Yucatan Dwarf Club-Tailed Iguana Reptile Ctenosaura Defensor

Total Page:16

File Type:pdf, Size:1020Kb

Yucatan Dwarf Club-Tailed Iguana Reptile Ctenosaura Defensor Yucatan Dwarf Club-tailed Iguana Reptile Ctenosaura defensor Scientifi c Name Ctenosaura defensor Other Names Yucatan Dwarf Spiny-tailed Lizard/Iguana Range Northern Yucatan Peninsula, southern Mexico Habitat Dry forests Average Size Length: 5 – 6 in. Weight: 60 – 90 g. Description Small, stout lizard with a heavily armored Behavior tail. Head is bluish-grey with black to grey The Yucatan Dwarf Club-tailed Iguana is a primarily arboreal species of shoulders, tail and limbs. Lower back is red. iguana, although they have been documented on the ground using rocky outcroppings for basking, hunting and predator avoidance. They are slightly Lifespan unusual in their eating habits as they prefer leaves over the usual iguana In the wild: Unknown diet of fl owers, fruit and seedlings. In captivity: Up to 15 years Reproduction and Breeding Diet Breeding season for this species begins in the spring, with males making In the wild: fruits, fl owers, foliage and small overt visual and physical displays to attract females. Although the female animals is selective about fi nding the precise environment in which to lay her In captivity: fruit and veggie mix, insects eggs, usually in the hollow of a tree or in a rocky crevice, she provides no parental care for the offspring and may not even remain in the same area Clutch Size while they incubate. The youngsters hatch in late spring to early summer, 2 – 3 eggs between April and June, and begin their solitary lives. Incubation Period 3 months Conservation The Yucatan Dwarf Club-tailed Iguana is one of many iguana species Sexual Maturity experiencing diffi culty surviving in an ever-changing world. Their habitat in the wild is declining in quality and becoming increasingly fragmented, 2 – 3 years with various enclaves of iguanas being separated from others. In addition, the population is also threatened by illegal collecting for the international Predators pet trade. As a result, the population is predicted to decline by at least 30 Birds of prey, wild and domesticated dogs percent over the next ten years. While the current population size is not and cats known, scientists estimate there are only several thousand of this species left in the wild. Population Status Vulnerable The Mexican government is working to inhibit the illegal pet trade by establishing laws against collection and exportation without permits, but this process is not completely effective. It has been recommended that more research, monitoring and assessment needs to be undertaken into the ecology and requirements of the species to better conserve it in its natural environment. Sacramento Zoological Society 3930 West Land Park Dr., Sacramento, CA 95822 T: 916-808-5888 F: 916-264-7385 E: [email protected] www.saczoo.org Amazing Facts This is the smallest lizard of the Ctenosaura genus. In 2010, one of these was found in Michigan, an apparent stow away in a delivery of crates from the Yucatan. The Yucatan Dwarf Club-tailed Iguana is one of the most vividly colored of the 14 spiny-tailed iguana species. Yucatan Dwarf Club-tailed Iguana Sacramento Zoological Society 3930 West Land Park Dr., Sacramento, CA 95822 T: 916-808-5888 F: 916-264-5887 E: [email protected] www.saczoo.org.
