Quantum Key Distribution: Awesome Or Pointless?

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Key Distribution: Awesome Or Pointless? Royal Holloway Series 2011 Quantum key distribution: HOME HOW DOES Awesome or pointless? QKD WORK? QKD NETWORK APPLICATIONS Some believe the advent of quantum computing will reduce the COMMERCIAL PROSPECTS time taken to solve cryptographic algorithms so dramatically that they will no longer provide effective security. Sheila Cobourne CONCLUSION and Dr. Carlos Cid explain how Quantum Key Distribution could provide a solution. 1 Royal Holloway Series 2011 Quantum key distribution: Awesome or pointless? INTRODUCTION This uses the quantum properties of light sent ryptography is one of the success along a specialised channel (quantum channel) stories in the information security and existing laser, fibre-optic and free-space world. Properly implemented cryp - transmission technologies can support this. tography allows sensitive informa - QKD’s security is based on the laws of quantum tion (such as credit card details) to physics alone, rather than hard mathematics, and Cbe transmitted through a potentially is unbreakable. However, some analysts do not insecure environment like the Internet. It provides see the need for QKD, as existing non-quantum HOME the essential security services of confidentiality, (classical) cryptographic systems are secure HOW DOES integrity and authentication for millions of day- enough. (The security guru Bruce Schneier has QKD WORK? to-day transactions. called quantum cryptography “as awesome as it However, some of the most popular types of is pointless,” so no prizes for guessing where he QKD NETWORK cryptography rely on the difficulty of solving hard stands on the issue!) APPLICATIONS mathematical problems to provide security This article describes quantum key distribution, COMMERCIAL against attack: it is believed that the advent of its strengths and weaknesses, its place within PROSPECTS quantum computing will reduce the time taken cryptography, and whether it is actually needed at to solve these problems so dramatically, that they all. It will also identify potential applications and CONCLUSION will no longer provide an effective security commercial prospects of QKD. But, fear not, no method. quantum physics or mind-boggling mathematics All is not lost, though — a totally new tech - will be used! Of necessity, technical terms are nique, quantum cryptography, is waiting in the needed throughout the report, so some basic wings. This harnesses the laws of quantum cryptography will be explained in the next section, mechanics, along with quantum computing before proceeding on to a discussion of QKD itself. power, to provide information security. Since quantum computing is still in its infancy, this is still largely a theoretical area, but one type of CRYPTOGRAPHY BASICS quantum cryptography is achievable with today’s Cryptography is generally used when communi - 2 technology — Quantum Key Distribution (QKD). cating parties wish to exchange information over Royal Holloway Series 2011 Quantum key distribution: Awesome or pointless? an insecure channel. Within the cryptographic secure way of distributing keys uses a trusted community, these communicating parties are courier to physically transport a key in a tamper- conventionally called Alice and Bob: it is assumed proof medium (such as a smart card). However, that messages and information sent between if the courier is actually untrustworthy he or she them could be subject to eavesdropping by an can change or damage the key in transit, and the adversary called Eve. (Alice, Bob and Eve aren’t procedure fails. necessarily human, by the way — they could also be PCs or software.) Cryptography could not HOME Keys are a fundamental element of cryptogra - function without keys, but HOW DOES phy. They are special pieces of data that are care - QKD WORK? fully generated for use in the encryption and it is a major challenge to decryption of sensitive information. It is essential QKD NETWORK that the keys are kept secret. This is related to the ensure that the correct key APPLICATIONS well-known Kerckhoff’s principle, which states is available to Alice and Bob COMMERCIAL that the security of a cryptographic system PROSPECTS should not rely on the secrecy of the algorithm at the right time. used for encryption and decryption, but rather CONCLUSION on the secrecy of the key. Different security levels can be achieved by Cryptography could not function without keys, classical cryptography. Computational security but it is a major challenge to ensure that the exists where a system is theoretically breakable correct key is available to Alice and Bob at the by trying every possible key — the brute-force right time. There are several approaches to attack — but the computational effort required to overcome this problem: a key can be generated do so is so time-consuming and expensive that it centrally and sent to Alice and Bob when needed is not economically viable for an attacker to per - (key distribution) or Alice and Bob could gener - form the attack. Unconditional or perfect security