Adaptation to Hif1α Deletion in Hypoxic Cancer Cells by Upregulation of GLUT14 and Creatine Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Adaptation to Hif1α Deletion in Hypoxic Cancer Cells by Upregulation of GLUT14 and Creatine Metabolism Published OnlineFirst March 18, 2019; DOI: 10.1158/1541-7786.MCR-18-0315 Metabolism Molecular Cancer Research Adaptation to HIF1a Deletion in Hypoxic Cancer Cells by Upregulation of GLUT14 and Creatine Metabolism Alessandro Valli1,2, Matteo Morotti1, Christos E. Zois1, Patrick K. Albers3, Tomoyoshi Soga4, Katharina Feldinger1, Roman Fischer2, Martin Frejno2, Alan McIntyre1, Esther Bridges1, Syed Haider1, Francesca M. Buffa1, Dilair Baban3, Miguel Rodriguez5,6, Oscar Yanes5,6, Hannah J. Whittington7, Hannah A. Lake7, Sevasti Zervou7, Craig A. Lygate7, Benedikt M. Kessler2, and Adrian L. Harris1 Abstract Hypoxia-inducible factor 1a is a key regulator of the than phosphofructokinase. Furthermore, glucose uptake hypoxia response in normal and cancer tissues. It is well could be maintained in hypoxia through upregulation of recognized to regulate glycolysis and is a target for therapy. GLUT14, not previously recognized in this role. Finally, However, how tumor cells adapt to grow in the absence of there was a marked adaptation and change of phospho- HIF1a is poorly understood and an important concept to creatine energy pathways, which made the cells susceptible understand for developing targeted therapies is the flexi- to inhibition of creatine metabolism in hypoxic condi- bility of the metabolic response to hypoxia via alternative tions. Overall, our studies show a complex adaptation to pathways. We analyzed pathways that allow cells to survive hypoxia that can bypass HIF1a, but it is targetable and it hypoxic stress in the absence of HIF1a,usingtheHCT116 provides new insight into the key metabolic pathways colon cancer cell line with deleted HIF1a versus control. involved in cancer growth. Spheroids were used to provide a 3D model of metabolic gradients. We conducted a metabolomic, transcriptomic, Implications: Under hypoxia and HIF1 blockade, cancer cells and proteomic analysis and integrated the results. These adapt their energy metabolism via upregulation of the showed surprisingly that in three-dimensional growth, GLUT14 glucose transporter and creatine metabolism provid- a key regulatory step of glycolysis is Aldolase A rather ing new avenues for drug targeting. Introduction conditions such as hypoxia, acidic pH, and a nutrient-poor microenvironment (1). Highly proliferating cancer cells must increase the import of Warburg first described the increase of oxidation of glucose nutrients and adopt a metabolic program that fulfils energetic, into lactate in cancer cells (2). Although yielding less ATP than redox, and biosynthetic requirements for increasing cell mass. OXPHOS, glycolysis is utilized predominantly by cancer cells and Metabolic flexibility is acquired through genetic and nonge- provides a more rapid response to the high energy demand of netic factors that allow tumors to grow in altered biochemical rapidly proliferating cancer cells (3). In hypoxia, this regulation represents the predominant way to produce ATP, even for normal cells (1). Although many solid tumors demonstrate the Warburg 1Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United 2 fi effect, some, such as prostate cancer, do not (4). Virus-infected Kingdom. Target Discovery Institute, Nuf eld Department of Medicine, Uni- þ versity of Oxford, Oxford, United Kingdom. 3The Wellcome Trust Centre for cells show increased glucose metabolism and CD4 T-cell growth Human Genetics, University of Oxford, Oxford, United Kingdom. 4Institute for is characterized by a high synthesis of ATP and biosynthetic Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan. 5Metabo- reactions (cell membrane and DNA biosynthesis). These observa- lomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira tions show that uncoupling glycolysis from OXPHOS can offer a 6 i Virgili, Tarragona, Spain. Spanish Biomedical Research Center in Diabetes and metabolic solution adequately beneficial for the high energy Associated Metabolic Disorders-CIBERDEM, Madrid, Spain. 