4.01 Evolution of the Atomic Theory

Total Page:16

File Type:pdf, Size:1020Kb

4.01 Evolution of the Atomic Theory 4.01 Evolution of the Atomic Theory The Events Leading to the Discovery of the Building Block of Matter Dr. Fred Omega Garces Chemistry 152 Miramar College 1 401 Atomic Evolution 05.2015 Idea of the Atom How did man come up with the idea of the atom ? It took ~2400 years from when it was conceived to the time experimental evidence prove of the atom existence. 2 401 Atomic Evolution 05.2015 History of Chemistry and development of the atomic model History of Atomic Structure The timeline of the progression of the development of the Modern Atomic theory. Atomic Theory Timeline J. Dalton Empedocles J. Proust Aristotle A. Lavoisier R. Boyle Democritus Leucippus Zeno Aristotle Democritus Boyle Lavoisier Dalton R. Bacon -5 0 0 -2 5 0 0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 0 3 401 Atomic Evolution 05.2015 Matter according to ... Greek Philosophers 492-375 BC: Empedocles (supported by Aristotle) Earth-Air-Fire-Water 400 BC: Zeno (also supported by Aristotle) Matter can be infinitely divided 400 BC: Leucippus 470-375 BC: Democritus (student of Leucippus) Proposed the idea of the atom Matter -indivisible particles called atoms 4 401 Atomic Evolution 05.2015 Next 2000 Years Alchemy (pseudo science) lead into gold experiments (black magic) took detailed notes (lab notebook conceived) Systematic metallurgy (extracted metals from ore) Roger Bacon (1214-1292) An English and alchemist, Bacon became known as the founder of experimental science. He believed that doing experiments for yourself rather than just accepting what other people tell you was the way to learn about nature. His most important work was the Opus Matus, in what he wrote about the scientific method of learning. He did many experiment which showed how rainbow are made by the effect of water drops on sunlight and how lenses could be used to help people with weak sight. 5 401 Atomic Evolution 05.2015 Atomic Structure Revolution 1500 Robert Boyle The Skeptical Chemist He performed detailed experiment with gases; this initiated the break down of the Greek's model of matter. 1700 Antoine Lavoisier Father of modern chemistry (Law of conservation of mass) He made very careful measurements and concluded that mass is neither created nor destroyed. The thought at the time was then when a substance was burned, the ashes were lighter than the starting material, but Lavoisier did the experiment in an enclosed container and determined that the mass did not change. Subsequent experiments with other reactions was consistent with the conservation of mass findings. 6 401 Atomic Evolution 05.2015 1790-1800 Joseph Proust (Law of definite proportion or Law of constant composition) A given compound always contain exactly the same proportion of elements by mass. i.e., H2O 2:16 or H : O 1 : 8 by mass always true whether there is 18 g or 139 g H2O For, H2O2 2:32 the H : O is 1 g H : 16 g O In other words, Water found in SD or the Arctic or Jupiter’s moon will all have 1 g hydrogen to 8 g oxygen ratios. Likewise glucose found in sugar cane or sweet beets have 6 g carbon to 1 g hydrogen to 8 gram oxygen ratios (12 x 6 C: 1 x 12 H: 16 x 6 O). i.e.,The relative numbers and kinds of atoms are constant. 7 401 Atomic Evolution 05.2015 1800 John Dalton J. Dalton: Founder of the Modern Atomic Theory (Law of Multiple proportion) When two elements form a series of compounds, the ratio of the masses of the element that combine with 1 gram of the first element can be reduce to small whole numbers. Example: : Mass of nitrogen that combines with 1.0 gram of oxygen *Compound A 1.750 g g A/B = 1.750/0.8760 = 2 / 1 Compound B 0.8750 g g B/C = 0.8760 / 0.4375 = 2 / 1 Compound C 0.4375 g g A/C = 1.750 / 0.4375 = 4 / 1 Compounds consist of atoms which combines in whole number ratios. *N2O g N2O NO g NO NO2 g N1/2 O 8 401 Atomic Evolution 05.2015 1808 Dalton's Atomic Theory : A new system of Chemical Philosophy • All matter is made of atom. • In a chemical reaction atoms are neither created or destroyed but only arranged differently. • Atoms of the same element are identical. • Atoms of different elements are not the same. • Compounds are formed from two or more atoms. A given compound always has same relative number and type of atoms. 