ate a key between themselves (key establish - exists in cases when, even if an attacker has ment or key agreement). However, no existing infinite resources at their disposal, the system 3 method is 100% secure. For example, a very still cannot be broken. Royal Holloway Series 2011 Quantum key distribution: Awesome or pointless? The One-Time Pad (OTP) is a method for detection equipment for each piece of quantum achieving perfect security of encryption, provided information sent, Bob’s measurements will either that it uses a key that is randomly generated, as be perfectly correct, or a completely random value. long as the message and is used only once. How - This is a direct consequence of quantum physics. ever, OTPs have immense practical difficulties: The sending and receiving of quantum information generating long, truly random keys is problematic; is the only quantum part of QKD: everything that distributing the keys to recipients is a logistical follows is done using conventional technology, and nightmare; sender and receiver have to be totally is called classical post-processing. HOME synchronized to make sure that the same keys are Alice and Bob then use a secure classical com - HOW DOES used for the same message; and ensuring keys munications channel to compare Alice’s informa - QKD WORK? are never re-used is a challenging task. For this tion sent with Bob’s information received, and reason, OTPs are currently seldom used in prac - they decide which measurements will be used to QKD NETWORK tice, but as will be seen in this report, when com - generate the secret key. This potential key material APPLICATIONS bined with quantum key distribution they become is subjected to standard error-correcting routines, COMMERCIAL a much more realistic option. and then compressed in a process known as PROSPECTS Now the terminology is clearer, a brief descrip - privacy amplification. The next phase, however, tion of quantum key distribution follows - where is the most important: authentication. Quantum CONCLUSION the cryptographic and quantum world meet. key distribution is vulnerable to Man-in-the-Mid - dle attacks, where an attacker not only controls communications between Alice and Bob but HOW DOES QKD WORK? impersonates Alice to Bob and vice versa. Despite its name, quantum key distribution is Authentication is essential to ensure information a key establishment method which creates key is being transferred between the correct parties. material by using the quantum properties of light Once all the classical post-processing has been to transfer information from Alice to Bob. successfully completed, the key that has been Alice sends some quantum information to Bob established can be used by Alice and Bob in along a specialised quantum channel, such as a classical encryption. 4 fibre optic link. Depending on how he sets his If Eve attempts to intercept the initial quantum Royal Holloway Series 2011 Quantum key distribution: Awesome or pointless? communication, she will always be detected erty of quantum key distribution is that a rela - thanks to the effects of quantum mechanics: a tively short input can be used to generate per - higher than expected number of errors will occur fectly secure random key material ever after, as in Bob’s measurements. Alice and Bob can then follows. A secret key is shared between Alice abandon the key and try again at a different time and Bob to authenticate the very first quantum when Eve has retreated, cursing the laws of exchange: it has been shown that using part of physics. A key established via quantum key distri - the output of this QKD session to authenticate bution simply cannot be compromised by Evil Eve. the next QKD session means that this second HOME round is also perfectly secure. QKD can there - HOW DOES Alice and Bob can then fore be run almost continuously without loss of QKD WORK? abandon the key and try security, and the short initial key can be expand - ed: each new QKD session key is independent QKD NETWORK again at a different time of all previously used keys, so this reduces the APPLICATIONS number of ways a malefactor can attack the COMMERCIAL when Eve has retreated, system. PROSPECTS cursing the laws of physics. Additionally, security provided by QKD is future proofed: it means that even if a cryptographic CONCLUSION A point to remember is that all key material system is broken at some unspecified future time, produced by quantum key distribution is stored previous messages sent through it remain secure. on conventional equipment, and used in classical The unconditional security of QKD systems has encryptions: quantum computers are needed to been mathematically proven: even in the face of store information in quantum form, and they are an adversary with infinite supplies of time and not available using current technology. processing power, the security simply cannot be broken. And, of course, Eve is forced to pack up her WHAT ARE QKD’S STRENGTHS? eavesdropping kitbag and head for the hills, Quantum key distribution is a particularly good howling in frustration because she will always 5 method for producing long random keys.
