Metabolic Basis of Creatine in Health and Disease: a Bioinformatics-Assisted Review

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Basis of Creatine in Health and Disease: a Bioinformatics-Assisted Review nutrients Review Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review Diego A. Bonilla 1,2,3,4,* , Richard B. Kreider 5 , Jeffrey R. Stout 6 , Diego A. Forero 7, Chad M. Kerksick 8 , Michael D. Roberts 9,10 and Eric S. Rawson 11 1 Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia 2 Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia 3 Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia 4 kDNA Genomics®, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain 5 Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA; [email protected] 6 Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA; [email protected] 7 Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; [email protected] 8 Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA; [email protected] 9 School of Kinesiology, Auburn University, Auburn, AL 36849, USA; [email protected] 10 Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA 11 Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA; [email protected] Citation: Bonilla, D.A.; Kreider, R.B.; * Correspondence: [email protected]; Tel.: +57-320-335-2050 Stout, J.R.; Forero, D.A.; Kerksick, C.M.; Roberts, M.D.; Rawson, E.S. Abstract: Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and Metabolic Basis of Creatine in Health pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells and Disease: A Bioinformatics- through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, Assisted Review. Nutrients 2021, 13, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− 1238. https://doi.org/10.3390/ 2+ 3− − nu13041238 and Cr to produce phosphocreatine (PCr) and [Mg :ADP ] . We aimed to perform a comprehen- sive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Academic Editor: Susanne Klaus Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were Received: 23 March 2021 addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) Accepted: 7 April 2021 What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in Published: 9 April 2021 cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Publisher’s Note: MDPI stays neutral Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell with regard to jurisdictional claims in survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary published maps and institutional affil- advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. iations. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Keywords: creatine kinase; energy metabolism; cell survival; bioinformatics; systems biology; cellular This article is an open access article allostasis; dynamic biosensor distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Nutrients 2021, 13, 1238. https://doi.org/10.3390/nu13041238 https://www.mdpi.com/journal/nutrients Nutrients 2021, 13, x FOR PEER REVIEW 2 of 36 Nutrients 2021, 13, 1238 2 of 32 1. Introduction 1. Introduction Creatine (Cr) is a ubiquitous non-protein amino acid (PubChem CID: 586) that is syn- Creatine (Cr) is a ubiquitous non-protein amino acid (PubChem CID: 586) that is thesized mainly in the liver, kidneys, and pancreas [1]. However, other tissues (e.g., brain synthesized mainly in the liver, kidneys, and pancreas [1]. However, other tissues (e.g., and testes) are also able to produce Cr [2–4]. Endogenous Cr synthesis begins with the brain and testes) are also able to produce Cr [2–4]. Endogenous Cr synthesis begins with the transfer of the amidino group of L-arginine to the Nα-amine group of L-glycine following transfer of the amidino group of L-arginine to the Nα-amine group of L-glycine following a a ping-pong mechanism that is catalyzed by L-Arginine-Glycine amidinotransferase ping-pong mechanism that is catalyzed by L-Arginine-Glycine amidinotransferase (AGAT- (AGAT-EC 2.1.4.1)EC2.1.4.1) [5]. This [5 first]. This reaction first reaction yields L-ornithine yields L-ornithine and guanidinoacetate and guanidinoacetate (GAA), (GAA), which which is then methylatedis then methylated at the original at the originalnitrogen nitrogen of glycine of glycineusing S-adenosyl-L-methio- using S-adenosyl-L-methionine as nine as the donorthe of donor the methyl of the group methyl by group means by of means the Guanidinoacetate of the Guanidinoacetate N-Methyltrans- N-Methyltransferase ferase (GAMT-EC(GAMT-EC 2.1.1.2). This 2.1.1.2). reaction This foll reactionows the follows formation the formationof a strong of nucleophile a strong nucleophile on on the the deprotonateddeprotonated glycine-derived glycine-derived N of GAA Nthat of interacts GAA that with interacts the methyl with thegroup methyl from group from the the positively chargedpositively sulfonium charged ion sulfonium of S-adenosyl-L-methionine ion of S-adenosyl-L-methionine [6] to produce [6] Cr to produceand Cr and S- S-adenosyl-L-cysteineadenosyl-L-cysteine (Figure 1). (Figure1). Figure 1. CreatineFigure synthesis/excretion1. Creatine synthesis/excretion and the creatine and the kinase creatine reaction. kinase Enzymes reaction. are Enzymes represented are byrepresented ovals. Once by synthesized from L-arginine,ovals. glycine, Once synthesized and S-adenosyl-L-methionine, from L-arginine, glycine, creatine and (Cr) S-adenosyl-L-m is converted toethionine, phosphocreatine creatine (Cr) (PCr) is bycon- means of the 2− 3− creatine kinaseverted (CK), to phosphocreatine which catalyzes the(PCr) reversible by means transference of the creatine of a kinase phosphoryl (CK), groupwhich (POcatalyzes3 ), notthe areversible phosphate (PO4 ), 2- 3- from ATP. Thetransference kinetic rate of ofa phosphoryl the non-enzymatic group (PO conversion3 ), not ofa phosphate Cr (or PCr) (PO to creatinine4 ), from ATP. (Crn) The depends kinetic on rate the Hof+ concentra- + tion of the media.the non-enzymatic It is important conversion to note thatof Cr neither (or PC Crnr) to norcreatinine PCr are (Crn) substrates depends of theon the sodium- H concentration and chloride-dependent of the media. It is important to note that neither Crn nor PCr are substrates of the sodium- and chlo- creatine transporter (not shown). Oval size represents the expression level of AGAT (black), GAMT (white), and CK (orange) ride-dependent creatine transporter (not shown). Oval size represents the expression level of AGAT in some tissues. For more details related to expression in different tissues or conditions (i.e., pathologies) use the following (black), GAMT (white), and CK (orange) in some tissues. For more details related to expression in BioGPS IDdifferent numbers: tissues AGAT–2628; or conditions GAMT–2593. (i.e., pathologies) AGAT: L-Arginine-Glycine use the following amidinotransferase; BioGPS ID numbers: GAMT: AGAT–2628; Guanidinoacetate + N-Methyltransferase;GAMT–2593. H AGAT:: hydrogen L-Arginine-Glycine ion; Pi: inorganic amidinotra phosphate.nsferase; Modified GAMT: with permissionGuanidinoacetate from Bonilla N-Methyl- and Moreno [7] using the Freewaretransferase; ACD/ChemSketch H+: hydrogen ion; 2021 Pi: (Advancedinorganic phosphate. Chemistry Mo Development,dified with permission Inc., Toronto, from ON, Bonilla Canada). and Nutrients 2021, 13, 1238 3 of 32 High Cr concentrations are found in skeletal muscle and the brain [8]. High Cr levels are also found in other cells with high energy demands such as the cardiomyocytes, hepatocytes, kidney cells, inner ear cells, enterocytes, spermatozoa, and photoreceptor cells [9,10]. However, approximately 95% of the Cr pool in the body is found in skeletal muscle [11–13]. After synthesis, Cr reaches target tissues through the bloodstream, and intracellular transport mediated by a solute carrier protein called sodium- and chloride- dependent creatine transporter (CRT, also known as SLC6A8) [14]. This symporter belongs to a family of neurotransmitter transporters known as solute carrier family 6, which
Recommended publications
  • S41598-021-93055-5.Pdf
    www.nature.com/scientificreports OPEN Potent antitumor activity of a glutamyltransferase‑derived peptide via an activation of oncosis pathway Cheng Fang1,7, Wenhui Li2,7, Ruozhe Yin3,7, Donglie Zhu3, Xing Liu4, Huihui Wu4, Qingqiang Wang3, Wenwen Wang4, Quan Bai5, Biliang Chen6, Xuebiao Yao4* & Yong Chen3* Hepatocellular carcinoma (HCC) still presents poor prognosis with high mortality rate, despite of the improvement in the management. The challenge for precision treatment was due to the fact that little targeted therapeutics are available for HCC. Recent studies show that metabolic and circulating peptides serve as endogenous switches for correcting aberrant cellular plasticity. Here we explored the antitumor activity of low molecular components in human umbilical serum and identifed a high abundance peptide VI‑13 by peptidome analysis, which was recognized as the part of glutamyltransferase signal peptide. We modifed VI‑13 by inserting four arginines and obtained an analog peptide VI‑17 to improve its solubility. Our analyses showed that the peptide VI‑17 induced rapid context‑dependent cell death, and exhibited a higher sensitivity on hepatoma cells, which is attenuated by polyethylene glycol but not necrotic inhibitors such as z‑VAD‑fmk or necrostatin‑1. Morphologically, VI‑17 induced cell swelling, blebbing and membrane rupture with release of cellular ATP and LDH into extracellular media, which is hallmark of oncotic process. Mechanistically, VI‑17 induced cell membrane pore formation, degradation of α‑tubulin via infux of calcium ion. These results indicated that the novel peptide VI‑17 induced oncosis in HCC cells, which could serve as a promising lead for development of therapeutic intervention of HCC.
