GEOL 553 Lab 3: Glacial Landform Mapping

Total Page:16

File Type:pdf, Size:1020Kb

GEOL 553 Lab 3: Glacial Landform Mapping GEOL 553 Lab 3: Glacial Landform Mapping Name_______________________________________ Date: ____________________ Summary In this lab, students learn about glacial landforms as preserved along the Wasatch front in northern Utah. The Wasatch fault, the easternmost extent of the North America/Pacific plate boundary, extends along the base of the mountains on the east side of Salt Lake City. The Wasatch Range has been glaciated, most recently during the Last Glacial Maximum (LGM). Glacial, Glaciofluvial, and Glaciolacustrine landforms can be identified at the base of the Wasatch Range, near Sandy and Draper, Utah (a part of SLC). Students will map the landforms using stereo aerial imagery, digitize their interpretations using a GIS, create a map, and write a report with the map as one of the figures. Goals Students will learn the following: To become familiar with glacial, fluvioglacial, and lake shoreline landforms To become familiar with mapping these landforms using stereo air photos To learn how to map these landforms in a GIS software application Background Lake Bonneville began rising from a low level about 30 ka and rose slowly (transgressive phase), with several fluctuations and pauses, to the Bonneville shoreline (1537‐1585 m [5160‐5200 feet] above sea level) about 16ka. After 1000‐2000 years at that level, the lake dropped about 110 m (360 ft.) to an altitude of about 1465 m (4800 ft. ‐ Provo shoreline) as a consequence of catastrophic down cutting of its outlet in southeastern Idaho. The resulting Bonneville Flood deposited debris northward into southern Idaho. In the SLC area, this rapid decline in lake level was accompanied and followed by rapid erosion of existing lacustrine transgressive‐phase sand and gravel and other glacial‐outwash and alluvial‐fan deposits; much of this debris was redeposited as deltas at the Provo shoreline near the mouths of major canyons. Between 14 and 13 ka, the lake level again dropped quickly, this time in response to changing climatic conditions, to further down cutting of its outlet, and to isostatic rebound of shoreline areas. Lake Bonneville reached a level near that of modern Great Salt Lake (1280m; 4250 ft.) about 11 ka and rose briefly to the Gilbert shoreline (1295 m; 4250 ft.) 10‐10.5 ka. Since then, the lake level has remained within 10 m of the level of present Great Salt Lake. Glaciers in Little Cottonwood and Bells Canyons advanced beyond the Wasatch Range and into the eastern Salt Lake Valley 26‐18 ka, while Lake Bonneville stood at a low to intermediate level during the transgressive phase that eventually saw the lake rise to the Bonneville shoreline. Till deposited by these glaciers forms large end moraines extend nearly 1 km into the valley beyond the mountain front. This is one of only two localities in the U.S. where Pleistocene glaciers descended below shorelines of pluvial lakes. G.K. Gilbert in 1890 recognized that "the relations 1 | Page GEOL 553 Lab 3: Glacial Landform Mapping of these moraines to the shores of the lakes and the associated deposits indicate that the maximum stage of the lakes coincided closely with the epoch of maximum glaciation." Meltwater from these glaciers and from glaciers in Big Cottonwood Canyon deposited gravelly outwash fans along the range front and deltaic deposits in Lake Bonneville. Other streams, emanating from valleys in the Wasatch Range whose headwaters were at altitudes too low to support more than small glaciers, also deposited gravelly fans and deltas graded to the lake. The rising lake culminated at the Bonneville shoreline about 16 ka, several thousand years after the glaciers in Little Cottonwood and Bells Canyons had retreated some distance up‐valley from their end moraines. The outwash and alluvial‐fan deposits along the mountain front also were inundated by the rising lake and, except for small areas near the canyon mouths that stood above the level of the lake, are covered by a veneer of lake sediment. The combined outwash‐ fan‐and‐delta complexes form the highest surfaces along the range front. Note the time lag between retreat of the glaciers up‐valley and the maximum lake level. The rise and fall of Lake Bonneville is not a simple matter of glacial ice melting and filling the lake. In fact, the volume of water in the glaciers is not enough to account for the volume of water in the lake. Climate is a large factor. Interglacial periods are warm, so there is more evaporation, but also more precipitation. Glacial periods are the opposite. Much of the gravel mined along the range front represents classic Gilbert‐type deltas built at and below the Provo shoreline near the mouths of major canyons in the initial phases of the regressive phase. Straths cut at this time can be seen on the south side of Big Cottonwood Creek. The long, steep foresets