Recommended publications
  • Security of Quantum Key Distribution with Entangled Qutrits
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Security of Quantum Key Distribution with Entangled Qutrits. Thomas Durt,1 Nicolas J. Cerf,2 Nicolas Gisin,3 and Marek Zukowski˙ 4 1 Toegepaste Natuurkunde en Fotonica, Theoeretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 2 Ecole Polytechnique, CP 165, Universit´e Libre de Bruxelles, 1050 Brussels, Belgium 3 Group of Applied Physics - Optique, Universit´e de Gen`eve, 20 rue de l’Ecole de M´edecine, Gen`eve 4, Switzerland, 4Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet, Gda´nski, PL-80-952 Gda´nsk, Poland July 2002 Abstract The study of quantum cryptography and quantum non-locality have traditionnally been based on two-level quantum systems (qubits). In this paper we consider a general- isation of Ekert's cryptographic protocol[20] where qubits are replaced by qutrits. The security of this protocol is related to non-locality, in analogy with Ekert's protocol. In order to study its robustness against the optimal individual attacks, we derive the infor- mation gained by a potential eavesdropper applying a cloning-based attack. Introduction Quantum cryptography aims at transmitting a random key in such a way that the presence of an eavesdropper that monitors the communication is revealed by disturbances in the transmission of the key (for a review, see e.g. [21]). Practically, it is enough in order to realize a crypto- graphic protocol that the key signal is encoded into quantum states that belong to incompatible bases, as in the original protocol of Bennett and Brassard[4].
    [Show full text]
  • Large Scale Quantum Key Distribution: Challenges and Solutions
    Large scale quantum key distribution: challenges and solutions QIANG ZHANG,1,2 FEIHU XU,1,2 YU-AO CHEN,1,2 CHENG-ZHI PENG1,2 AND JIAN-WEI PAN1,2,* 1Shanghai Branch, Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai, 201315, China 2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, P. R. China *[email protected], [email protected] Abstract: Quantum key distribution (QKD) together with one time pad encoding can provide information-theoretical security for communication. Currently, though QKD has been widely deployed in many metropolitan fiber networks, its implementation in a large scale remains experimentally challenging. This letter provides a brief review on the experimental efforts towards the goal of global QKD, including the security of practical QKD with imperfect devices, QKD metropolitan and backbone networks over optical fiber and satellite-based QKD over free space. 1. Introduction Quantum key distribution (QKD) [1,2], together with one time pad (OTP) [3] method, provides a secure means of communication with information-theoretical security based on the basic principle of quantum mechanics. Light is a natural and optimal candidate for the realization of QKD due to its flying nature and its compatibility with today’s fiber-based telecom network. The ultimate goal of the field is to realize a global QKD network for worldwide applications. Tremendous efforts have been put towards this goal [4–6]. Despite significant progresses over the past decades, there are still two major challenges for large-scale QKD network.
    [Show full text]
  • Machine Learning Aided Carrier Recovery in Continuous-Variable Quantum Key Distribution
    Machine Learning Aided Carrier Recovery in Continuous-Variable Quantum Key Distribution T Gehring1, H-M Chin1,2, N Jain1, D Zibar2, and U L Andersen1 1Department of Physics, Technical University of Denmark, Lyngby, Denmark 2Department of Photonics, Technical University of Denmark, Lyngby, Denmark Contact Email: [email protected] Continuous-variable quantum key distribution (CV-QKD) makes use of in-phase and quadrature mod- ulation and coherent detection to distribute secret keys between two parties for data encryption with future proof security. The secret key rate of such CV-QKD systems is limited by excess noise, which is attributed to an eavesdropper. A key issue typical to all modern CV-QKD systems implemented with a reference or pilot signal and an independent local oscillator is controlling the excess noise generated from the fre- quency and phase noise accrued by the transmitter and receiver. Therefore accurate phase estimation and compensation, so-called carrier recovery, is a critical subsystem of CV-QKD. Here, we present the implementation of a machine learning framework based on Bayesian inference, namely an unscented Kalman filter (UKF), for estimation of phase noise and compare it to a standard reference method. Experimental results obtained over a 20 km fiber-optic link indicate that the UKF can ensure very low excess noise even at low pilot powers. The measurements exhibited low variance and high stability in excess noise over a wide range of pilot signal to noise ratios. The machine learning framework may enable CV-QKD systems with low implementation complexity, which can seamlessly work on diverse transmission lines, and it may have applications in the implemen- tation of other cryptographic protocols, cloud-based photonic quantum computing, as well as in quantum sensing..
