Chapter 17. Glaciation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling” by N
CORRECTED 21 MAY 2010; SEE LAST PAGE REPORTS 13. J. Helbert, A. Maturilli, N. Mueller, in Venus Eds. (U.S. Geological Society Open-File Report 2005- M. F. Coffin, Eds. (Monograph 100, American Geophysical Geochemistry: Progress, Prospects, and New Missions 1271, Abstracts of the Annual Meeting of Planetary Union, Washington, DC, 1997), pp. 1–28. (Lunar and Planetary Institute, Houston, TX, 2009), abstr. Geologic Mappers, Washington, DC, 2005), pp. 20–21. 44. M. A. Bullock, D. H. Grinspoon, Icarus 150, 19 (2001). 2010. 25. E. R. Stofan, S. E. Smrekar, J. Helbert, P. Martin, 45. R. G. Strom, G. G. Schaber, D. D. Dawson, J. Geophys. 14. J. Helbert, A. Maturilli, Earth Planet. Sci. Lett. 285, 347 N. Mueller, Lunar Planet. Sci. XXXIX, abstr. 1033 Res. 99, 10,899 (1994). (2009). (2009). 46. K. M. Roberts, J. E. Guest, J. W. Head, M. G. Lancaster, 15. Coronae are circular volcano-tectonic features that are 26. B. D. Campbell et al., J. Geophys. Res. 97, 16,249 J. Geophys. Res. 97, 15,991 (1992). unique to Venus and have an average diameter of (1992). 47. C. R. K. Kilburn, in Encyclopedia of Volcanoes, ~250 km (5). They are defined by their circular and often 27. R. J. Phillips, N. R. Izenberg, Geophys. Res. Lett. 22, 1617 H. Sigurdsson, Ed. (Academic Press, San Diego, CA, radial fractures and always produce some form of volcanism. (1995). 2000), pp. 291–306. 16. G. E. McGill, S. J. Steenstrup, C. Barton, P. G. Ford, 28. C. M. Pieters et al., Science 234, 1379 (1986). 48. -
Disappearing Kettle Ponds Reveal a Drying Kenai Peninsula by Ed Berg
Refuge Notebook • Vol. 3, No. 38 • October 12, 2001 Disappearing kettle ponds reveal a drying Kenai Peninsula by Ed Berg A typical transect starts at the forest edge, passes through a grass (Calamagrostis) zone, into Sphagnum peat moss, and then into wet sedges, sometimes with pools of standing water, and then back through these same zones on the other side of the kettle. Three of the four kettles we surveyed this summer were quite wet in the middle (especially after the July rains), and we had to wear hip boots. These plots can be resurveyed in future decades and, if I am correct, they will show a succession of drier and drier plants as the water table drops lower and lower, due to warmer summers and increased evap- Photo of a kettle pond by the National Park Service. otranspiration. If I am wrong, and the climate trend turns around toward cooler and wetter, these plots will When the glaciers left the Soldotna-Sterling area be under water again, as they were on the old aerial some 14,000 years ago, the glacier fronts didn’t re- photos. cede smoothly like their modern descendants, such as By far the most striking feature that we have Portage or Skilak glaciers. observed in the kettles is a band of young spruce Rather, the flat-lying ice sheets broke up into nu- seedlings popping up in the grass zones. These merous blocks, which became partially buried in hilly seedlings can form a halo around the perimeter of a moraines and flat outwash plains. In time these gi- kettle. -
The Huronian Glaciation
Brasier, A.T., Martin, A.P., Melezhik, V.A., Prave, A.R., Condon, D.J., and Fallick, A.E. (2013) Earth's earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia. Precambrian Research, 235 . pp. 278-294. ISSN 0301-9268 Copyright © 2013 Elsevier B.V. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) When referring to this work, full bibliographic details must be given http://eprints.gla.ac.uk/84700 Deposited on: 29 August 2013 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk 1 Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the 2 Polisarka Sedimentary Formation, Kola Peninsula, Russia 3 4 A.T. Brasier1,6*, A.P. Martin2+, V.A. Melezhik3,4, A.R. Prave5, D.J. Condon2, A.E. Fallick6 and 5 FAR-DEEP Scientists 6 7 1 Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV 8 Amsterdam 9 2 NERC Isotope Geosciences Laboratory, British Geological Survey, Environmental Science 10 Centre, Keyworth, UK. NG12 5GG 11 3 Geological Survey of Norway, Postboks 6315 Slupen, NO-7491 Trondheim, Norway 12 4 Centre for Geobiology, University of Bergen, Postboks 7803, NO-5020 Bergen, Norway 13 5 Department of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 14 9AL, Scotland, UK 15 6 Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, Scotland. -
1 Recognising Glacial Features. Examine the Illustrations of Glacial Landforms That Are Shown on This Page and on the Next Page