of these deltas were at one time visible in a few of the pits. The great bulk of deposits at the Provo shoreline is due to the large volume of sediments in the high‐shore zone at the mouths of major streams that were available for erosion and re‐ deposition following the rapid lake‐level change. As the level of Lake Bonneville receded from the Provo shoreline during the regressive phase, alluvial‐fan deposits and debris‐flow deposits were emplaced at canyon mouths along the mountain front. Rates of alluvial‐fan deposition appear to have declined later in the Holocene, because deposits of late Holocene age are restricted to small deposits covering parts of the surfaces of much larger alluvial fans. Pre‐Bonneville‐lake‐cycle deposits are limited to small remnants of alluvial‐fan and glacial‐drift deposits. Till of the Dry Creek advance is exposed at the mouths of Little Cottonwood and Bells Canyons. Till is weathered to a degree that suggests an age of about 150 ka, correlating with Bull Lake‐aged moraines in the Rocky Mountains. Outwash of probably the same age is exposed in gravel pits near the mouth of Big Cottonwood Canyon and along Dry Creek downstream from Bells Canyon. 2 | Page GEOL 553 Lab 3: Glacial Landform Mapping Figure 1. Landforms and deposits associated with continental glaciers. 3 | Page GEOL 553 Lab 3: Glacial Landform Mapping Figure 2. Landforms and deposits associated with alpine glaciers. Depositional Landforms As ice melts it leaves behind the sediment carried within it. This sediment can be piled around the edges or beneath a glacier as it melts, or the sediment can be directly deposited beneath active, moving ice. Subsequent advances of a glacier can rework and destroy landforms created by previous advances. Glacial depositional features include: • Moraines. The debris deposited directly from the glacial ice is called moraine. Terminal moraines are deposited at the leading edge of a glacier, lateral moraines are deposited at the sides of a glacier, and ground moraine is deposited beneath the glacial ice. Medial moraines may form where two glaciers flow together, sandwiching their lateral moraines within the new, combined glacier. • Drumlins. Streamlined hills formed in sediment or bedrock that form beneath glaciers. Drumlins are elongated in the direction of ice motion with steep faces pointed uphill. • Outwash plains. Much of the finer sediment may be washed away from a glacier by meltwater. The meltwater deposits this sediment over a broad outwash plain. • Kettles. Blocks of ice may be isolated from the main glacier as it recedes and become surrounded and covered with moraine or outwash sediment. As the block melts, the overlying sediments collapse, leaving a depression called a kettle. 4 | Page GEOL 553 Lab 3: Glacial Landform Mapping • Eskers. Streams flowing on, within, or below glaciers can deposit ribbons of channel sediment just like those flowing in channels within bedrock. When the ice melts, these ribbons of sediment are left behind as ridges called eskers. Glacial Sediments Sedimentary deposits left by glaciers are highly variable in terms of their sorting and grain size. Common deposits found in glacial and near‐glacial environments include: • Till. This is sediment deposited directly from the ice. Moraines consist of till. Till is typically very poorly sorted and has angular grains. There is typically no bedding in tills. Often, continental tills have a bimodal grain size, with a fine‐grained matrix and larger clasts. (The non‐genetic term for bimodal sediment is diamict.) • Stratified drift. This is a catch‐all term for glacial sediments that have been somewhat reworked by water. This kind of deposit is common along ice margins where sediment is released from the ice and moved by meltwater. It is often poorly sorted with pockets or lenses of well‐sorted sand. • Glaciofluvial deposits (outwash). Meltwater streams can re‐work sediment deposited by the glacier. These streams are often steep, have very high sediment loads, and are braided instead of meandering. Outwash deposits are typically better sorted than tills, as the finest grains have been washed away, leaving cross‐bedded sub‐rounded to well‐ rounded sand, gravel, and cobble‐sized clasts. Outwash develops in front of advancing and retreating glaciers. The size of the sediment can be a function of the proximity of the glacier, with larger clasts remaining closer to the glacier. • Glaciolacustrine deposits. Glaciers can block streams and create pro‐glacial lakes. Sediment carried into these lakes settles on the bottom. Typically, the coarse‐grained sediment settles near the edges, where streams enter the lake. Fine‐grained sediment (silt and clay) can be carried out to the middle of the lake, where it can form very thin layers called laminations. Sometimes, sediment‐rich icebergs can carry larger clasts out to the middle of a lake, melt, and drop them into the finer‐grained sediment.