7Division of Cardio- vascular Medicine, Radcliffe Department of Medicine, University of Oxford, demand while maintaining redox balance and biosynthetic Oxford, United Kingdom. requirements (5–7). Similarly, reprogramming of cancer metab- olism activates distinct pathways in which oncogenic mutations Note: Supplementary data for this article are available at Molecular Cancer Research Online (http://mcr.aacrjournals.org/). convey downstream signals to directed prometabolic traits (1). Adaptation to the hypoxic tumor microenvironment is driven B.M. Kessler and A.L. Harris are the co-senior authors of this article. by hypoxia-inducible factors HIF1a and HIF2a that induce a Corresponding Author: Alessandro Valli, University of Oxford, Oxford OX3 9DS, distinct transcriptional program (8). HIF1a regulates numerous United Kingdom. Phone: 4418-6522-2420; Fax: 4418-6522-2431; E-mail: metabolic genes, especially those involved in glycolysis and [email protected] and [email protected] related auxiliary processes (9). doi: 10.1158/1541-7786.MCR-18-0315 Because of the importance of HIF1 in tumor growth and the Ó2019 American Association for Cancer Research. potential of HIF1a as target, we investigated how a cell line www.aacrjournals.org OF1 Downloaded from mcr.aacrjournals.org on September 29, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst March 18, 2019; DOI: 10.1158/1541-7786.MCR-18-0315 Valli et al. deleted for HIF1a could survive in hypoxia. We studied the the increase in absorbance at 412 nm over 1 minute as a result of HCT116 colorectal cancer cell line wild-type (WT) and HIF1a 5-thio-2-nitrobenzoate (TNB2-) production. The assay was per- knockout (KO) under hypoxic conditions and analyzed transcrip- formed in duplicate and results were normalized by protein tomics, proteomics, metabolomics, and fluxomics. We integrated concentration. the multi-omics data to construct a map of hypoxic colorectal cancer cell energy metabolism. Our results show for the first time upregulation of glucose transporter type 14 (GTR14) to maximize Results nutrient uptake and an important role for creatine (Cr) energy HIF1a regulates hypoxic spheroid cancer growth pathways to sustain multidimensional growth under hypoxic We cultured WT and KO HCT116 cells as spheroids (WTs and conditions. KOs) for 72 hours, generating a hypoxic inner mass, and evaluated their morphology at three time points (72.5, 76, and 96 hours). Immunostaining of WTs and KOs spheroids at 96 hours showed Materials and Methods key differences in hypoxic adaptation. Pimonidazole (PIMO)- Cell culture positive staining, in both WTs and KOs, confirmed the presence of Cell lines were available from Clare Hall Laboratories hypoxic areas, and carbonic anhydrase 9 (CA9; HIF1a-target) (HCT116), or were a kind gift from Prof Walter Bodmer (Weath- positive stain in WTs demonstrated the presence of hypoxia and erall Institute of Molecular Medicine, Oxford, United Kingdom; HIF1a stabilization. In contrast, CA9 staining was absent in KOs, DLD-1, Ls174T). Cell line authentication was carried out by short demonstrating successful HIF1a knockout. Necrosis and cell tandem repeat analyses (LGC Standards) 6 months prior to the first death, as measured by H&E staining, was more pronounced in submission of the manuscript. Cells were cultured as described WTs than in KOs (Fig. 1A). previously, unless different conditions were specified (10). We evaluated differences in growth of WTs and KOs (Fig. 1B). HCT116 WTs and KOs proliferated over 24 hours, with a higher Enzyme activity assay rate in WTs (top). WTs volume was overall significantly bigger WT and KO HCT116 cells were cultivated at either 21% O2 or than that of KOs cells with no marked changes over time (middle). 1% O2 for 24 hours. Cells were collected, pelleted, and suspended Cell spheroid density (number of cells per spheroid/spheroid in 1 mL of ice-cold buffer (0.08 mmol/L K2HPO4, 1 mmol/L volume) showed a significant increased over time in both WTs EGTA, 0.02 mmol/L KH2PO4, and 1 mmol/L b-mercaptoethanol) and KOs and was more pronounced in KOs at 96 hours (bottom). while under experimental conditions. Samples were vortexed and 150 mL aliquots removed for determination of protein by the HIF1a metabolic effects in cancer spheroids Lowry method. A final concentration of 0.1% v/v Triton X-100 was Because WTs and KOs grow unequally, we optimized the added to permeabilize cells. Samples were