1 Recognising glacial features. Examine the illustrations of glacial landforms that are shown on this C page and on the next page. In Column 1 of the grid provided write the names of the glacial D features that are labelled A–L. In Column 2 indicate whether B each feature is formed by glacial erosion of by glacial deposition. A In Column 3 indicate whether G each feature is more likely to be found in an upland or in a lowland area. E F 1 H K J 2 I 24 Chapter 6 L direction of boulder clay ice flow 3 Column 1 Column 2 Column 3 A Arête Erosion Upland B Tarn (cirque with tarn) Erosion Upland C Pyramidal peak Erosion Upland D Cirque Erosion Upland E Ribbon lake Erosion Upland F Glaciated valley Erosion Upland G Hanging valley Erosion Upland H Lateral moraine Deposition Lowland (upland also accepted) I Frontal moraine Deposition Lowland (upland also accepted) J Medial moraine Deposition Lowland (upland also accepted) K Fjord Erosion Upland L Drumlin Deposition Lowland 2 In the boxes provided, match each letter in Column X with the number of its pair in Column Y. One pair has been completed for you. COLUMN X COLUMN Y A Corrie 1 Narrow ridge between two corries A 4 B Arête 2 Glaciated valley overhanging main valley B 1 C Fjord 3 Hollow on valley floor scooped out by ice C 5 D Hanging valley 4 Steep-sided hollow sometimes containing a lake D 2 E Ribbon lake 5 Glaciated valley drowned by rising sea levels E 3 25 New Complete Geography Skills Book 3 (a) Landform of glacial erosion Name one feature of glacial erosion and with the aid of a diagram explain how it was formed. -
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth Permalink https://escholarship.org/uc/item/9v96g1j5 Author Reinhard, Christopher Thomas Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Christopher Thomas Reinhard September 2012 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Nigel C. Hughes ! Copyright by Christopher Thomas Reinhard 2012 ! ! The Dissertation of Christopher Thomas Reinhard is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ! ! ACKNOWLEDGEMENTS It goes without saying (but I’ll say it anyway…) that things like this are never done in a vacuum. Not that I’ve invented cold fusion here, but it was quite a bit of work nonetheless and to say that my zest for the enterprise waned at times would be to put it euphemistically. As it happens, though, I’ve been fortunate enough to be surrounded these last years by an incredible group of people. To those that I consider scientific and professional mentors that have kept me interested, grounded, and challenged – most notably Tim Lyons, Rob Raiswell, Gordon Love, and Nigel Hughes – thank you for all that you do. I also owe Nigel and Mary Droser a particular debt of graditude for letting me flounder a bit my first year at UCR, being understanding and supportive, and encouraging me to start down the road to where I’ve ended up (for better or worse). -
Landform Studies in Mosedale, Northeastern Lake District: Opportunities for Field Investigations
Field Studies, 10, (2002) 177 - 206 LANDFORM STUDIES IN MOSEDALE, NORTHEASTERN LAKE DISTRICT: OPPORTUNITIES FOR FIELD INVESTIGATIONS RICHARD CLARK Parcey House, Hartsop, Penrith, Cumbria CA11 0NZ AND PETER WILSON School of Environmental Studies, University of Ulster at Coleraine, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, Northern Ireland (e-mail: [email protected]) ABSTRACT Mosedale is part of the valley of the River Caldew in the Skiddaw upland of the northeastern Lake District. It possesses a diverse, interesting and problematic assemblage of landforms and is convenient to Blencathra Field Centre. The landforms result from glacial, periglacial, fluvial and hillslopes processes and, although some of them have been described previously, others have not. Landforms of one time and environment occur adjacent to those of another. The area is a valuable locality for the field teaching and evaluation of upland geomorphology. In this paper, something of the variety of landforms, materials and processes is outlined for each district in turn. That is followed by suggestions for further enquiry about landform development in time and place. Some questions are posed. These should not be thought of as being the only relevant ones that might be asked about the area: they are intended to help set enquiry off. Mosedale offers a challenge to students at all levels and its landforms demonstrate a complexity that is rarely presented in the textbooks. INTRODUCTION Upland areas attract research and teaching in both earth and life sciences. In part, that is for the pleasure in being there and, substantially, for relative freedom of access to such features as landforms, outcrops and habitats, especially in comparison with intensively occupied lowland areas. -