    [Show full text]
  • SECURING CLOUDS – the QUANTUM WAY 1 Introduction
    SECURING CLOUDS – THE QUANTUM WAY Marmik Pandya Department of Information Assurance Northeastern University Boston, USA 1 Introduction Quantum mechanics is the study of the small particles that make up the universe – for instance, atoms et al. At such a microscopic level, the laws of classical mechanics fail to explain most of the observed phenomenon. At such a state quantum properties exhibited by particles is quite noticeable. Before we move forward a basic question arises that, what are quantum properties? To answer this question, we'll look at the basis of quantum mechanics – The Heisenberg's Uncertainty Principle. The uncertainty principle states that the more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa. For instance, if you measure the position of an electron revolving around the nucleus an atom, you cannot accurately measure its velocity. If you measure the electron's velocity, you cannot accurately determine its position. Equation for Heisenberg's uncertainty principle: Where σx standard deviation of position, σx the standard deviation of momentum and ħ is the reduced Planck constant, h / 2π. In a practical scenario, this principle is applied to photons. Photons – the smallest measure of light, can exist in all of their possible states at once and also they don’t have any mass. This means that whatever direction a photon can spin in -- say, diagonally, vertically and horizontally -- it does all at once. This is exactly the same as if you constantly moved east, west, north, south, and up-and-down at the same time.
    [Show full text]
  • Lecture 12: Quantum Key Distribution. Secret Key. BB84, E91 and B92 Protocols. Continuous-Variable Protocols. 1. Secret Key. A
    Lecture 12: Quantum key distribution. Secret key. BB84, E91 and B92 protocols. Continuous-variable protocols. 1. Secret key. According to the Vernam theorem, any message (for instance, consisting of binary symbols, 01010101010101), can be encoded in an absolutely secret way if the one uses a secret key of the same length. A key is also a sequence, for instance, 01110001010001. The encoding is done by adding the message and the key modulo 2: 00100100000100. The one who knows the key can decode the encoded message by adding the key to the message modulo 2. The important thing is that the key should be used only once. It is exactly this way that classical cryptography works. Therefore the only task of quantum cryptography is to distribute the secret key between just two users (conventionally called Alice and Bob). This is Quantum Key Distribution (QKD). 2. BB84 protocol, proposed in 1984 by Bennett and Brassard – that’s where the name comes from. The idea is to encode every bit of the secret key into the polarization state of a single photon. Because the polarization state of a single photon cannot be measured without destroying this photon, this information will be ‘fragile’ and not available to the eavesdropper. Any eavesdropper (called Eve) will have to detect the photon, and then she will either reveal herself or will have to re-send this photon. But then she will inevitably send a photon with a wrong polarization state. This will lead to errors, and again the eavesdropper will reveal herself. The protocol then runs as follows.