    [Show full text]
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Ftsh Is Required for Proteolytic Elimination of Uncomplexed Forms
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 4532-4536, May 1995 Cell Biology FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit (protein translocation/quality control/proteolysis/AAA family/membrane protein) AKIO KIHARA, YOSHINORI AKIYAMA, AND KOREAKI ITO Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-01, Japan Communicated by Randy Schekman, University of California, Berkeley, CA, February 13, 1995 (receivedfor review December 5, 1994) ABSTRACT When secY is overexpressed over secE or secE Overexpression of SecY from a plasmid does not lead to is underexpressed, a fraction of SecY protein is rapidly significant overaccumulation of SecY (2, 12). Under such degraded in vivo. This proteolysis was unaffected in previously conditions, the majority of SecY is degraded with a half-life of described protease-defective mutants examined. We found, about 2 min, whereas the other fraction that corresponds to the however, that some mutations inftsH, encoding a membrane amount seen in the wild-type cell remains stable (2). When protein that belongs to the AAA (ATPase associated with a SecE is co-overproduced, oversynthesized SecY is stabilized variety ofcellular activities) family, stabilized oversynthesized completely (2, 12). Mutational reduction of the quantity of SecY. This stabilization was due to a loss ofFtsH function, and SecE is accompanied by destabilization of the corresponding overproduction of the wild-type FtsH protein accelerated the fraction of newly synthesized SecY molecules (2). These degradation. The ftsH mutations also suppressed, by allevi- observations indicate that uncomplexed SecY is recognized ating proteolysis of an altered form of SecY, the temperature and hydrolyzed by a protease and that SecE can antagonize the sensitivity of the secY24 mutation, which alters SecY such that proteolysis.
    [Show full text]
  • In the Field of Clinical Examination, the Measurement of Creatine
    J. Clin. Biochem. Nutr., 3, 17-25, 1987 Bacterial Glucokinase as an Enzymic Reagent of Good Stability for Measurement of Creatine Kinase Activity Hitoshi KONDO, * Takanari SHIRAISHI, Masao KAGEYAMA, Kazuhiko NAGATA, and Kosuke TOMITA Research and Development Center, UNITIKA Ltd., Uji 611, Japan (Received January 10, 1987) Summary An enzymic reagent, that has long-term stability even in the liquid state, was successfully employed for the measurement of serum creatine kinase (CK, EC 2.7.3.2) activity. The enzyme used was the thermostable glucokinase (GlcK, EC 2.7.1.2) obtained from the thermo- phile Bacillus stearothermophilus. The reagent was found to be stable in solution for about one month at 6•Ž and for about one week at 30•Ž. This substitution of glucokinase for the hexokinase of the most commonly used hexokinase-glucose-6-phosphate dehydrogenase (HK-G6PDH) method results in a remarkable improvement of the method. The CK activity measured by the GlcK-G6PDH method was linear up to about 2,000 U/ liter at 37•Ž. The GlcK-G6PDH method was found to give a satisfactory precision and reproducibility (coefficient of variation less than 2.17%). Over a wide range of CK activity, an excellent agreement was obtained between the GlcK-G6PDH and the HK-G6PDH methods. Furthermore several coexistents and anticoagulants were found to have little effect on the measured value of CK activity by the GlcK-G6PDH method. Key Words: creatine kinase activity, glucokinase, improved stability of reagent, creatine kinase determination, thermostable enzyme In the field of clinical examination, the measurement of creatine kinase (CK, ATP : creatine phosphotransferase, EC 2.7.3.2) activity in serum is one of the important examinations usually employed for diagnosis of cardiac diseases such as myocardial infarction or muscular diseases such as progressive muscular dystrophy.
