show full text]
  • Squamata: Iguanidae
    Facultad de Ciencias ACTA BIOLÓGICA COLOMBIANA Departamento de Biología http://www.revistas.unal.edu.co/index.php/actabiol Sede Bogotá ARTÍCULO DE INVESTIGACIÓN / RESEARCH ARTICLE ZOOLOGÍA NATURAL HISTORY OF THE BLACK IGUANA Ctenosaura similis (SQUAMATA: IGUANIDAE) IN ISLA CONTOY, QUINTANA ROO, MEXICO Historia natural de la iguana negra Ctenosaura similis (Squamata: Iguanidae) en isla Contoy, Quintana Roo, México Aaron GARCÍA-ROSALES1 , Alicia ARRIAGA-NOGUEZ1 , Aurelio RAMÍREZ-BAUTISTA1 * 1Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de la Reforma, Hidalgo, México. *For correspondence: [email protected] Received: 15th May 2019, Returned for revision: 20th July 2019, Accepted: 20th September 2019. Associate Editor: Martha Ramírez Pinilla. Citation/Citar este artículo como: García-Rosales A, Arriaga-Noguez A, Ramírez-Bautista A. Natural history of the black iguana Ctenosaura similis (Squamata: Iguanidae) in isla Contoy, Quintana Roo, Mexico. Acta Biol Colomb. 2020;25(3):394-402. Doi: http://dx.doi.org/10.15446/abc.v25n3.79707 ABSTRACT The genera Iguana and Ctenosaura belong to the Iguanidae family, and populations of most species of these genera have decreased due to anthropogenic effects. The natural history of most species of this family is poorly known, including Ctenosaura similis. Therefore, this study documents some ecological aspects of the species, such as its feeding habits, and habitat and microhabitat use in a population of Isla Contoy in Quintana Roo, Mexico. The data showed that even though C. similis is distributed throughout the island, individuals more commonly use human construction (buildings) of Parque Nacional Isla Contoy (PNIC) and mangrove areas.
    [Show full text]