stored on ice for at least formation of WTs and KOs with a comparable cell number, 30 minutes to allow precipitation and the supernatant was used morphology, volume, and diameter, which enabled the investi- for all enzyme activity measurements. gation of hypoxic gradients at the studied time points (72.5, 76, and 96 hours; data not shown). We measured 26 metabolites of Total creatine kinase activity six metabolic pathways: glycogen (GLG), glycolysis (GLY), TCA Twenty microliters of 1:5 (in ice buffer) diluted sample super- cycle, ATP, Cr, and redox metabolism (Fig. 1C). GLG metabolic natant was incubated with 1 mL of creatine kinase (CK)-NAC intermediates show a general decrease over time in both WTs and reagent (Thermo Fisher Scientific) at 30C. After 3-minute lag KOs. Glycolysis and Cr metabolic products accumulated mostly time, CK activity was quantified spectrophotometrically by mea- in WTs. TCA cycle metabolites did not show a defined trend, but suring the increase in absorbance at 340 nm over 2 minutes as a generally appeared to be more elevated in WTs at 96
Recommended publications
  • The Airway Epithelium Undergoes Metabolic Reprogramming in Individuals at High Risk for Lung Cancer
    The airway epithelium undergoes metabolic reprogramming in individuals at high risk for lung cancer S.M. Jamshedur Rahman, … , Jamey D. Young, Pierre P. Massion JCI Insight. 2016;1(19):e88814. https://doi.org/10.1172/jci.insight.88814. Research Article Metabolism Oncology The molecular determinants of lung cancer risk remain largely unknown. Airway epithelial cells are prone to assault by risk factors and are considered to be the primary cell type involved in the field of cancerization. To investigate risk- associated changes in the bronchial epithelium proteome that may offer new insights into the molecular pathogenesis of lung cancer, proteins were identified in the airway epithelial cells of bronchial brushing specimens from risk-stratified individuals by shotgun proteomics. Differential expression of selected proteins was validated by parallel reaction monitoring mass spectrometry in an independent set of individual bronchial brushings. We identified 2,869 proteins, of which 312 proteins demonstrated a trend in expression. Pathway analysis revealed enrichment of carbohydrate metabolic enzymes in high-risk individuals. Glucose consumption and lactate production were increased in human bronchial epithelial BEAS2B cells treated with cigarette smoke condensate for 7 months. Increased lipid biosynthetic capacity and 13 net reductive carboxylation were revealed by metabolic flux analyses of [U- C5] glutamine in this in vitro model, suggesting profound metabolic reprogramming in the airway epithelium of high-risk individuals. These results provide a rationale for the development of potentially new chemopreventive strategies and selection of patients for surveillance programs. Find the latest version: https://jci.me/88814/pdf RESEARCH ARTICLE The airway epithelium undergoes metabolic reprogramming in individuals at high risk for lung cancer S.M.
    [Show full text]
  • Creatine Kinase (CK)
    P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, Main Road Bryanston, Johannesburg, South Africa www.thistle.co.za Tel: +27 (011) 463-3260 Fax: +27 (011) 463-3036 e-mail : [email protected] Please read this bit first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT00025. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. CHEMISTRY LEGEND August 2009 Creatine kinase (CK) Creatine kinase (CK), also known as Creatine phosphokinase (CPK) or phospho-creatine kinase or sometimes wrongfully also creatinine kinase, is an enzyme expressed by various tissues and cell types. CK catalyses the conversion of Creatine and consumes adenosine triphosphate (ATP) to create phospho-creatine (PCr) and adenosine diphosphate (ADP). This CK enzyme reaction is reversible, such that also ATP can be generated from PCr and ADP. In tissues and cells that consume ATP rapidly, especially skeletal muscle, but also brain, photoreceptor cells of the retina, hair cells of the inner ear, spermatozoa and smooth muscle, phospho-creatine serves as an energy reservoir for the rapid buffering and regeneration of ATP in situ, as well as for intracellular energy transport by the phospho-creatine shuttle or circuit.