    [Show full text]
  • Gr Qkd 003 V2.1.1 (2018-03)
    ETSI GR QKD 003 V2.1.1 (2018-03) GROUP REPORT Quantum Key Distribution (QKD); Components and Internal Interfaces Disclaimer The present document has been produced and approved by the Group Quantum Key Distribution (QKD) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. 2 ETSI GR QKD 003 V2.1.1 (2018-03) Reference RGR/QKD-003ed2 Keywords interface, quantum key distribution ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Scalable Quantum Cryptography Network for Protected Automation Communication Making Quantum Key Distribution (QKD) Available to Critical Energy Infrastructure
    Scalable Quantum Cryptography Network for Protected Automation Communication Making quantum key distribution (QKD) available to critical energy infrastructure Background changes the key in an immediate and Benefits measurable way, reducing the risk that The power grid is increasingly more reliant information thought to be securely • QKD lets the operator know, in real- on a distributed network of automation encrypted has actually been compromised. time, if a secret key has been stolen components such as phasor measurement units (PMUs) and supervisory control and Objectives • Reduces the risk that a “man-in-the- data acquisition (SCADA) systems, to middle” cyber-attack might allow In the past, QKD solutions have been unauthorized access to energy manage the generation, transmission and limited to point-to-point communications sector data distribution of electricity. As the number only. To network many devices required of deployed components has grown dedicated QKD systems to be established Partners rapidly, so too has the need for between every client on the network. This accompanying cybersecurity measures that resulted in an expensive and complex • Qubitekk, Inc. (lead) enable the grid to sustain critical functions network of multiple QKD links. To • Oak Ridge National Laboratory even during a cyber-attack. To protect achieve multi-client communications over (ORNL) against cyber-attacks, many aspects of a single quantum channel, Oak Ridge cybersecurity must be addressed in • Schweitzer Engineering Laboratories National Laboratory (ORNL) developed a parallel. However, authentication and cost-effective solution that combined • EPB encryption of data communication between commercial point-to-point QKD systems • University of Tennessee distributed automation components is of with a new, innovative add-on technology particular importance to ensure resilient called Accessible QKD for Cost-Effective energy delivery systems.
    [Show full text]
  • Detecting Itinerant Single Microwave Photons Sankar Raman Sathyamoorthy A, Thomas M
    Physics or Astrophysics/Header Detecting itinerant single microwave photons Sankar Raman Sathyamoorthy a, Thomas M. Stace b and G¨oranJohansson a aDepartment of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-41296 Gothenburg, Sweden bCentre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072, Australia Received *****; accepted after revision +++++ Abstract Single photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime however, a single photon detector has remained elusive although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with existing technologies and are ripe for experimental investigations. To cite this article: S.R. Sathyamoorthy, T.M. Stace ,G.Johansson, C. R. Physique XX (2015). R´esum´e La d´etection... Pour citer cet article : S.R. Sathyamoorthy, T.M. Stace , G.Johansson, C. R. Physique XX (2015). Key words: Single photon detection, quantum nondemolition, superconducting circuits, microwave photons Mots-cl´es: Mot-cl´e1; Mot-cl´e2; Mot-cl´e3 arXiv:1504.04979v1 [quant-ph] 20 Apr 2015 1. Introduction In 1905, his annus mirabilis, Einstein not only postulated the existence of light quanta (photons) while explaining the photoelectric effect but also gave a theory (arguably the first) of a photon detector [1].
    [Show full text]
  • Quantum Cryptography Using Quantum Key Distribution and Its Applications
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-3, Issue-4, April 2014 Quantum Cryptography using Quantum Key Distribution and its Applications N.Sasirekha, M.Hemalatha Abstract-Secure transmission of message between the sender and receiver is carried out through a tool called as cryptography. Traditional cryptographical methods use either public key which is known to everyone or on the private key. In either case the eavesdroppers are able to detect the key and hence find the message transmitted without the knowledge of the sender and receiver. Quantum cryptography is a special form of cryptography which uses the Quantum mechanics to ensure unconditional security towards the transmitted message. Quantum cryptography uses the distribution of random binary key known as the Quantum Key Distribution (QKD) and hence enables the communicating parties to detect the presence of potential eavesdropper. This paper also analyses few application areas of quantum cryptography and its limitations. Keywords- Classical Cryptography, Photon polarization, Qubit, Quantum Cryptography, Quantum entanglement, Quantum Key Fig 1: Communication in the presence of an Eavesdropper Distribution, Sifting key. I. INTRODUCTION Today, a technology known as Quantum key distribution (QKD) uses individual photons for the exchange of Cryptography is the practice and study of encoding and cryptographic key between the sender and the receiver. Each decoding secret messages to ensure secure communications. photon represents a single bit of data. The value of the bit, a 1 There are two main branches of cryptography: or a 0, is determined by states of the photon such as secret-(symmetric-) key cryptography and public- polarization or spin.
