Nutrients: Phosphorus, Nitrogen Sources, Impact on Water Quality - a General Overview

Total Page:16

File Type:pdf, Size:1020Kb

Nutrients: Phosphorus, Nitrogen Sources, Impact on Water Quality - a General Overview Nutrients: Phosphorus, Nitrogen Sources, Impact on Water Quality - A General Overview Water Quality/Impaired Waters #3.22 • May 2008 n the 1997 Clean Water Action Plan the U.S. Environmental Protection Agency Iidentified nutrients as a significant national problem contributing to water pollution. States reported that more than All lakes need half of all lakes were affected. protection from the pollution that robs Just as applying fertilizer to gardens and them of oxygen and farm fields helps crops grow, nutrients aquatic life. We can't entering lakes and rivers feed the growth of do anything about algae, bacteria, and other tiny organisms. Photo: Grace Lake, Beltrami County SWCD nutrients from natural Water bodies require some nutrients to be sources and the systems, animal feed lots, agricultural healthy, but too much can be harmful. sun’s warmth, but we fertilizers, manure, industrial waste waters, When lakes receive an overabundance of can work to prevent sanitary landfills, and garbage dumps. excessive nutrients nutrients, they can become polluted by and sediments from excessive amounts of algae. Die-off and human activity from decomposition of algae blooms can reduce Phosphorus Fuels Algae Growth getting into lakes and Phosphorus is a vital nutrient for waterways. dissolved oxygen and suffocate fish and converting sunlight into usable energy, and other aquatic life. Some forms of algae (blue-green) may produce toxins that can essential to cellular growth and be harmful if ingested by humans and reproduction. It is one of the 20 most animals. abundant elements in the solar system, and the 11th most abundant in the earth’s crust. MPCA Area Offices: Phosphorus and Nitrogen Under natural conditions phosphorus is Rochester area: typically scarce in water. In the late 1960s 507/285-7343 Phosphorus (P) and nitrogen (N) are the scientists discovered phosphorus Mankato area: primary nutrients that in excessive amounts contributed by human activity to be a 507/389-5977 pollute our lakes, streams, and wetlands. Marshall area: major cause of excessive algae growth and Nitrogen is essential to the production of 507/537-7146 degraded lake water quality. plant and animal tissue. It is used primarily Willmar area: Phosphorus occurs in dissolved organic 320/214-3786 by plants and animals to synthesize protein. and inorganic forms or attached to Detroit Lakes area: Nitrogen enters the ecosystem in several sediment particles. Phosphates, the 218/847-1519 chemical forms and also occurs in other Brainerd area: inorganic form, are preferred for plant dissolved or particulate forms, such as 218/828-2492 growth, but other forms can be used when tissues of living and dead organisms. Duluth area: phosphates are unavailable. Phosphorus 218/723-4660 Metro area: Nitrate, a compound containing nitrogen, builds up in the sediments of a lake. When 651/296-6300 can exist in the atmosphere or as a it remains in the sediments it is generally Toll-Free Number: dissolved gas in water, and at elevated not available for use by algae; however, 800/657-3864 levels can have harmful effects on humans various chemical and biological processes and animals. Nitrates in water can cause can allow sediment phosphorus to be severe illness in infants and domestic released back into the water. For example, animals. Common sources of excess nitrate reaching lakes and streams include septic wq-iw3-22 Minnesota Pollution Control Agency • 520 Lafayette Rd. N., St. Paul, MN 55155-4194 • www.pca.state.mn.us 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats Trophic State Index TSI: Higher number – greater nutrient enrichment and lower water clarity (Secchi disk transparency or SDT) bottom-feeding rough fish such as carp can stir up such as nitrogen and phosphorus. Human activities can bottom sediments, releasing phosphorus back