    [Show full text]
  • Histone Methyltransferase Smyd1 Regulates Mitochondrial Energetics in the Heart
    Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart Junco S. Warrena,b,1, Christopher M. Tracya, Mickey R. Millera, Aman Makajua, Marta W. Szulika, Shin-ichi Okac, Tatiana N. Yuzyukd,e, James E. Coxf,g, Anil Kumarh, Bucky K. Loziere, Li Wanga, June García Llanaa, Amira D. Sabrya, Keiko M. Cawleya, Dane W. Bartonb, Yong Hwan Hani, Sihem Boudinaj, Oliver Fiehnk,l, Haley O. Tuckerm,n, Alexey V. Zaitseva,o, and Sarah Franklina,b,g aNora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112; bDepartment of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84102; cDepartment of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103; dDepartment of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84103; eAssociated Regional and University Pathologists, Inc. Laboratories, Salt Lake City, UT 84108; fMetabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112; gDepartment of Biochemistry, University of Utah, Salt Lake City, UT 84112; hMetabolic Phenotyping Core Facility, University of Utah, Salt Lake City, UT 84112; iMasonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; jDepartment of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112; kGenome Center-Metabolomics, University of California, Davis, CA 95616; lBiochemistry Department, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; mDepartment of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; nThe Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712; and oDepartment of Bioengineering, University of Utah, Salt Lake City, UT 84112 Edited by Gerald I.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Identification of Novel Alleles Associated with Insulin Resistance In
    OPEN International Journal of Obesity (2018) 42, 686–695 www.nature.com/ijo PEDIATRIC ORIGINAL ARTICLE Identification of novel alleles associated with insulin resistance in childhood obesity using pooled-DNA genome-wide association study approach P Kotnik1,7, E Knapič1,2,7, J Kokošar3, J Kovač4, R Jerala5, T Battelino1,6 and S Horvat2,5 BACKGROUND: Recently, we witnessed great progress in the discovery of genetic variants associated with obesity and type 2 diabetes (T2D), especially in adults. Much less is known regarding genetic variants associated with insulin resistance (IR). We hypothesized that novel IR genes could be efficiently detected in a population of obese children and adolescents who may not exhibit comorbidities and other confounding factors. OBJECTIVES: This study aimed to determine whether a genome-wide association study (GWAS), using a DNA-pooling approach, could identify novel genes associated with IR. SUBJECTS: The pooled-DNA GWAS analysis included Slovenian obese children and adolescents with and without IR matched for body mass index, gender and age. A replication study was conducted in another independent cohort with or without IR. METHODS: For the pooled-DNA GWAS, we used HumanOmni5-Quad SNP array (Illumina). Allele frequency distributions were compared with modified t-tests and χ2-tests and ranked using PLINK. Top single nucleotide polymorphisms (SNPs) were validated using individual genotyping by high-resolution melting analysis and TaqMan assay. RESULTS: We identified five top-ranking SNPs from the pooled-DNA GWAS analysis within the ECE1, IL1R2, GNPDA1, HLA-J and PYGB loci. All except SNP rs9261108 (HLA-J locus) were confirmed in the validation phase using individual genotyping.