9 401 Atomic Evolution 05.2015 ... what’s next ?? Around this period, the model of the atom was gaining acceptance by scientist. Questions still unanswered - What is an atom? How is it put together? What are the parts of an atom? 10 401 Atomic Evolution 05.2015 Early experiments to characterize the atoms The parts: Electrons - Thomson (1904), Millikan (1909) Protons - Goldstein (1886) Rutherford (1911) Neutrons - Sir James Chadwick (1932) 11 401 Atomic Evolution 05.2015 Faraday Electrolysis ~1832 Contributions to the Modern Atomic Theory Mendeleev Balmer Michelson Periodic Table Discharge Tubes C The modern Atom: a flow chart ~ 1830 - 90 ~1870 ~1885 of major theoretical and Becquerel, Curie Thomson Planck Radioactivity α,β γ experimental contributions e/m Quantum ~1897 ~1897 ~1900 (who, what, and when) leading to Einstein our understanding of the atom. Millikan Rutherford E=hv, E=mc2 e Nucleus ~1905 ~1909 ~1911 Bohr Scientific discovery is a Shell Model ~1913 complex human endeavor. The Aston Isotopes developments leading to our ~1909 Stern, Gerlach deBroglie Electron Spin Matter Waves ~1921 ~1924 understanding of the modern atom, dramatically depict Schrodinger scientific discoveries not as Wave Model, Heisenberg Pauli Exclusion, Uncertainty Principle individual efforts, but as the Hund's Rules ~1927 ~1926 collective work of the scientific community. Chadwick Neutron ~1932 12 401 Atomic Evolution 05.2015 Early experiments to Characterize the atoms 1820's Sir Humphrey Davy / Michael Faraday Matter contains negative charge particles (electrons). Later, cathode rays were discovered and in the late 1800's cathode rays was investigated further. (1832) http://video.google.com/videoplay?docid=4144497206440839046 1900 John J. Thomson Cathode rays were electrically charge particles. Cathode Ray tube with electron stream where deflected by positive and negative plate: e / m = -1.76•108 C/g Proposed the "plum pudding model" theory of the atom; based on Coulomb's Law: F = k ( Q1 Q2) / r. Atoms contains protons and electrons. 1909 R.A. Millikan Oil drop expt.: Determine the electron’s charge-value. e- = -1.60•10-19 C m = 9.11 •10-31 kg 13 401 Atomic Evolution 05.2015 Arrangement of subatomic particles 1911 Ernest Rutherford: Gold thin foil experiment. Reflection of alpha radiation on gold foil proved that the atom consisted of a very dense nucleus. • Based on the particles deflection pattern, Rutherford calculated the fraction of the atomic volume occupied by the positive nucleus of about 1 part in 1014. The mass is so dense that a nucleus the size of a pea would have mass greater that 250 million tons. 14 401 Atomic Evolution 05.2015 Characteristics of Atomic Parts The parts: Subatomic particles and their properties Particle Mass *Rel Mass Relative Charge (amu) e -; electron 9.109•10 -31 Kg 1/1837 - 1.602•10 -19 C p + ; proton 1.673•10 -27 Kg 1 + 1.602•10 -19 C n; neutron 1.675•10 -27 Kg 1 0 * Relative mass: 1 amu = 1 proton 15 401 Atomic Evolution 05.2015 Summary These were a few of the experiments which lead to the discovery and a better understanding to the parts of the atom. Three sub-atomic particles : electron, protons, and neutrons combine in various numbers and arrangement to make the different 109 elements (and counting) in the periodic table. The picture of the atomic architecture is now complete (or is it ?). From the time of Dalton g Thomson g Rutherford g Bohr g Schrodinger, our model of the atom has undergone many modifications. The model is not finish however. 16 401 Atomic Evolution 05.2015 String Theory String theory is an active research framework in particle physics that attempts to reconcile quantum mechanics and general relativity general relativity.[1] It is a contender for the theory of everything (TOE), a manner of describing the known fundamental forces and matter in a mathematically complete system. The theory has yet to make testable experimental predictions, leading some scientists to claim that it cannot be considered a part of science. http://superstringtheory.com/. http://www.pbs.org/wgbh/nova/elegant/ 17 401 Atomic Evolution 05.2015 .