into the accelerate the process with urban construction, sewage water. discharges, agricultural practices, and residential development. Impact on Water Quality Poor water quality in lakes can have many unpleasant Measuring Impact of Nutrients consequences. Rough fish – such as carp and bullhead – Not all lakes are affected to the same degree. The green populations increase at the expense of game fish yuck permeates shallow lakes in the south more so than populations. Severe nuisance algal blooms yield deeper, cooler northern lakes. The MPCA uses unpleasant odor and appearance ecoregion-based total phosphorus that reduce the aesthetic appeal of guidelines in conjunction with Carlson’s lakes. This may result in declines Trophic State Index (see chart) to classify in fishing and swimming and hurt lakes in their level of quality for tourism. swimming and fishing. TSI is a numeric index of lake trophic status on a scale of 1 As algae die and decompose, the to 100, the higher the number indicating process consumes oxygen. greater nutrient enrichment. Lake nutrient Submerged plants without sunlight standards that vary according to die, decompose and consume more ecoregion and lake type have recently oxygen. Without enough dissolved been developed. These water quality oxygen in the water, fish and other Citizen volunteers use Secchi disks standards will provide a basis for organisms suffer and die because to collect data on water clarity. determining the impairment status of they can't “breathe.” This can occur Minnesota’s lakes and will be useful for protecting the locally or much farther downstream leading to degraded quality of good lakes as well. The MPCA also is estuaries, lakes and reservoirs. For example, fish and developing nutrient standards for rivers. other aquatic life can no longer survive in the so-called “dead zone” in the Gulf of Mexico. Information Sources Nutrient Sources and Pathways Water Quality Standards: www.pca.state.mn.us/water/standards/index.html The geology and land use within a lake’s watershed MPCA Lake Programs: determine the amount of nutrients that enter the lake via www.pca.state.mn.us/water/lake.html surface water runoff. Eutrophication is the slow aging Volunteer Surface Water Monitoring: process during which a lake, estuary, or bay evolves into www.pca.state.mn.us/water/volunteer-monitoring.html a bog or marsh and eventually disappears. Some of the Secchi disk transparency slide show: nutrients come from natural processes, such as www.pca.state.mn.us/water/secchi-slideshow.html decomposition of plant and animal material. During the later stages of eutrophication the water body is choked by abundant plant life due to higher levels of nutrients Phosphorus, Nitrogen Impact on Water Quality • Water Quality/Impaired Waters #3.22 • May 2008 page 2 .
Recommended publications
  • Nutrients: Nitrogen (N), Sulfur (S), Phosphorus (P), Potassium (K)
    Nutrients: Nitrogen (N), Sulfur (S), Phosphorus (P), Potassium (K) Essential for all life, their availability (or lack thereof) controls the distribution of flora and fauna Look into their: Sources Pools (sinks) Fluxes root uptake + microbial uptake leaching solid solution Nutrients must be in a specific form – specie - for use by organisms Nutrient Cycling: N, S, P, K Soil Organic Matter (CHONPS) Minerals Primary Productivity (P, S, K) O Leaves & Roots A Decomposition Heterotrophic respiration B Gas loss SOM/Minerals Microbes leaching of nutrients plant nutrient uptake Nutrients: natural & anthropogenic sources (IN) and outputs (OUT) N2 fertilizers (chemical, manure, sludge) gases and particulates to atmosphere pesticides (fossil fuel combustion (coal/oil); cycles; trees) wet and dry deposition (acid rain, aerosols) harvesting plant tissue/residues root uptake IN OUT SOIL Pools (sinks) (SOM/clays/oxides) Fluxes (transformations) OUT IN ions and molecules in solution (leaching) roots (exudates, biomass) colloidal transport bedrock (1ry/2ry minerals in parent material) erosion runoff The Nitrogen Cycle + The Nitrogen Cycle Denitrification: - - NO3 is the most stable N2 (g) is prevalent in reduction of NO3 chemical form of N in the air of soil pores to reduced forms aerated soil solutions of N (N2) (energy- consuming) Atmospheric N deposition Nitrogen evolution (gases) Fertilizer additions 700 (+5) +5 Oxic - denitrification NO3 (+3) zone - NO2 (+2) (mV) NO (+1) h E N2O Suboxic (0) nitrification N state oxidation N2 236 zone immobilization