    [Show full text]
  • Creatine Kinase Assay Kit
    Creatine Kinase Assay Kit Catalog Number KA1665 100 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction ................................................................................................... 3 Intended Use ................................................................................................................. 3 Background ................................................................................................................... 3 Principle of the Assay .................................................................................................... 3 General Information ...................................................................................... 4 Materials Supplied ......................................................................................................... 4 Storage Instruction ........................................................................................................ 4 Materials Required but Not Supplied ............................................................................. 4 Precautions for Use ....................................................................................................... 4 Assay Protocol .............................................................................................. 5 Reagent Preparation ..................................................................................................... 5 Sample Preparation ......................................................................................................
    [Show full text]
  • Altered Metabolome of Lipids and Amino Acids Species: a Source of Early Signature Biomarkers of T2DM
    Journal of Clinical Medicine Review Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM Ahsan Hameed 1 , Patrycja Mojsak 1, Angelika Buczynska 2 , Hafiz Ansar Rasul Suleria 3 , Adam Kretowski 1,2 and Michal Ciborowski 1,* 1 Clinical Research Center, Medical University of Bialystok, Jana Kili´nskiegoStreet 1, 15-089 Bialystok, Poland; [email protected] (A.H.); [email protected] (P.M.); [email protected] (A.K.) 2 Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] 3 School of Agriculture and Food System, The University of Melbourne, Parkville, VIC 3010, Australia; hafi[email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Diabetes mellitus, a disease of modern civilization, is considered the major mainstay of mortalities around the globe. A great number of biochemical changes have been proposed to occur at metabolic levels between perturbed glucose, amino acid, and lipid metabolism to finally diagnoe diabetes mellitus. This window period, which varies from person to person, provides us with a unique opportunity for early detection, delaying, deferral and even prevention of diabetes. The early detection of hyperglycemia and dyslipidemia is based upon the detection and identification of biomarkers originating from perturbed glucose, amino acid, and lipid metabolism. The emerging “OMICS” technologies, such as metabolomics coupled with statistical and bioinformatics tools, proved to be quite useful to study changes in physiological and biochemical processes at the metabolic level prior to an eventual diagnosis of DM.
    [Show full text]
  • AGC Kinases in Mtor Signaling, in Mike Hall and Fuyuhiko Tamanoi: the Enzymes, Vol
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book, The Enzymes, Vol .27, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: ESTELA JACINTO, AGC Kinases in mTOR Signaling, In Mike Hall and Fuyuhiko Tamanoi: The Enzymes, Vol. 27, Burlington: Academic Press, 2010, pp.101-128. ISBN: 978-0-12-381539-2, © Copyright 2010 Elsevier Inc, Academic Press. Author's personal copy 7 AGC Kinases in mTOR Signaling ESTELA JACINTO Department of Physiology and Biophysics UMDNJ-Robert Wood Johnson Medical School, Piscataway New Jersey, USA I. Abstract The mammalian target of rapamycin (mTOR), a protein kinase with homology to lipid kinases, orchestrates cellular responses to growth and stress signals. Various extracellular and intracellular inputs to mTOR are known. mTOR processes these inputs as part of two mTOR protein com- plexes, mTORC1 or mTORC2. Surprisingly, despite the many cellular functions that are linked to mTOR, there are very few direct mTOR substrates identified to date.