Recommended publications
  • Multiple Glaciation and Gold-Placer
    MULTIPLE GLACIATION AND GOLD-PLACER STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 1990 MULTIPLE GLACIATION AND GOLD-PLACER FORMATION, VALDEZ CREEK VALLEY, WESTERN CLEARWATER MOUNTAINS, ALASKA By Richard D. Reger and Thomas K. Bundtzen Division of Geological & Geophysical Surveys Professional Report 107 Prepared in cooperation with U.S.Bureau of Mines Fairbanks, Alaska 1990 STATE OF ALASKA Steve Cowper, Governor DEPARTMENT OF NATURAL RESOURCES Lennie Gorsuch, Commissioner DIVISION OF GEOLOGICAL AND GEOPHYSICAL SURVEYS Robert B. Forbes, Director and State Geologist Cover: Oblique aerial view northeast of Valdez Creek Mine and glaciated lower Valdez Creek valley. Photograph courtesy of Valdez Creek Mining Company. Available from Alaska Division of Geological and Geophysical Surveys, 3700 Airport Way, Fairbanks, AK 997094699 and from U.S. Geological Sulvey Earth Science Information Centers, 4230 University Drive, Room 101, Anchorage, AK 99508 and 605 West 4th Avenue, Room G84, Anchorage, AK 99501. Mail orders should be addressed to the DGGS office in Fairbanks. Cost $4.50. CONTENTS I'age Abstract ............................................................................................................................................................................ Introduction and mining history ................................................................................................................................ Acknowledgments ..........................................................................................................................................................
    [Show full text]
  • Surficial Geology and Soils of the Elmira -Williamsport Region, New York and Pennsylvania
    Surficial Geology and Soils of the Elmira -Williamsport Region, New York and Pennsylvania GEOLOGICAL SURVEY PROFESSIONAL PAPER 379 Prepared cooperatively by the U.S. Department of the Interior^ Geological Survey and the U.S. De­ partment of Agriculture^ Soil Conservation Service Surficial Geology and Soils of the Elmira-Williamsport Region, New York and Pennsylvania By CHARLES S. DENNY, Geological Survey, and WALTER H. LYFORD, Soil Conservation Service With a section on FOREST REGIONS AND GREAT SOIL GROUPS By JOHN C. GOODLETT and WALTER H. LYFORD GEOLOGICAL SURVEY PROFESSIONAL PAPER 379 Prepared cooperatively by the Geological Survey and the Soil Conservation Service UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Soils Continued Page Abstract--- ________________________________________ 1 Sols Bruns Acides, Gray-Brown Podzolic, and Red- Introduction_______________________________________ 2 Yellow Podzolic soils.._--_-_-__-__-___-_-__-__ 34 Acknowledgments-- _ ________________________________ 3 Weikert soil near Hughesville, Lycoming County, Topography. _______________________________________ 3 Pa______________________________________ 34 Bedrock geology.___________________________________ 4 Podzols and Sols Bruns Acides ____________________ 36 Surficial deposits of pre-Wisconsin age_________________ 4 Sols Bruns Acides and LowHumic-Gley soils._______ 37 Drift...__.____________________________________ 5 Chenango-Tunkhannock association. __________ 37 Colluvium and residuum_--_______-_--_-___-_____ 6 Chenango soil near Owego, Tioga County, Drift of Wisconsin age_-_-___________________________ 6 N.Y_________________________________ 37 Till. ________________________________________ 6 Lordstown-Bath-Mardin-Volusia association.... 39 Glaciofluvial deposits.___________________________ 7 Bath soil near Owego, Tioga County, N.Y.
    [Show full text]
  • Glacial Processes and Landforms-Transport and Deposition
    Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted.