    [Show full text]
  • Wastewater Technology Fact Sheet: Ammonia Stripping
    United States Office of Water EPA 832-F-00-019 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Ammonia Stripping DESCRIPTION Ammonia stripping is a simple desorption process used to lower the ammonia content of a wastewater stream. Some wastewaters contain large amounts of ammonia and/or nitrogen-containing compounds that may readily form ammonia. It is often easier and less expensive to remove nitrogen from wastewater in the form of ammonia than to convert it to nitrate-nitrogen before removing it (Culp et al., 1978). Ammonia (a weak base) reacts with water (a weak acid) to form ammonium hydroxide. In ammonia stripping, lime or caustic is added to the wastewater until the pH reaches 10.8 to 11.5 standard units which converts ammonium hydroxide ions to ammonia gas according to the following reaction(s): + - NH4 + OH 6 H2O + NH38 Source: Culp, et. al, 1978. Figure 1 illustrates two variations of ammonia FIGURE 1 TWO TYPES OF STRIPPING stripping towers, cross-flow and countercurrent. In TOWERS a cross-flow tower, the solvent gas (air) enters along the entire depth of fill and flows through the packing, as the alkaline wastewater flows it may be more economical to use alternate downward. A countercurrent tower draws air ammonia removal techniques, such as steam through openings at the bottom, as wastewater is stripping or biological methods. Air stripping may pumped to the top of a packed tower. Free also be used to remove many hydrophobic organic ammonia (NH3) is stripped from falling water molecules (Nutrient Control, 1983). droplets into the air stream, then discharged to the atmosphere.
    [Show full text]
  • Ozonedisinfection.Pdf
    ETI - Environmental Technology Initiative Project funded by the U.S. Environmental Protection Agency under Assistance Agreement No. CX824652 What is disinfection? Human exposure to wastewater discharged into the environment has increased in the last 15 to 20 years with the rise in population and the greater demand for water resources for recreation and other purposes. Disinfection of wastewater is done to prevent infectious diseases from being spread and to ensure that water is safe for human contact and the environment. There is no perfect disinfectant. However, there are certain characteristics to look for when choosing the most suitable disinfectant: • Ability to penetrate and destroy infectious agents under normal operating conditions; • Lack of characteristics that could be harmful to people and the environment; • Safe and easy handling, shipping, and storage; • Absence of toxic residuals, such as cancer-causing compounds, after disinfection; and • Affordable capital and operation and maintenance (O&M) costs. What is ozone disinfection? One common method of disinfecting wastewater is ozonation (also known as ozone disinfection). Ozone is an unstable gas that can destroy bacteria and viruses. It is formed when oxygen molecules (O2) collide with oxygen atoms to produce ozone (O3). Ozone is generated by an electrical discharge through dry air or pure oxygen and is generated onsite because it decomposes to elemental oxygen in a short amount of time. After generation, ozone is fed into a down-flow contact chamber containing the wastewater to be disinfected. From the bottom of the contact chamber, ozone is diffused into fine bubbles that mix with the downward flowing wastewater. See Figure 1 on page 2 for a schematic of the ozonation process.
    [Show full text]
  • Introduction to Co2 Chemistry in Sea Water
    INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water.