Recommended publications
  • Chuckwalla Habitat in Nevada
    Final Report 7 March 2003 Submitted to: Division of Wildlife, Department of Conservation and Natural Resources, State of Nevada STATUS OF DISTRIBUTION, POPULATIONS, AND HABITAT RELATIONSHIPS OF THE COMMON CHUCKWALLA, Sauromalus obesus, IN NEVADA Principal Investigator, Edmund D. Brodie, Jr., Department of Biology, Utah State University, Logan, UT 84322-5305 (435)797-2485 Co-Principal Investigator, Thomas C. Edwards, Jr., Utah Cooperative Fish and Wildlife Research Unit and Department of Fisheries and Wildlife, Utah State University, Logan, UT 84322-5210 (435)797-2509 Research Associate, Paul C. Ustach, Department of Biology, Utah State University, Logan, UT 84322-5305 (435)797-2450 1 INTRODUCTION As a primary consumer of vegetation in the desert, the common chuckwalla, Sauromalus obesus (=ater; Hollingsworth, 1998), is capable of attaining high population density and biomass (Fitch et al., 1982). The 21 November 1991 Federal Register (Vol. 56, No. 225, pages 58804-58835) listed the status of chuckwalla populations in Nevada as a Category 2 candidate for protection. Large size, open habitat and tendency to perch in conspicuous places have rendered chuckwallas particularly vulnerable to commercial and non-commercial collecting (Fitch et al., 1982). Past field and laboratory studies of the common chuckwalla have revealed an animal with a life history shaped by the fluctuating but predictable desert climate (Johnson, 1965; Nagy, 1973; Berry, 1974; Case, 1976; Prieto and Ryan, 1978; Smits, 1985a; Abts, 1987; Tracy, 1999; and Kwiatkowski and Sullivan, 2002a, b). Life history traits such as annual reproductive frequency, adult survivorships, and population density have all varied, particular to the population of chuckwallas studied. Past studies are mostly from populations well within the interior of chuckwalla range in the Sonoran Desert.
    [Show full text]
  • How to Tell the Difference Between Native Rock Iguanas and Invasive Green Iguanas by Elaine A
    How to Tell the Difference Between Native Rock Iguanas and Invasive Green Iguanas By Elaine A. Powers Illustrated by Anderson Atlas Many of the islands in the Caribbean Sea, known as the West Rock Iguanas (Cyclura) Indies, have native iguanas. B Cuban Rock Iguana (Cyclura nubila), Cuba They are called Rock Iguanas. C Sister Isles Rock Iguana (Cyclura nubila caymanensis), Cayman Brac and Invasive Green Iguanas have been introduced on these islands and Little Cayman are a threat to the Rock Iguanas. They compete for food, territory D Grand Cayman Blue Iguana (Cyclura lewisi), Grand Cayman and nesting areas. E Jamaican Rock Iguana (Cyclura collei), Jamaica This booklet is designed to help you identify the native Rock F Turks & Caicos Rock Iguana (Cyclura carinata), Turks and Caicos. Iguanas from the invasive Greens. G Booby Cay Rock Iguana (Cyclura carinata bartschi), Booby Cay, Bahamas H Andros Rock Iguana (Cyclura cychlura), Andros, Bahamas West Indies I Exuma Rock Iguana (Cyclura cychlura figginsi), Exuma Islands, Bahamas Exumas BAHAMAS J Allen’s Cay Rock Iguana (Cyclura cychlura inornata), Exuma Islands, J Islands Bahamas M San Salvador Andros Island H Booby Cay K Anegada Iguana (Cyclura pinguis), British Virgin Islands Allens Cay White G I Cay Ricord’s Iguana (Cyclura ricordi), Hispaniola O F Turks & Caicos L CUBA NAcklins Island M San Salvador Rock Iguana (Cyclura rileyi), San Salvador, Bahamas Anegada HISPANIOLA CAYMAN ISLANDS K N Acklins Rock Iguana (Cyclura rileyi nuchalis), Acklins Islands, Bahamas B PUERTO RICO O White Cay Rock Iguana (Cyclura rileyi cristata), Exuma Islands, Bahamas Grand Cayman D C JAMAICA BRITISH P Rhinoceros Iguana (Cyclura cornuta), Hispanola Cayman Brac & VIRGIN Little Cayman E L P Q Mona ISLANDS Q Mona Island Iguana (Cyclura stegnegeri), Mona Island, Puerto Rico Island 2 3 When you see an iguana, ask: What kind do I see? Do you see a big face scale, as round as can be? What species is that iguana in front of me? It’s below the ear, that’s where it will be.