    [Show full text]
  • DIPPER, a Spatiotemporal Proteomics Atlas of Human Intervertebral Discs
    TOOLS AND RESOURCES DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics Vivian Tam1,2†, Peikai Chen1†‡, Anita Yee1, Nestor Solis3, Theo Klein3§, Mateusz Kudelko1, Rakesh Sharma4, Wilson CW Chan1,2,5, Christopher M Overall3, Lisbet Haglund6, Pak C Sham7, Kathryn Song Eng Cheah1, Danny Chan1,2* 1School of Biomedical Sciences, , The University of Hong Kong, Hong Kong; 2The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China; 3Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; 4Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong; 5Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China; 6Department of Surgery, McGill University, Montreal, Canada; 7Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong Abstract The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity *For correspondence: and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising [email protected] 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key †These authors contributed directional trends spanning the lateral and anteroposterior axes were derived from high-resolution equally to this work spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific Present address: ‡Department profiles of regulatory activities
    [Show full text]
  • Bioinformatics Analysis of Mitochondrial Disease
    BIOINFORMATICS ANALYSIS OF MITOCHONDRIAL DISEASE By Kieren Lythgow Bsc (Hons), MRes Thesis submitted to the University of Newcastle upon Tyne in candidature for the degree of Doctor of Philosophy 2010 Abstract Several bioinformatic methods have been developed to aid the identification of novel nuclear-mitochondrial genes involved in disease. Previous research has aimed to increase the sensitivity and specificity of these predictions through a combination of available techniques. This investigation shows the optimum sensitivity and specificity can be achieved by carefully selecting seven specific classifiers in combination. The results also show that increasing the number of classifiers even further can paradoxically decrease the sensitivity and specificity of a prediction. Additionally, text mining applications are playing a huge role in disease candidate gene identification providing resources for interpreting the vast quantities of biomedical literature currently available. A work- flow resource was developed identifying a number of genes potentially associated with Lebers Hereditary Optic Neuropathy (LHON). This included specific orthologues in mouse displaying a potential association to LHON not annotated as such in humans. Mitochondrial DNA (mtDNA) fragments have been transferred to the human nu- clear genome over evolutionary time. These insertions were compared to an existing database of 263 mtDNA deletions to highlight any associated mechanisms governing DNA loss from mitochondria. Flanking regions were also screened within the nuclear genome that surrounded these insertions for transposable elements, GC content and mitochondrial genes. No obvious association was found relating NUMTs to mtDNA deletions. NUMTs do not appear to be distributed throughout the genome via trans- position and integrate predominantly in areas of low %GC with low gene content.
    [Show full text]
  • Association of a Matrix Metallopeptidase 1 Gene Polymorphism with Long-Term Outcome of Thoracic Aortic Aneurysm
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 29: 125-132, 2012 Association of a matrix metallopeptidase 1 gene polymorphism with long-term outcome of thoracic aortic aneurysm KIMIHIKO KATO1,2, YOSHIYUKI TOKUDA3, NAOHIKO INAGAKI4, TETSURO YOSHIDA5, TETSUO FUJIMAKI5, MITSUTOSHI OGURI6, TAKESHI HIBINO4, KIYOSHI YOKOI4, TOYOAKI MUROHARA7 and YOSHIJI YAMADA2 1Meitoh Hospital, Nagoya; 2Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Mie 514-8507; 3Department of Cardiovascular Surgery, Chubu-Rosai Hospital, Nagoya; 4Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi; 5Department of Cardiovascular Medicine, Inabe General Hospital, Inabe; 6Department of Cardiology, Japanese Red Cross Nagoya First Hospital, Nagoya; 7Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan Received July 19, 2011; Accepted September 12, 2011 DOI: 10.3892/ijmm.2011.804 Abstract. Although genetic variants are thought to contribute Introduction to the development of thoracic aortic aneurysm including dissection (TAA), it remains unclear whether gene polymor- Thoracic aortic aneurysm including dissection (TAA) is a phisms are associated with the long-term outcome of TAA. The serious condition that results from aortic atherosclerosis and is purpose of the present study was to identify genetic variants a leading cause of mortality (1). Recent studies on the genetic associated with the long-term outcome of medically treated basis of familial TAA have focused on its relation to systemic patients with TAA. A total of 103 medically-treated patients connective tissue disorders such as the Marfan syndrome (2) with TAA (13 aneurysms and 90 dissections) were retrospec- and the Ehlers-Danlos syndrome (3). However, up to 19% tively studied for their outcomes (mean follow-up period, 24 of individuals with non-syndromic TAA referred for surgery months).