Recommended publications
  • Neutron Stars
    Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons.
    [Show full text]
  • The Practice of Chemistry Education (Paper)
    CHEMISTRY EDUCATION: THE PRACTICE OF CHEMISTRY EDUCATION RESEARCH AND PRACTICE (PAPER) 2004, Vol. 5, No. 1, pp. 69-87 Concept teaching and learning/ History and philosophy of science (HPS) Juan QUÍLEZ IES José Ballester, Departamento de Física y Química, Valencia (Spain) A HISTORICAL APPROACH TO THE DEVELOPMENT OF CHEMICAL EQUILIBRIUM THROUGH THE EVOLUTION OF THE AFFINITY CONCEPT: SOME EDUCATIONAL SUGGESTIONS Received 20 September 2003; revised 11 February 2004; in final form/accepted 20 February 2004 ABSTRACT: Three basic ideas should be considered when teaching and learning chemical equilibrium: incomplete reaction, reversibility and dynamics. In this study, we concentrate on how these three ideas have eventually defined the chemical equilibrium concept. To this end, we analyse the contexts of scientific inquiry that have allowed the growth of chemical equilibrium from the first ideas of chemical affinity. At the beginning of the 18th century, chemists began the construction of different affinity tables, based on the concept of elective affinities. Berthollet reworked this idea, considering that the amount of the substances involved in a reaction was a key factor accounting for the chemical forces. Guldberg and Waage attempted to measure those forces, formulating the first affinity mathematical equations. Finally, the first ideas providing a molecular interpretation of the macroscopic properties of equilibrium reactions were presented. The historical approach of the first key ideas may serve as a basis for an appropriate sequencing of
    [Show full text]
  • The History of the Concept of Element, with Particular Reference to Humphry Davy
    The Physical Sciences Initiative The history of the concept of element, with particular reference to Humphry Davy One of the problems highlighted when the recently implemented chemistry syllabus was being developed was the difficulty caused by starting the teaching of the course with atoms. The new syllabus offers a possible alternative teaching order that starts at the macroscopic level, and deals with elements. If this is done, the history of the idea of elements is dealt with at a very early stage. The concept of element originated with the ancient Greeks, notably Empedocles, who around 450 BC defined elements as the basic building blocks from which all other materials are made. He stated that there were four elements: earth, air, fire and water. Substances were said to change when elements break apart and recombine under the action of the forces of strife and love. Little progress was made in this area until the seventeenth century AD. The fruitless attempts of the alchemists to change base metals such as lead into gold and to find the “elixir of life” held back progress, although much chemical knowledge and expertise was gained. In 1661, 1 The Physical Sciences Initiative The Physical Sciences Initiative Robert Boyle defined an element as a substance that cannot be broken down into simpler materials. He cast doubt on the Greek elements, and provided a criterion for showing that a material was not an element. Robert Boyle Many elements were discovered during the next 100 years, but progress was delayed by the phlogiston hypothesis. According to this hypothesis, when a substance was burned it lost a substance called phlogiston to the air.