2480 ± 90 +1850 8570 NPL-72. Mockerkin Tarn, West Cumberland
[RADIOCARBON, VOL. 8, 1966, P. 340-347] NATIONAL PHYSICAL LABORATORY RADIOCARBON MEASUREMENTS IV I. HASSALL W. J. CALLOW, M. J. BAKER and GERALDINE National Physical Laboratory, Teddington, England The following list comprises measurements made since those re- ported in NPL III and is complete to the end of November 1965. Ages are relative to A.D. 1950 and are calculated using a half-life of 5568 yr. The measurements, corrected for fractionation (quoted 6013 values are relative to the P.D.B. standard), are referred to 0.950 times the activity of the NBS oxalic acid as contemporary reference standard. The quoted uncertainty is one standard deviation derived from a proper combination of the parameter variances as described in detail in NPL III. These variances are those of the standard and background measure- ments over a rolling twenty week period, of the sample C14 and 8013 measurements and of the de Vries effect (assumed to add an additional uncertainty equivalent to a standard deviation of 80 yr). Any uncertainty in the half-life has been excluded so that relative C14 ages may be cor- rectly compared. Absolute age assessments, however, should be made using the accepted best value for the half-life and the appropriate un- certainty then included. If the net sample count rate is less than 4 times the standard error of the difference between the sample and background count rates, a lower limit to the age is reported corresponding to a net sample count rate of 4 times the standard error of this difference. The description of each sample is based on information provided by the person submitting the sample to the laboratory. -
Multiple Glaciation and Gold-Placer
MULTIPLE GLACIATION AND GOLD-PLACER STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 1990 MULTIPLE GLACIATION AND GOLD-PLACER FORMATION, VALDEZ CREEK VALLEY, WESTERN CLEARWATER MOUNTAINS, ALASKA By Richard D. Reger and Thomas K. Bundtzen Division of Geological & Geophysical Surveys Professional Report 107 Prepared in cooperation with U.S.Bureau of Mines Fairbanks, Alaska 1990 STATE OF ALASKA Steve Cowper, Governor DEPARTMENT OF NATURAL RESOURCES Lennie Gorsuch, Commissioner DIVISION OF GEOLOGICAL AND GEOPHYSICAL SURVEYS Robert B. Forbes, Director and State Geologist Cover: Oblique aerial view northeast of Valdez Creek Mine and glaciated lower Valdez Creek valley. Photograph courtesy of Valdez Creek Mining Company. Available from Alaska Division of Geological and Geophysical Surveys, 3700 Airport Way, Fairbanks, AK 997094699 and from U.S. Geological Sulvey Earth Science Information Centers, 4230 University Drive, Room 101, Anchorage, AK 99508 and 605 West 4th Avenue, Room G84, Anchorage, AK 99501. Mail orders should be addressed to the DGGS office in Fairbanks. Cost $4.50. CONTENTS I'age Abstract ............................................................................................................................................................................ Introduction and mining history ................................................................................................................................ Acknowledgments .......................................................................................................................................................... -
The History of Ice on Earth by Michael Marshall
The history of ice on Earth By Michael Marshall Primitive humans, clad in animal skins, trekking across vast expanses of ice in a desperate search to find food. That’s the image that comes to mind when most of us think about an ice age. But in fact there have been many ice ages, most of them long before humans made their first appearance. And the familiar picture of an ice age is of a comparatively mild one: others were so severe that the entire Earth froze over, for tens or even hundreds of millions of years. In fact, the planet seems to have three main settings: “greenhouse”, when tropical temperatures extend to the polesand there are no ice sheets at all; “icehouse”, when there is some permanent ice, although its extent varies greatly; and “snowball”, in which the planet’s