    [Show full text]
  • Ctenosaura Similis (Gray, 1831) (Squamata: Iguanidae) in Venezuela
    HERPETOTROPICOS Vol. 4(1):41 Herpetological Notes / Notas Herpetologicas Copyright © 2008 Univ. Los Andes129 Printed in Venezuela. All rights reserved ISSN 1690-7930 FIRST RECORD OF THE SPINY-TAILED IGUANA CTENOSAURA SIMILIS (GRAY, 1831) (SQUAMATA: IGUANIDAE) IN VENEZUELA DIEGO FLORES 1 AND LUIS FELIPE ESQUEDA 2 1 Biology student, Escuela de Ciencias, Universidad de Oriente, Cumaná, Venezuela. E-mail: [email protected] 2 Research associate, Laboratorio de Biogeografía, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes, Mérida 5101, Venezuela. E-mail: [email protected] The spiny-tailed iguanas of the genus Ctenosaura Wiegmann, 1828, range from coastal central Mexico to Panama, inhabiting tropical arid and moist lowlands below 500 m, along Atlantic and Pacific coasts. They comprise about 17 species (Queiroz 1987, Buckley and Axtell 1997, Köhler et al. 2000). Most species posses restricted distributions, although some, like Ctenosaura acanthura, C. hemilopha, C. pectinata and C. similis, show a wider distribution. The later has the greatest distribution, being present from the Mexican isthmus of Tehuantepec, to Colombia, including southern Mexico, Nicaragua, Guatemala, El Salvador, Honduras, Belize, Costa Rica, Panama, Providence and San Andres islands (Smith and Taylor 1950, Smith 1972, Henderson 1973, Köhler 1995a,b). The first author spotted a population of Ctenosaura iguanas in eastern Venezuela, specifically in Anzoátegui state, at the borders of municipios Diego Bautista Urbaneja, Sotillo, and Bolívar. A collected specimen, deposited in the herpetological collection of the Laboratory of Biogeography at University of Los Andes in Mérida (museum number ULABG 7315), substantiates the distribution record. Morphological details and coloration of the specimens (Fig.
    [Show full text]
  • Roatán Spiny-Tailed Iguana (Ctenosaura Oedirhina) Conservation Action Plan 2020–2025 Edited by Stesha A
    Roatán spiny-tailed iguana (Ctenosaura oedirhina) Conservation action plan 2020–2025 Edited by Stesha A. Pasachnik, Ashley B.C. Goode and Tandora D. Grant INTERNATIONAL UNION FOR CONSERVATION OF NATURE IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,400 government and NGO members and almost 15,000 volunteer experts in some 160 countries. IUCN’s work is supported by around 950 staff in more than 50 countries and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org IUCN Species Programme The IUCN Species Programme supports the activities of the IUCN Species Survival Commission and individual Specialist Groups, as well as implementing global species conservation initiatives. It is an integral part of the IUCN Secretariat and is managed from IUCN’s international headquarters in Gland, Switzerland. The Species Programme includes a number of technical units covering Wildlife Trade, the Red List, Freshwater Biodiversity Assessments (all located in Cambridge, UK), and the Global Biodiversity Assessment Initiative (located in Washington DC, USA). IUCN Species Survival Commission The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of more than 9,000 experts.