    [Show full text]
  • The Nature of Boulder-Rich Deposits in the Upper Big Flat Brook Drainage, Sussex County, New Jersey
    Middle States Geographer, 2009, 42: 33-43 THE NATURE OF BOULDER-RICH DEPOSITS IN THE UPPER BIG FLAT BROOK DRAINAGE, SUSSEX COUNTY, NEW JERSEY Gregory A. Pope, Andrew J. Temples, Sean I. McLearie, Joanne C. Kornoelje, and Thomas J. Glynn Department of Earth & Environmental Studies Montclair State University 1 Normal Avenue Montclair, New Jersey, 07043 ABSTRACT: The upper reaches of the Big Flat Brook drainage, northwest of Kittatinny Mountain, contain a variety of glacial, pro-glacial, and periglacial deposits from the Late Quaternary. The area is dominated by recessional moraines and ubiquitous ground moraine, along with meltwater deposits, drumlins, and possible post- glacial periglacial features. We have identified a curious boulder-rich deposit in the vicinity of Lake Ocquittunk and Lake Wapalanne on upper Big Flat Brook. The area where these boulder deposits occur is mapped (1:24,000 surficial geology) as till. As mapped and observed, larger cobbles and boulders within the till are quartz-pebble conglomerate, quartzite, sandstone, and shale. The boulder-rich deposits differ from the typical till, however. Unlike the local till, which is more mixed in lithology, the boulder deposits are nearly exclusively Shawangunk conglomerate. The deposits are discontinuous, but appear to occur at a topographic level above the meltwater stream terraces. The boulders in the deposits lie partially embedded in soil, but are very closely spaced. The boulders range in size from ~20cm to over 100cm, and present a subrounded to subangular shape. There appears to be a fabric orientation of the boulders, NE-SW, with subsidiary orientations. As the boulder deposits differ from other mapped features in the area, we attempt to ascertain the origin for the deposits.
    [Show full text]
  • GEOLOGY and GROUND WATER RESOURCE S of Stutsman County, North Dakota
    North Dakota Geological Survey WILSON M. LAIRD, State Geologis t BULLETIN 41 North Dakota State Water Conservation Commission MILO W . HOISVEEN, State Engineer COUNTY GROUND WATER STUDIES 2 GEOLOGY AND GROUND WATER RESOURCE S of Stutsman County, North Dakota Part I - GEOLOG Y By HAROLD A. WINTERS GRAND FORKS, NORTH DAKOTA 1963 This is one of a series of county reports which wil l be published cooperatively by the North Dakota Geological Survey and the North Dakota State Water Conservation Commission in three parts . Part I is concerned with geology, Part II, basic data which includes information on existing well s and test drilling, and Part III which will be a study of hydrology in the county . Parts II and III will be published later and will be distributed a s soon as possible . CONTENTS PAGE ABSTRACT 1 INTRODUCTION 3 Acknowledgments 3 Previous work 5 GEOGRAPHY 5 Topography and drainage 5 Climate 7 Soils and vegetation 9 SUMMARY OF THE PRE-PLEISTOCENE STRATIGRAPHY 9 Precambrian 1 1 Paleozoic 1 1 Mesozoic 1 1 PREGLACIAL SURFICIAL GEOLOGY 12 Niobrara Shale 1 2 Pierre Shale 1 2 Fox Hills Sandstone 1 4 Fox Hills problem 1 4 BEDROCK TOPOGRAPHY 1 4 Bedrock highs 1 5 Intermediate bedrock surface 1 5 Bedrock valleys 1 5 GLACIATION OF' NORTH DAKOTA — A GENERAL STATEMENT 1 7 PLEISTOCENE SEDIMENTS AND THEIR ASSOCIATED LANDFORMS 1 8 Till 1 8 Landforms associated with till 1 8 Glaciofluvial :materials 22 Ice-contact glaciofluvial sediments 2 2 Landforms associated with ice-contact glaciofluvial sediments 2 2 Proglacial fluvial sediments 2 3 Landforms associated with proglacial fluvial sediments 2 3 Lacustrine sediments 2 3 Landforms associated with lacustrine sediments 2 3 Other postglacial sediments 2 4 ANALYSIS OF THE SURFICIAL TILL IN STUTSMAN COUNTY 2 4 Leaching and caliche 24 Oxidation 2 4 Stone counts 2 5 Lignite within till 2 7 Grain-size analyses of till _ 2 8 Till samples from hummocky stagnation moraine 2 8 Till samples from the Millarton, Eldridge, Buchanan and Grace Cit y moraines and their associated landforms _ .