    [Show full text]
  • National Primary Drinking Water Regulations
    National Primary Drinking Water Regulations Potential health effects MCL or TT1 Common sources of contaminant in Public Health Contaminant from long-term3 exposure (mg/L)2 drinking water Goal (mg/L)2 above the MCL Nervous system or blood Added to water during sewage/ Acrylamide TT4 problems; increased risk of cancer wastewater treatment zero Eye, liver, kidney, or spleen Runoff from herbicide used on row Alachlor 0.002 problems; anemia; increased risk crops zero of cancer Erosion of natural deposits of certain 15 picocuries Alpha/photon minerals that are radioactive and per Liter Increased risk of cancer emitters may emit a form of radiation known zero (pCi/L) as alpha radiation Discharge from petroleum refineries; Increase in blood cholesterol; Antimony 0.006 fire retardants; ceramics; electronics; decrease in blood sugar 0.006 solder Skin damage or problems with Erosion of natural deposits; runoff Arsenic 0.010 circulatory systems, and may have from orchards; runoff from glass & 0 increased risk of getting cancer electronics production wastes Asbestos 7 million Increased risk of developing Decay of asbestos cement in water (fibers >10 fibers per Liter benign intestinal polyps mains; erosion of natural deposits 7 MFL micrometers) (MFL) Cardiovascular system or Runoff from herbicide used on row Atrazine 0.003 reproductive problems crops 0.003 Discharge of drilling wastes; discharge Barium 2 Increase in blood pressure from metal refineries; erosion 2 of natural deposits Anemia; decrease in blood Discharge from factories; leaching Benzene
    [Show full text]
  • Contaminated Soil in Gardens
    Contaminated Soil in Gardens How to avoid the harmful effects EUR/ICP/LVNG 03 01 02(A) E64737 EUROPEAN HEALTH21 TARGET 11 HEALTHIER LIVING By the year 2015, people across society should have adopted healthier patterns of living (Adopted by the WHO Regional Committee for Europe at its forty-eighth session, Copenhagen, September 1998) Abstract In many cities, gardens are located on old, abandoned landfills and dumping sites. Cities have expanded by filling up spaces around the city with garbage, rubble and earth. The places where old landfills were have often become gardens where citizens can get away and enjoy the open air away from the noise and racket of cities. Normal garbage and rubble in landfills do not present a problem, however industrial and chemical waste can present a health hazard, especially when concentrations of contaminants are above acceptable limits. Some special precautions are proposed in this booklet so that the potential ill effects of contaminated soil can be avoided. Keywords SOIL POLLUTANTS RISK MANAGEMENT GUIDELINES URBAN HEALTH Contents The soil is contaminated – what then? .......................................................1 What is in the ground under us?.................................................................2 How harmful substances may affect the body ............................................3 How to reduce the risk................................................................................4 The best way to garden..............................................................................5
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • Water Quality Conditions in the United States a Profile from the 1998 National Water Quality Inventory Report to Congress
    United States Office of Water (4503F) EPA841-F-00-006 Environmental Protection Washington, DC 20460 June 2000 Agency Water Quality Conditions in the United States A Profile from the 1998 National Water Quality Inventory Report to Congress States, tribes, territories, and interstate commissions report that, in 1998, about 40% of U.S. streams, lakes, and estuaries that were assessed were not clean enough to support uses such as fishing and swimming. About 32% of U.S. waters were assessed for this national inventory of water quality. Leading pollutants in impaired waters include siltation, bacteria, nutrients, and metals. Runoff from agricultural lands and urban areas are the primary sources of these pollu- tants. Although the United States has made significant progress in cleaning up polluted waters over the past 30 years, much remains to be done to restore and protect the nation’s waters. Findings States also found that 96% of assessed Great Lakes shoreline miles are impaired, primarily due to pollut- Recent water quality data find that more than ants in fish tissue at levels that exceed standards to 291,000 miles of assessed rivers and streams do not protect human health. States assessed 90% of Great meet water quality standards. Across all types of water- Lakes shoreline miles. bodies, states, territories, tribes, and other jurisdictions report that poor water quality affects aquatic life, fish Wetlands are being lost in the contiguous United consumption, swimming, and drinking water. In their States at a rate of about 100,000 acres per year. Eleven 1998 reports, states assessed 840,000 miles of rivers states and tribes listed sources of recent wetland loss; and 17.4 million acres of lakes, including 150,000 conversion for agricultural uses, road construction, and more river miles and 600,000 more lake acres than residential development are leading reasons for loss.