    [Show full text]
  • Quantum Key Distribution (QKD); QKD Module Security Specification
    ETSI GS QKD 008 V1.1.1 (2010-12) Group Specification Quantum Key Distribution (QKD); QKD Module Security Specification Disclaimer This document has been produced and approved by the Quantum Key Distribution (QKD) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership 2 ETSI GS QKD 008 V1.1.1 (2010-12) Reference DGS/QKD-0008 Keywords analysis, protocols, Quantum Key Distribution, security, system ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • Deterministic Secure Quantum Communication on the BB84 System
    entropy Article Deterministic Secure Quantum Communication on the BB84 System Youn-Chang Jeong 1, Se-Wan Ji 1, Changho Hong 1, Hee Su Park 2 and Jingak Jang 1,* 1 The Affiliated Institute of Electronics and Telecommunications Research Institute, P.O.Box 1, Yuseong Daejeon 34188, Korea; [email protected] (Y.-C.J.); [email protected] (S.-W.J.); [email protected] (C.H.) 2 Korea Research Institute of Standards and Science, Daejeon 43113, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-870-2134 Received: 23 September 2020; Accepted: 6 November 2020; Published: 7 November 2020 Abstract: In this paper, we propose a deterministic secure quantum communication (DSQC) protocol based on the BB84 system. We developed this protocol to include quantum entity authentication in the DSQC procedure. By first performing quantum entity authentication, it was possible to prevent third-party intervention. We demonstrate the security of the proposed protocol against the intercept-and-re-send attack and the entanglement-and-measure attack. Implementation of this protocol was demonstrated for quantum channels of various lengths. Especially, we propose the use of the multiple generation and shuffling method to prevent a loss of message in the experiment. Keywords: optical communication; quantum cryptography; quantum mechanics 1. Introduction By using the fundamental postulates of quantum mechanics, quantum cryptography ensures secure communication among legitimate users. Many quantum cryptography schemes have been developed since the introduction of the BB84 protocol in 1984 [1] by C. H. Bennett and G. Brassard. In the BB84 protocol, the sender uses a rectilinear or diagonal basis to encode information in single photons.
    [Show full text]
  • Quantum Key Distribution Over a 40-Db Channel Loss Using Superconducting Single-Photon Detectors
    Black plate (343,1) ARTICLES Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors HIROKI TAKESUE1*, SAE WOO NAM2,QIANGZHANG3,ROBERTH.HADFIELD2†, TOSHIMORI HONJO1, KIYOSHI TAMAKI1 AND YOSHIHISA YAMAMOTO3,4 1NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan 2National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA 3E. L. Ginzton Laboratory, Stanford University, 450 Via Palou, Stanford, California 94305-4088, USA 4National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan †Present address: Department of Physics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom *e-mail: [email protected] Published online: 1 June 2007; doi:10.1038/nphoton.2007.75 We report the first quantum key distribution (QKD) experiment to enable the creation of secure keys over 42 dB channel loss and 200 km of optical fibre. We used the differential phase shift QKD (DPS-QKD) protocol, implemented with a 10-GHz clock frequency and superconducting single-photon detectors (SSPD) based on NbN nanowires. The SSPD offers a very low dark count rate (a few Hz) and small timing jitter (60 ps, full width at half maximum, FWHM). These characteristics allowed us to achieve a 12.1 bit s21 secure key rate over 200 km of fibre, which is the longest terrestrial QKD over a fibre link yet demonstrated. Moreover, this is the first 10-GHz clock QKD system to enable secure key generation. The keys generated in our experiment are secure against both general collective attacks on individual photons and a specific collective attack on multiphotons, known as a sequential unambiguous state discrimination (USD) attack.
    [Show full text]