    [Show full text]
  • Iguanas in Florida N Green and Spinytail Iguanas Are Native to Central and South America, but Are Commonly Found in the Exotic Pet Trade
    Iguana fast facts n Iguanas are large lizards that can grow over 4 feet in length. Iguanas in Florida n Green and spinytail iguanas are native to Central and South America, but are commonly found in the exotic pet trade. n Iguanas bask in open areas and are often seen on sidewalks, docks, patios, decks, in trees or open mowed areas. n They can run or climb swiftly when frightened and dive into water or retreat into burrows or thick foliage. n Green iguanas can range from green to Black spinytail iguana, Adam G. Stern grayish black in color and have a row of spikes down the center of the head and back. n During the breeding season, adult male green iguanas can sometimes take on an orange hue. n Spinytail iguanas can range from gray to dark tan in color with black bands and have whorls of spiny scales on the tail. n Green iguanas are mainly herbivores and feed primarily on leaves, flowers and fruits of Mexican spinytail iguana, Kenneth L. Krysko various broad-leaved herbs, shrubs and trees, but will feed on other items opportunistically. If you have further questions or need more n Spinytail iguanas are omnivorous, eating help, call your regional Florida Fish and primarily vegetation, but have been Wildlife Conservation Commission office: documented eating small animals and eggs. Three members of the iguana family are now established in South Florida and occasionally observed in other parts of Florida: the green Main Headquarters iguana, the Mexican spinytail iguana, and the Florida Fish and Wildlife Conservation Commission black spinytail iguana.
    [Show full text]
  • RHINOCEROS IGUANA Cyclura Cornuta Cornuta (Bonnaterre 1789)
    HUSBANDRY GUIDELINES: RHINOCEROS IGUANA Cyclura cornuta cornuta (Bonnaterre 1789) REPTILIA: IGUANIDAE Compiler: Cameron Candy Date of Preparation: DECEMBER, 2009 Institute: Western Sydney Institute of TAFE, Richmond, NSW, Australia Course Name/Number: Certificate III in Captive Animals - 1068 Lecturers: Graeme Phipps - Jackie Salkeld - Brad Walker Husbandry Guidelines: C. c. cornuta 1 ©2009 Cameron Candy OHS WARNING RHINOCEROS IGUANA Cyclura c. cornuta RISK CLASSIFICATION: INNOCUOUS NOTE: Adult C. c. cornuta can be reclassified as a relatively HAZARDOUS species on an individual basis. This may include breeding or territorial animals. POTENTIAL PHYSICAL HAZARDS: Bites, scratches, tail-whips: Rhinoceros Iguanas will defend themselves when threatened using bites, scratches and whipping with the tail. Generally innocuous, however, bites from adults can be severe resulting in deep lacerations. RISK MANAGEMENT: To reduce the risk of injury from these lizards the following steps should be followed: - Keep animal away from face and eyes at all times - Use of correct PPE such as thick gloves and employing correct and safe handling techniques when close contact is required. Conditioning animals to handling is also generally beneficial. - Collection Management; If breeding is not desired institutions can house all female or all male groups to reduce aggression - If aggressive animals are maintained protective instrument such as a broom can be used to deflect an attack OTHER HAZARDS: Zoonosis: Rhinoceros Iguanas can potentially carry the bacteria Salmonella on the surface of the skin. It can be passed to humans through contact with infected faeces or from scratches. Infection is most likely to occur when cleaning the enclosure. RISK MANAGEMENT: To reduce the risk of infection from these lizards the following steps should be followed: - ALWAYS wash hands with an antiseptic solution and maintain the highest standards of hygiene - It is also advisable that Tetanus vaccination is up to date in the event of a severe bite or scratch Husbandry Guidelines: C.