    [Show full text]
  • 2021 Water Quality Report
    2021 WATER QUALITY REPORT 2021 WATER QUALITY REPORT CITY OF NEWARK: SOUTH WELL FIELD TREATMENT PLANT AIR STRIPPER BUILDING Annual Water Quality Report The Environmental Protection Agency (EPA) Newark meets or exceeds the water quality requires public water suppliers to provide standards of the Delaware Division of Public consumer confidence reports (CCR) to their Health Office of Drinking Water and the customers . These reports are also known as Environmental Protection Agency. The tables on annual water quality reports. The below report pages 4-6 of this report list those substances summarizes information regarding the sources found in our finished water during calendar year used (i.e. rivers, reservoirs, or aquifers), any 2020. detected contaminants, compliance and educational efforts. How the Water is Treated The City’s 317 million gallon reservoir provides a Drinking water, including bottled water, may At the Curtis Water Treatment Plant (CWTP), reliable source of raw water which can be treated reasonably be expected to contain at least small water from the White Clay Creek is clarified with and ready for drinking in times of heavy rain or amounts of some substances. The presence of alum and polymer and then filtered to remove drought. In an effort to keep sediment these substances does not necessarily indicate impurities. Chlorine is added to kill harmful accumulation in our water mains to a minimum, that water poses a health risk. In order to ensure bacteria and viruses. Finally, fluoride is added to we flush the entire system yearly. that tap water is safe to drink, the EPA prescribes the water to protect your teeth.
    [Show full text]
  • Land Application of Industrial Waste
    Land Application of Industrial Waste This document is intended for use by persons or operations that generate industrial waste suitable for land application to help them determine what type(s) of regulatory oversight and/or permit is required for land application. Land application of sewage sludge (biosolids), animal manure, and petroleum contaminated soil are regulated separately from other wastes and are not the focus of this document. 1. Is the material a fertilizer or soil conditioner? Is the material managed as a valuable commodity, i.e. does the generator sell the material? Element Percent Is the intent of land applying the material to replace or offset the use of more traditional fertilizers or soil Calcium (Ca) 1.00 conditioners? Are claims or guaranties made to land owners Magnesium (Mg) 0.50 concerning the nutrient value? Sulfur (S) 1.00 Do the N, P, and K, values equal 20 when added Boron (B) 0.02 together? Chlorine (Cl) 0.10 Is the material capable of changing the pH of the soil? Cobalt (Co) 0.0005 When added to the soil or applied to plants would the Copper (Cu) 0.05 material produce a favorable growth, yield or quality of Iron (Fe) 0.10 crop or soil flora or fauna or other improved soil Manganese (Mn) 0.05 characteristics? Molybdenum (Mo) 0.0005 Does the material provide any of the following plant Sodium (Na) 0.10 nutrients at or above the level indicated in the chart Zinc (Zn) 0.05 above? If the answer to one or more of these questions is “yes” then it is possible the material could be registered and regulated by the Iowa Department of Agriculture and Land Stewardship as a fertilizer or soil conditioner and not a waste.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Evaluating Residential Indoor Air Quality Concerns1
    Designation: D7297 – 06 Standard Practice for Evaluating Residential Indoor Air Quality Concerns1 This standard is issued under the fixed designation D7297; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (´) indicates an editorial change since the last revision or reapproval. 1. Scope 2. Referenced Documents 1.1 This standard practice describes procedures for evaluat- 2.1 ASTM Standards:2 ing indoor air quality (IAQ) concerns in residential buildings. D1356 Terminology Relating to Sampling and Analysis of 1.2 The practice primarily addresses IAQ concerns encoun- Atmospheres tered in single-family detached and attached (for example, D1357 Practice for Planning the Sampling of the Ambient townhouse or duplex design) residential buildings. Limited Atmosphere guidance is also included for low- and high-rise multifamily D4861 Practice for Sampling and Selection of Analytical dwellings. Techniques for Pesticides and Polychlorinated Biphenyls 1.3 The IAQ evaluation procedures are comprised of inter- in Air views with the homeowner or resident(s) (including telephone D4947 Test Method for Chlordane and Heptachlor Residues interviews and face-to-face meetings) and on-site investiga- in Indoor Air tions (including walk-through, assessment, and measure- D5197 Test Method for Determination of Formaldehyde ments). For practicality in application, these procedures are and Other Carbonyl Compounds in Air (Active Sampler dividing into three separate phases. Methodology) 1.4 The procedures described in this standard practice are D5438 Practice for Collection of Floor Dust for Chemical aimed at identifying potential causes contributing to the IAQ Analysis concern.
    [Show full text]