    [Show full text]
  • Techniques for Assessing Sand and Gravel Resources in Glaciofluvial Deposits
    cov report.qxd 5/22/03 7:55 AM Page 1 FOLD Sutphin and others—TECHNIQUES FOR ASSESSING SAND AND GRAVEL RESOURCES, LOUDON QUADRANGLE, NEW HAMPSHIRE—U.S. Geological Survey Sutphin and others—TECHNIQUES FOR ASSESSING SAND AND GRAVEL U.S. Department of the Interior U.S. Geological Survey Techniques for Assessing Sand and Gravel Resources in Glaciofluvial Deposits—An Example Using the Surficial Geologic Map of the Loudon Quadrangle, Merrimack and Belknap Counties, New Hampshire U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1627 Professional Paper 1627 Prepared in cooperation with the New Hampshire Department of Environmental Services Printed on recycled paper FOLD U.S. Department of the Interior U.S. Geological Survey Techniques for Assessing Sand and Gravel Resources in Glaciofluvial Deposits—An Example Using the Surficial Geologic Map of the Loudon Quadrangle, Merrimack and Belknap Counties, New Hampshire By David M. Sutphin, Lawrence J. Drew, Brian K. Fowler, and Richard Goldsmith with the surficial geologic map by Richard Goldsmith and David M. Sutphin U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1627 Prepared in cooperation with the New Hampshire Department of Environmental Services A method for estimating sand and gravel resources in glaciofluvial systems based on surficial mapping techniques and a geographic information system (GIS) U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 2002 Published in the Eastern Region, Reston, Va. Manuscript approved for release March 24, 2000. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Glacial Geology of Adams Inlet, Southeastern Alaska
    Institute of Polar Studies Report No. 25 Glacial Geology of Adams Inlet, Southeastern Alaska l/h':'~~~~2l:gtf"'" SN" I" '" '" 7, r.• "'. ~ i~' _~~ ... 1!!JW'IIA8 ~ ' ... ':~ ~l·::,.:~·,~I"~,.!};·'o":?"~~"''''''''''''~ r .! np:~} 3TATE Uf-4lVERSnY by t) '{;fS~MACf< ROAD \:.~i~bYMaUi. OHlOGltltM Garry D. McKenzie " Institute of Polar Studies November 1970 GOLDTHWAIT POLAR LIBRARY The Ohio State University BYRD POLAR RESEARCH CENTER Research Foundation THE OHIO STATE UNIVERSITY Columbus, Ohio 43212 1090 CARMACK ROAD COLUMBUS, OHIO 43210 USA INSTITUTE OF POLAR STUDIES Report No. 25 GLACIAL GEOLOGY OF ADAMS INLET, SOUTHEASTERN ALASKA by Garry D. McKenzie Institute of Polar Studies November 1970 The Ohio State University Research Foundation Columbus, Ohio 43212 ABSTRACT Adams Inlet is in the rolling and rugged Chilkat-Baranof Mountains in the eastern part of Glacier Bay National Monument, Alaska. Rapid deglaciation of the area in the first half of the twentieth century has exposed thick sections of post-Hypsithermal deposits and some of the oldest unconsolidated deposits in Glacier Bay. About 30 percent of the area is underlain by uncon­ solidated material; 14 percent of the area is still covered with ice. The formations present in Adams Inlet are, from the oldest to the youngest: Granite Canyon till, Forest Creek glaciomarine sediments, Van Horn Formation (lower gravel member), Adams lacustrine-till complex, Berg gravel and sand, Glacier Bay drift, and Seal River gravel. No evidence of an early post-Wisconsin ice advance, indicated by the Muir Formation in nearby Muir Inlet, is present in Adams Inlet. Following deposition of the late Wisconsin Granite Canyon till, the Forest Creek glaciomarine sediments were laid down in water 2 to 20 m deep; they now occur as much as 30 m above present sea level.