    [Show full text]
  • Historical Development of the Periodic Classification of the Chemical Elements
    THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • TEK 8.5C: Periodic Table
    Name: Teacher: Pd. Date: TEK 8.5C: Periodic Table TEK 8.5C: Interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements. Elements and the Periodic Table An element is a substance that cannot be separated into simpler substances by physical or chemical means. An element is already in its simplest form. The smallest piece of an element that still has the properties of that element is called an atom. An element is a pure substance, containing only one kind of atom. The Periodic Table of Elements is a list of all the elements that have been discovered and named, with each element listed in its own element square. Elements are represented on the Periodic Table by a one or two letter symbol, and its name, atomic number and atomic mass. The Periodic Table & Atomic Structure The elements are listed on the Periodic Table in atomic number order, starting at the upper left corner and then moving from the left to right and top to bottom, just as the words of a paragraph are read. The element’s atomic number is based on the number of protons in each atom of that element. In electrically neutral atoms, the atomic number also represents the number of electrons in each atom of that element. For example, the atomic number for neon (Ne) is 10, which means that each atom of neon has 10 protons and 10 electrons. Magnesium (Mg) has an atomic number of 12, which means it has 12 protons and 12 electrons.
    [Show full text]
  • Centripetal Force Is Balanced by the Circular Motion of the Elctron Causing the Centrifugal Force
    STANDARD SC1 b. Construct an argument to support the claim that the proton (and not the neutron or electron) defines the element’s identity. c. Construct an explanation based on scientific evidence of the production of elements heavier than hydrogen by nuclear fusion. d. Construct an explanation that relates the relative abundance of isotopes of a particular element to the atomic mass of the element. First, we quickly review pre-requisite concepts One of the most curious observations with atoms is the fact that there are charged particles inside the atom and there is also constant spinning and Warm-up 1: List the name, charge, mass, and location of the three subatomic circling. How does atom remain stable under these conditions? Remember particles Opposite charges attract each other; Like charges repel each other. Your Particle Location Charge Mass in a.m.u. Task: Read the following information and consult with your teacher as STABILITY OF ATOMS needed, answer Warm-Up tasks 2 and 3 on Page 2. (3) Death spiral does not occur at all! This is because the centripetal force is balanced by the circular motion of the elctron causing the centrifugal force. The centrifugal force is the outward force from the center to the circumference of the circle. Electrons not only spin on their own axis, they are also in a constant circular motion around the nucleus. Despite this terrific movement, electrons are very stable. The stability of electrons mainly comes from the electrostatic forces of attraction between the nucleus and the electrons. The electrostatic forces are also known as Coulombic Forces of Attraction.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Chapter 12: Phenomena
    Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and if so what type of particles as well as the speed of the particle. What patterns do you see in the results that were collected? K Wavelength of Light Where Particles Ejected Speed of Exp. Intensity Directed at Sample Ejected Particle Ejected Particle -7 - 4 푚 1 5.4×10 m Medium Yes e 4.9×10 푠 -8 - 6 푚 2 3.3×10 m High Yes e 3.5×10 푠 3 2.0 m High No N/A N/A 4 3.3×10-8 m Low Yes e- 3.5×106 푚 Electromagnetic 푠 Radiation 5 2.0 m Medium No N/A N/A Ejected Particle -12 - 8 푚 6 6.1×10 m High Yes e 2.7×10 푠 7 5.5×104 m High No N/A N/A Fe Wavelength of Light Where Particles Ejected Speed of Exp. Intensity Directed at Sample Ejected Particle Ejected Particle 1 5.4×10-7 m Medium No N/A N/A -11 - 8 푚 2 3.4×10 m High Yes e 1.1×10 푠 3 3.9×103 m Medium No N/A N/A -8 - 6 푚 4 2.4×10 m High Yes e 4.1×10 푠 5 3.9×103 m Low No N/A N/A -7 - 5 푚 6 2.6×10 m Low Yes e 1.1×10 푠 -11 - 8 푚 7 3.4×10 m Low Yes e 1.1×10 푠 Chapter 12: Quantum Mechanics and Atomic Theory Chapter 12: Quantum Mechanics and Atomic Theory o Electromagnetic Radiation o Quantum Theory o Particle in a Box Big Idea: The structure of atoms o The Hydrogen Atom must be explained o Quantum Numbers using quantum o Orbitals mechanics, a theory in o Many-Electron Atoms which the properties of particles and waves o Periodic Trends merge together.