    [Show full text]
  • Conservation Matters: CITES and New Herp Listings
    Conservation matters:FEATURE | CITES CITES and new herp listings The red-tailed knobby newt (Tylototriton kweichowensis) now has a higher level of protection under CITES. Photo courtesy Milan Zygmunt/www. shutterstock.com What are the recent CITES listing changes and what do they mean for herp owners? Dr. Thomas E.J. Leuteritz from the U.S. Fish & Wildlife Service explains. id you know that your pet It is not just live herp may be a species of animals that are protected wildlife? Many covered by CITES, exotic reptiles and but parts and Damphibians are protected under derivatives too, such as crocodile skins CITES, also known as the Convention that feature in the on International Trade in Endangered leather trade. Plants Species of Wild Fauna and Flora. and timber are also Initiated in 1973, CITES is an included. international agreement currently Photo courtesy asharkyu/ signed by 182 countries and the www.shutterstock.com European Union (also known as responsibility of the Secretary of the How does CITES work? Parties), which regulates Interior, who has tasked the U.S. Fish Species protected by CITES are international trade in more than and Wildlife Service (USFWS) as the included in one of three lists, 35,000 wild animal and plant species, lead agency responsible for the referred to as Appendices, according including their parts, products, and Convention’s implementation. You to the degree of protection they derivatives. can help USFWS conserve these need: Appendix I includes species The aim of CITES is to ensure that species by complying with CITES threatened with extinction and international trade in specimens of and other wildlife laws to ensure provides the greatest level of wild animals and plants does not that your activities as a pet owner or protection, including restrictions on threaten their survival in the wild.
    [Show full text]
  • TERRESTRIAL SPECIES Grand Cayman Blue Iguana Cyclura Lewisi Taxonomy and Range the Grand Cayman Blue Iguana, Cyclura Lewisi, Is
    TERRESTRIAL SPECIES Grand Cayman Blue iguana Cyclura lewisi Taxonomy and Range Kingdom: Animalia, Phylum: Chordata, Class: Sauropsida, Order: Squamata, Family: Iguanidae Genus: Cyclura, Species: lewisi The Grand Cayman Blue iguana, Cyclura lewisi, is endemic to the island of Grand Cayman. Closest relatives are Cyclura nubila (Cuba), and Cyclura cychlura (Bahamas); all three having apparently diverged from a common ancestor some three million years ago. Status Distribution: Species endemic to Grand Cayman. Conservation: Critically endangered (IUCN Red List). In 2002 surveys indicated a wild population of 10-25 individuals. By 2005 any young being born into the unmanaged wild population were not surviving to breeding age, making the population functionally extinct. Cyclura lewisi is now the most endangered iguana on Earth. Legal: The Grand Cayman Blue iguana Cyclura lewisi is protected under the Animals Law (1976). Pending legislation, it would be protected under the National Conservation Law (Schedule I). The Department of Environment is the lead body for legal protection. The Blue Iguana Recovery Programme BIRP operates under an exemption to the Animals Law, granted to the National Trust for the Cayman Islands. Natural history While it is likely that the original population included many animals living in coastal shrubland environments, the Blue iguana now only occurs inland, in natural dry shrubland, and along the margins of dry forest. Adults are primarily terrestrial, occupying rock holes and low tree cavities. Younger individuals tend to be more arboreal. Like all Cyclura species the Blue iguana is primarily herbivorous, consuming leaves, flowers and fruits. This diet is very rarely supplemented with insect larvae, crabs, slugs, dead birds and fungi.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]
  • Molecular Systematics & Evolution of the CTENOSAURA HEMILOPHA
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 9-1999 Molecular Systematics & Evolution of the CTENOSAURA HEMILOPHA Complex (SQUAMATA: IGUANIDAE) Michael Ray Cryder Follow this and additional works at: https://scholarsrepository.llu.edu/etd Part of the Biology Commons Recommended Citation Cryder, Michael Ray, "Molecular Systematics & Evolution of the CTENOSAURA HEMILOPHA Complex (SQUAMATA: IGUANIDAE)" (1999). Loma Linda University Electronic Theses, Dissertations & Projects. 613. https://scholarsrepository.llu.edu/etd/613 This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. LOMA LINDAUNIVERSITY Graduate School MOLECULARSYSTEMATICS & EVOLUTION OF THECTENOSAURA HEMJLOPHA COMPLEX (SQUAMATA: IGUANIDAE) by Michael Ray Cryder A Thesis in PartialFulfillment of the Requirements forthe Degree Master of Science in Biology September 1999 0 1999 Michael Ray Cryder All Rights Reserved 11 Each person whose signature appears below certifies that this thesis in their opinion is adequate, in scope and quality, as a thesis for the degree Master of Science. ,Co-Chairperson Ronald L. Carter, Professor of Biology Arc 5 ,Co-Chairperson L. Lee Grismer, Professor of Biology and Herpetology - -/(71— William Hayes, Pr fessor of Biology 111 ACKNOWLEDGMENTS I would like to express my appreciation to the institution and individuals who helped me complete this study. I am grateful to the Department of Natural Sciences, Lorna Linda University, for scholarship, funding and assistantship.