    [Show full text]
  • Rogen Moraine: an Example of Glacial Reshaping of Pre-Existing Landforms
    ARTICLE IN PRESS Quaternary Science Reviews 25 (2006) 362–389 Rogen moraine: an example of glacial reshaping of pre-existing landforms Per Mo¨llerà GeoBiosphere Science Centre/Quaternary Sciences, Lund University, So¨lvegatan 12, SE-22362 Lund, Sweden Received 23 May 2004; accepted 19 January 2005 Abstract Rogen moraine is widely distributed in the core areas of the former Scandinavian and Laurentide ice sheets. It is generally agreed upon that these gently arched, ice-flow transverse ridges can be used in reconstructions of paleo-ice-flow patterns and that they indicate a melted-bed or poly-thermal basal ice regime. However, the processes of ridge generation have been contentious. This study proposes a two-stage formation of Rogen moraine, based on detailed sedimentological and structural investigations in excavated trenches in a Rogen moraine landscape in the province of Dalarna, central Sweden. Field data suggest that Rogen moraine ridges are the reshaped remains of pre-existing transverse moraine ridges, originally deposited from ice-cored moraines in an ice-marginal zone. Due to back- and down-wasting of ice-cores, inter-ridge troughs were filled with debris flow and fluvial deposits, which after landscape inversion were transformed to areas of transverse and hummocky moraines. It is proposed that this primary landscape formation occurred during an Early Weichselian deglaciation. This relict landscape was later preserved beneath cold-based Mid- to Late-Weichselian ice sheet(s), which turned wet-based during the Preboreal deglaciation phase and re-moulded the precursor landforms into Rogen moraine. r 2005 Elsevier Ltd. All rights reserved. 1. Introduction transition to drumlins (Lundqvist, 1969, 1989), some- times with streamlined moraine hummocks in between Rogen moraine forms one of the most conspicuous the end-member landforms.
    [Show full text]
  • Chapter 7 Glaciers
    CHAPTER 7 GLACIERS 1. INTRODUCTION 1.1 Before the era of universal air travel, which commenced less than half a century ago, few of the world’s population had seen a glacier. I suspect that majority of class members in this course have seen a glacier—if not close up, then out of a jetliner window. In the Canadian Rockies, you can drive to within almost a stone’s throw of the terminus of the Athabasca Glacier, a classic active valley glacier. In many other parts of the world, valley glaciers are accessible to even casual day hikers. The great ice sheets of the world, in Antarctica and Greenland, remain much less accessible. 1.2 In the broad context of geologic history, the Earth is in an “icehouse” time, with recurrent major ice-sheet advances across the Northern Hemisphere continents. (There have been several other such icehouse periods in Earth history, separated by long intervals of ice-free times, called “greenhouse” periods, with no evidence of glaciation.) The Earth has only recently emerged from the latest episode of continental glaciation. Does it surprise you to learn that a mere twenty thousand years ago the Boston area was beneath a mile of glacier ice moving slowly southward toward its terminus south of what is now the south coast of New England? 1.3 The Earth is in many senses a glacial planet: • 10% of the Earth is covered with glacier ice (about 15 million square kilometers). • About 40% of the Northern Hemisphere in winter is covered with solid water at any given time (land and sea).
    [Show full text]
  • Origin of Well-Rounded Gravels in Glacial Deposits
    Origin of well-rounded gravels in glacial deposits from Briggerhalvoya, northwest Spitsbergen: potential problems caused by sediment reworking in the glacial environment DAVID HUDDART, MATTHEW R. BENNETT, MICHAEL J. HAMBREY, NEIL F. GLASSER and KEVIN CRAWFORD Huddan, D., Bennett, M. R., Hambrey. M. J., Glasser N. F. & Crawford. K. 1998: Ongin of well-rounded gravels from Br~ggerhalv0ya.northwest Spitsbergen: potential problems caused by sediment reworking in the glacial environment. Polar Research /7(1). 61-69. Well-rounded gi-avels are described from moraine-mound complexes, diamicton forefields and modem englacial thrusts at the margins of four glaciers on the nortbem side of Br@ggerhalv@ya,northwest ‘J*Por~~\Ns‘“ Spitsbergen. Their shape characteristics are compared with modem and fossil glacigenic, modem beach and Early Weichselian beach gravels from this peninsula. The best discriminators of the well-ronnded gravels have been found to be the percentage-frequency roundness histograms, the roundness mid-point and roundness range diagrams and the sphericity-roundness plots. It is concluded that the gravels have been derived by englacial thrusting fi-om Early Weichselian or last interglacial beaches in the inner parts of the fjord and in the low level cirqiies when sea level reached at least S3m a.s.1. and deposited the beach gravels. The discrimination between gravel in basal diamictons, proglacial outwash and modem beaches is difficult as the reworking has resulted in little particle shape change. The potential major problem caused by reworking in the glacial environment is emphasised. especially when clast shape comparisons from modern environments to older sediments are used.