entire surface is frozen over. Why the ice periodically advances – and why it retreats again – is a mystery that glaciologists have only just started to unravel. Here’s our recap of all the back and forth they’re trying to explain. Snowball Earth 2.4 to 2.1 billion years ago The Huronian glaciation is the oldest ice age we know about. The Earth was just over 2 billion years old, and home only to unicellular life-forms. The early stages of the Huronian, from 2.4 to 2.3 billion years ago, seem to have been particularly severe, with the entire planet frozen over in the first “snowball Earth”. This may have been triggered by a 250-million-year lull in volcanic activity, which would have meant less carbon dioxide being pumped into the atmosphere, and a reduced greenhouse effect. -
Surficial Geology and Soils of the Elmira -Williamsport Region, New York and Pennsylvania
Surficial Geology and Soils of the Elmira -Williamsport Region, New York and Pennsylvania GEOLOGICAL SURVEY PROFESSIONAL PAPER 379 Prepared cooperatively by the U.S. Department of the Interior^ Geological Survey and the U.S. De partment of Agriculture^ Soil Conservation Service Surficial Geology and Soils of the Elmira-Williamsport Region, New York and Pennsylvania By CHARLES S. DENNY, Geological Survey, and WALTER H. LYFORD, Soil Conservation Service With a section on FOREST REGIONS AND GREAT SOIL GROUPS By JOHN C. GOODLETT and WALTER H. LYFORD GEOLOGICAL SURVEY PROFESSIONAL PAPER 379 Prepared cooperatively by the Geological Survey and the Soil Conservation Service UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Soils Continued Page Abstract--- ________________________________________ 1 Sols Bruns Acides, Gray-Brown Podzolic, and Red- Introduction_______________________________________ 2 Yellow Podzolic soils.._--_-_-__-__-___-_-__-__ 34 Acknowledgments-- _ ________________________________ 3 Weikert soil near Hughesville, Lycoming County, Topography. _______________________________________ 3 Pa______________________________________ 34 Bedrock geology.___________________________________ 4 Podzols and Sols Bruns Acides ____________________ 36 Surficial deposits of pre-Wisconsin age_________________ 4 Sols Bruns Acides and LowHumic-Gley soils._______ 37 Drift...__.____________________________________ 5 Chenango-Tunkhannock association. __________ 37 Colluvium and residuum_--_______-_--_-___-_____ 6 Chenango soil near Owego, Tioga County, Drift of Wisconsin age_-_-___________________________ 6 N.Y_________________________________ 37 Till. ________________________________________ 6 Lordstown-Bath-Mardin-Volusia association.... 39 Glaciofluvial deposits.___________________________ 7 Bath soil near Owego, Tioga County, N.Y. -
CO2, Hothouse and Snowball Earth
CO2, Hothouse and Snowball Earth Gareth E. Roberts Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA, USA Mathematical Models MATH 303 Fall 2018 November 12 and 14, 2018 Roberts (Holy Cross) CO2, Hothouse and Snowball Earth Mathematical Models 1 / 42 Lecture Outline The Greenhouse Effect The Keeling Curve and the Earth’s climate history Consequences of Global Warming The long- and short-term carbon cycles and silicate weathering The Snowball Earth hypothesis Roberts (Holy Cross) CO2, Hothouse and Snowball Earth Mathematical Models 2 / 42 Chapter 1 Historical Overview of Climate Change Science Frequently Asked Question 1.3 What is the Greenhouse Effect? The Sun powers Earth’s climate, radiating energy at very short Earth’s natural greenhouse effect makes life as we know it pos- wavelengths, predominately in the visible or near-visible (e.g., ul- sible. However, human activities, primarily the burning of fossil traviolet) part of the spectrum. Roughly one-third of the solar fuels and clearing of forests, have greatly intensifi ed the natural energy that reaches the top of Earth’s atmosphere is refl ected di- greenhouse effect, causing global warming. rectly back to space. The remaining two-thirds is absorbed by the The two most abundant gases in the atmosphere, nitrogen surface and, to a lesser extent, by the atmosphere. To balance the (comprising 78% of the dry atmosphere) and oxygen (comprising absorbed incoming energy, the Earth must, on average, radiate the 21%), exert almost no greenhouse effect. Instead, the greenhouse same amount of energy back to space. Because the Earth is much effect comes from molecules that are more complex and much less colder than the Sun, it radiates at much longer wavelengths, pri- common.