    [Show full text]
  • Introduction to Chemistry
    Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable.
    [Show full text]
  • Atomic Physicsphysics AAA Powerpointpowerpointpowerpoint Presentationpresentationpresentation Bybyby Paulpaulpaul E.E.E
    ChapterChapter 38C38C -- AtomicAtomic PhysicsPhysics AAA PowerPointPowerPointPowerPoint PresentationPresentationPresentation bybyby PaulPaulPaul E.E.E. Tippens,Tippens,Tippens, ProfessorProfessorProfessor ofofof PhysicsPhysicsPhysics SouthernSouthernSouthern PolytechnicPolytechnicPolytechnic StateStateState UniversityUniversityUniversity © 2007 Objectives:Objectives: AfterAfter completingcompleting thisthis module,module, youyou shouldshould bebe ableable to:to: •• DiscussDiscuss thethe earlyearly modelsmodels ofof thethe atomatom leadingleading toto thethe BohrBohr theorytheory ofof thethe atom.atom. •• DemonstrateDemonstrate youryour understandingunderstanding ofof emissionemission andand absorptionabsorption spectraspectra andand predictpredict thethe wavelengthswavelengths oror frequenciesfrequencies ofof thethe BalmerBalmer,, LymanLyman,, andand PashenPashen spectralspectral series.series. •• CalculateCalculate thethe energyenergy emittedemitted oror absorbedabsorbed byby thethe hydrogenhydrogen atomatom whenwhen thethe electronelectron movesmoves toto aa higherhigher oror lowerlower energyenergy level.level. PropertiesProperties ofof AtomsAtoms ••• AtomsAtomsAtoms areareare stablestablestable andandand electricallyelectricallyelectrically neutral.neutral.neutral. ••• AtomsAtomsAtoms havehavehave chemicalchemicalchemical propertiespropertiesproperties whichwhichwhich allowallowallow themthemthem tototo combinecombinecombine withwithwith otherotherother atoms.atoms.atoms. ••• AtomsAtomsAtoms emitemitemit andandand absorbabsorbabsorb
    [Show full text]
  • Elements Make up the Periodic Table
    Page 1 of 7 KEY CONCEPT Elements make up the periodic table. BEFORE, you learned NOW, you will learn • Atoms have a structure • How the periodic table is • Every element is made from organized a different type of atom • How properties of elements are shown by the periodic table VOCABULARY EXPLORE Similarities and Differences of Objects atomic mass p. 17 How can different objects be organized? periodic table p. 18 group p. 22 PROCEDURE MATERIALS period p. 22 buttons 1 With several classmates, organize the buttons into three or more groups. 2 Compare your team’s organization of the buttons with another team’s organization. WHAT DO YOU THINK? • What characteristics did you use to organize the buttons? • In what other ways could you have organized the buttons? Elements can be organized by similarities. One way of organizing elements is by the masses of their atoms. Finding the masses of atoms was a difficult task for the chemists of the past. They could not place an atom on a pan balance. All they could do was find the mass of a very large number of atoms of a certain element and then infer the mass of a single one of them. Remember that not all the atoms of an element have the same atomic mass number. Elements have isotopes. When chemists attempt to measure the mass of an atom, therefore, they are actually finding the average mass of all its isotopes. The atomic mass of the atoms of an element is the average mass of all the element’s isotopes.
    [Show full text]