    [Show full text]
  • The Surficial Geology of the Hartford South Quadrangle With
    Open Map Open Figure 3 Open Figure 4 STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CONNECTICUT A DIVISION OF THE DEPARTMENTOF AGRICULTURE AND NATURAL RESOURCES The Surficial Geology of the Hartford South Quadrangle WITH MAP BY R. E. DEANE Late of the University of Toronto 1967 QUADRANGLE REPORT NO. 20 STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CONNECTICUT A DIVISION OF THE DEPARTMENT OF AGRICULTURE AND NATURAL RESOURCES HONORABLE JoHN N. DEMPSEY, Governor of Connecticut JosEPH N. GILL, Commissioner of the Department of Agriculture and Natural Resources COMMISSIONERS HoN. JoHN N. DEMPSEY, Governor of Connecticut DR. J. WENDELL BuRGER, Department of Biology, Trinity College DR. RICHARD H. GooDwIN, Department of Botany, Connecticut College DR. JoE WEBB PEOPLES, Department of Geology, Wesleyan University DR. JoHN RoDGERS, Department of Geology, Yale University DR. JAMES A. SLATER, Department of Zoology and Entomology, Univer­ sity of Connecticut DIRECTOR JoE WEBB PEOPLES, Ph.D. Wesleyan University, Middletown, Connecticut EDITOR MAP EDITOR Lou WILLIAMS PAGE, Ph.D. HENRY R. ALDRICH, Ph.D. DISTRIBUTION AND EXCHANGE AGENT WALTER BRAHM, State Librarian State Library, Hartford ii PREFACE Professor R. E. Deane of the University of Toronto, together with several of his students, was tragically drowned on October 23, 1965, while conducting underwater research in Lake Ontario. The Connecticut Geological and Natural History Survey began its program of bedrock mapping on a quadrangle basis in 1949 but it was not until 1953 that large-scale mapping of surficial deposits was begun. In that year, Deane, then a member of the Department of Geology at the University of Indiana, started detailed surficial mapping in the Middletown quadrangle and finished the field work.
    [Show full text]
  • Glacial Geomorphology of the Northern Kivalliq Region, Nunavut, Canada, with an Emphasis on Meltwater Drainage Systems
    Journal of Maps ISSN: (Print) 1744-5647 (Online) Journal homepage: http://www.tandfonline.com/loi/tjom20 Glacial geomorphology of the northern Kivalliq region, Nunavut, Canada, with an emphasis on meltwater drainage systems Robert D. Storrar & Stephen J. Livingstone To cite this article: Robert D. Storrar & Stephen J. Livingstone (2017) Glacial geomorphology of the northern Kivalliq region, Nunavut, Canada, with an emphasis on meltwater drainage systems, Journal of Maps, 13:2, 153-164 To link to this article: http://dx.doi.org/10.1080/17445647.2017.1279081 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group View supplementary material Published online: 24 Jan 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjom20 Download by: [University of Sheffield] Date: 24 January 2017, At: 05:53 JOURNAL OF MAPS, 2017 VOL. 13, NO. 2, 153–164 http://dx.doi.org/10.1080/17445647.2017.1279081 SCIENCE Glacial geomorphology of the northern Kivalliq region, Nunavut, Canada, with an emphasis on meltwater drainage systems Robert D. Storrar a and Stephen J. Livingstone b aDepartment of the Natural and Built Environment, Sheffield Hallam University, Sheffield, UK; bDepartment of Geography, University of Sheffield, Sheffield, UK ABSTRACT ARTICLE HISTORY This paper presents a glacial geomorphological map of glacial lineations, ribbed terrain, Received 1 April 2016 moraines, meltwater channels (subglacial and ice-marginal/proglacial), eskers, glaciofluvial Revised 24 October 2016 deposits, ice-contact outwash fans and deltas and abandoned shorelines on the bed of the Accepted 23 November 2016 former Laurentide Ice Sheet in northern Canada.
    [Show full text]