    [Show full text]
  • An Overlooked Pink Species of Land Iguana in the Galápagos
    An overlooked pink species of land iguana in the Galápagos Gabriele Gentilea,1, Anna Fabiania, Cruz Marquezb, Howard L. Snellc, Heidi M. Snellc, Washington Tapiad, and Valerio Sbordonia aDipartimento di Biologia, Universita`Tor Vergata, 00133 Rome, Italy; bCharles Darwin Foundation, Puerto Ayora, Gala´pagos Islands, Ecuador; cDepartment of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131; and dGalápagos National Park Service, Puerto Ayora, Gala´pagos Islands, Ecuador Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved November 11, 2008 (received for review July 2, 2008) Despite the attention given to them, the Galápagos have not yet finished offering evolutionary novelties. When Darwin visited the Galápagos, he observed both marine (Amblyrhynchus) and land (Conolophus) iguanas but did not encounter a rare pink black- striped land iguana (herein referred to as ‘‘rosada,’’ meaning ‘‘pink’’ in Spanish), which, surprisingly, remained unseen until 1986. Here, we show that substantial genetic isolation exists between the rosada and syntopic yellow forms and that the rosada is basal to extant taxonomically recognized Galápagos land igua- nas. The rosada, whose present distribution is a conundrum, is a relict lineage whose origin dates back to a period when at least some of the present-day islands had not yet formed. So far, this species is the only evidence of ancient diversification along the Galápagos land iguana lineage and documents one of the oldest events of divergence ever recorded in the Galápagos. Conservation efforts are needed to prevent this form, identified by us as a good species, from extinction. Fig. 1. Galápagos Islands.
    [Show full text]
  • Zootaxa, Conolophus Marthae Sp.Nov
    Zootaxa 2201: 1–10 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Conolophus marthae sp.nov. (Squamata, Iguanidae), a new species of land iguana from the Galápagos archipelago GABRIELE GENTILE1,3 & HOWARD SNELL2 1Dipartimento di Biologia, Università Tor Vergata, 00133 Rome, Italy 2Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA 3Corresponding author. E-mail: [email protected] Abstract Conolophus marthae sp. nov., a new species endemic to Volcan Wolf of northern Isla Isabela of the Galápagos archipelago, is described. The new species is morphologically, behaviorally, and genetically distinguished from the other two congeneric species C. subcristatus and C. pallidus. Besides the taxonomic implications, C. marthae sp. nov. is extremely important as it is the only evidence of deep divergence within the Galápagos land iguana lineage. Key words: Galápagos pink land iguana, Conolophus, Iguanidae, Squamata, Galápagos Islands, Galápagos National Park, lizards, endemism Introduction Land iguanas from the Galápagos are among the most emblematic organisms of that archipelago. The current distribution of these reptiles reflects direct and indirect human impacts (Snell et al. 1984). Consequently, at present, land iguanas occur only in limited areas of a few islands. Current taxonomy of Galápagos land iguanas recognizes two species: C. pallidus Heller, 1903 and C. subcristatus (Gray, 1831). The first species occurs only on Santa Fe, whereas C. subcristatus occurs on Fernandina, Isabela, Santa Cruz, Plaza Sur, Seymour Norte (a translocated population), and Baltra (a repatriated population). Morphological (Snell et al. 1984) and genetic data (Rassmann et al.
    [Show full text]