    [Show full text]
  • CHEMISTRY LEGEND JULY 2014 Creatine Kinase (CK)
    P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa 804 Flatrock, Buiten Street, Cape Town, 8001 www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-2014/004. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. CHEMISTRY LEGEND JULY 2014 Creatine kinase (CK) Creatine kinase (CK), also known as Creatine phosphokinase (CPK) or phospho-creatine kinase or sometimes wrongfully also creatinine kinase, is an enzyme expressed by various tissues and cell types. CK catalyses the conversion of Creatine and consumes adenosine triphosphate (ATP) to create phospho-creatine (PCr) and adenosine diphosphate (ADP). This CK enzyme reaction is reversible, such that also ATP can be generated from PCr and ADP. In tissues and cells that consume ATP rapidly, especially skeletal muscle, but also brain, photoreceptor cells of the retina, hair cells of the inner ear, spermatozoa and smooth muscle, phospho-creatine serves as an energy reservoir for the rapid buffering and regeneration of ATP in situ, as well as for intracellular energy transport by the phospho-creatine shuttle or circuit.
    [Show full text]
  • Insulin Resistance Related Signaling Pathways in the Liver
    INSULIN RESISTANCE RELATED SIGNALING PATHWAYS IN THE LIVER by Yuchun Wang A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science in Engineering Baltimore, Maryland May, 2020 © 2020 Yuchun Wang All rights reserved Abstract Over the past 20 years, the worldwide toll of diabetes has tripled to more than 400 million, which makes it one of the fastest-growing health challenges of the 21st century. There are three main categories of diabetes: type 1, type 2 and gestational diabetes mellitus. Among them, Type 2 diabetes(T2D) makes up to 90% of diabetes worldwide. Hyper- glycemia can be effectively controlled by giving insulin injection for type 1 and gestational diabetes mellitus. However, because insulin resistance is one of the causes of T2D, those with T2D do not respond as well to insulin as those with T1D or gestational diabetes. Fur- thermore, our lack of knowledge about the underlying physiology of T2D makes it difficult to find reliable treatments. While high blood glucose concentration is one of the major symptoms of T2D, changes in lipid metabolism are characteristic of insulin resistance(IR). In the human body, the liver plays a major role in glucose homeostasis and lipid metabolism. Hence, this essay pro- vides an overview of signaling pathways in the liver and presents their interrelationship to better understand the underlying IR mechanism. Primary Reader and Advisor: Marc D. Donohue Secondary Reader: Gregory Aranovich ii Acknowledgements I wish to express my deepest gratitude to my advisor, Professor Marc D. Donohue, for introducing me to the fantastic world of science, and for his patient guidance along the road of my Master’s study.
    [Show full text]
  • Mcardle Disease: New Insights Into Its Underlying Molecular Mechanisms
    International Journal of Molecular Sciences Review McArdle Disease: New Insights into Its Underlying Molecular Mechanisms Francisco Llavero 1,2,* , Alazne Arrazola Sastre 1,3, Miriam Luque Montoro 1, Patricia Gálvez 4, Hadriano M Lacerda 5, Luis A. Parada 6 and José Luis Zugaza 1,3,7 1 Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; [email protected] (A.A.S.); [email protected] (M.L.M.); [email protected] (J.L.Z.) 2 Faculty of Sports Science, European University of Madrid, 28670 Madrid, Spain 3 Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain 4 Pharmascience Division, Technological Park of Health Sciences, Avda. de la Ciencia, s/n 18100 Armilla, Granada, Spain; [email protected] 5 Three R Labs, Science Park of the UPV/EHU, 48940 Leioa, Spain; [email protected] 6 Instituto de Patología Experimental, Universidad Nacional de Salta, 4400 Salta, Argentina; [email protected] 7 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected]; Tel.: +34-946-012-256 Received: 31 October 2019; Accepted: 21 November 2019; Published: 25 November 2019 Abstract: McArdle disease, also known as glycogen storage disease type V (GSDV), is characterized by exercise intolerance, the second wind phenomenon, and high serum creatine kinase activity. Here, we recapitulate PYGM mutations in the population responsible for this disease. Traditionally, McArdle disease has been considered a metabolic myopathy caused by the lack of expression of the muscle isoform of the glycogen phosphorylase (PYGM).
    [Show full text]