    [Show full text]
  • Analysis of the Effects of Three Commercially Available Supplements on Performance, Exercise Induced Changes and Bio-Markers in Recreationally Trained Young Males
    Analysis of the effects of three commercially available supplements on performance, exercise induced changes and bio-markers in recreationally trained young males Robert Cooper A thesis is submitted in partial fulfilment of the requirements of the University of Greenwich for the Degree of Doctor of Philosophy This research programme was carried out in collaboration with GlaxoSmithKline Maxinutrition division December 2013 School of Science University of Greenwich, Medway Campus Chatham Maritime, Kent ME4 4TB, UK i DECLARATION “I certify that this work has not been accepted in substance for any degree, and is not concurrently being submitted for any degree other than that of Doctor of Philosophy being studied at the University of Greenwich. I also declare that this work is the result of my own investigations except where otherwise identified by references and that I have not plagiarised the work of others”. Signed Date Mr Robert Cooper (Candidate) …………………………………………………………………………………………………………………………… PhD Supervisors Signed Date Dr Fernando Naclerio (1st supervisor) Signed Date Dr Mark Goss-Sampson (2nd supervisor) ii ACKNOWLEDGEMENTS Thank you to my supervisory team, Dr Fernando Naclerio, Dr Mark Goss Sampson and Dr Judith Allgrove for their support and guidance throughout my PhD. Particular thanks to Dr Fernando Naclerio for his tireless efforts, guidance and support in developing the research and my own research and communication skills. Thank you to Dr Eneko Larumbe Zabala for the statistics support. I would like to take this opportunity to thank my wonderful mother and sister who continue to give me the support and drive to succeed. Also on a personal level thank you to my amazing fiancée, Jennie Swift.
    [Show full text]
  • Creatine Kinase (CK)
    P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, Main Road Bryanston, Johannesburg, South Africa www.thistle.co.za Tel: +27 (011) 463-3260 Fax: +27 (011) 463-3036 e-mail : [email protected] Please read this bit first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT00025. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. CHEMISTRY LEGEND August 2009 Creatine kinase (CK) Creatine kinase (CK), also known as Creatine phosphokinase (CPK) or phospho-creatine kinase or sometimes wrongfully also creatinine kinase, is an enzyme expressed by various tissues and cell types. CK catalyses the conversion of Creatine and consumes adenosine triphosphate (ATP) to create phospho-creatine (PCr) and adenosine diphosphate (ADP). This CK enzyme reaction is reversible, such that also ATP can be generated from PCr and ADP. In tissues and cells that consume ATP rapidly, especially skeletal muscle, but also brain, photoreceptor cells of the retina, hair cells of the inner ear, spermatozoa and smooth muscle, phospho-creatine serves as an energy reservoir for the rapid buffering and regeneration of ATP in situ, as well as for intracellular energy transport by the phospho-creatine shuttle or circuit.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • UCP1-Independent Thermogenesis in Brown/Beige Adipocytes: Classical Creatine Kinase/Phosphocreatine Shuttle Instead of “Futile Creatine Cycling”
    UCP1-independent thermogenesis in brown/beige adipocytes: classical creatine kinase/phosphocreatine shuttle instead of “futile creatine cycling”. Theo Wallimann1*), Malgorzata Tokarska-Schlattner2) Laurence Kay2) and Uwe Schlattner2,3*) 1) Biology Dept. ETH-Zurich, Switzerland, emeritus, E-mail address: [email protected] 2) University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France, E-mail address: [email protected] 3) Institut Universitaire de France (IUF), Paris, France *) joint corresponding authors Abstract Various studies have identified creatine kinase (CK) and creatine (Cr) as important players for thermogenesis. More recently, they have been specifically linked to UCP1-independent thermogenesis in beige/brown adipocytes, and a “Cr-driven futile cycle” within mitochondria was proposed as the mechanistic basis. Here, we provide a critical appraisal of such a mechanism, which would require a rather undefined phosphocreatine phosphatase. As alternative explanation, we suggest instead that the well-known functions of the CK system, that is ATP buffering and shuttling of high-energy phosphocreatine (PCr) from sites of ATP generation to sites of ATP utilization, are also working in brown/beige adipocytes. There, the CK/PCr system would be shunted between ATP generation, at the mitochondria and/or glycolysis, and ATP hydrolysis at the ER/SR. This would largely facilitate high-throughput calcium pumping by the ATP-dependent Ca2+ pump (SERCA) as described also in skeletal and cardiac muscle. This very CK/PCr system would then support adipocyte SERCA2b function and, in tandem with adipocyte ryanodine receptor (RyR2) and/or inositol 1,4,5- 2+ triphosphate receptor (IP3-R3), facilitate thermogenic futile Ca cycling that has been described to operate in UCP1-independent, but ATP-dependent non-shivering thermogenesis.
    [Show full text]