Parasite-Related Modification of Multiple Traits in an Isopod Host

Total Page:16

File Type:pdf, Size:1020Kb

Parasite-Related Modification of Multiple Traits in an Isopod Host DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 8-21-2016 Parasite-related modification of multiple traits in an isopod host Tracey J. Park DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Park, Tracey J., "Parasite-related modification of multiple traits in an isopod host" (2016). College of Science and Health Theses and Dissertations. 190. https://via.library.depaul.edu/csh_etd/190 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Parasite-related modification of multiple traits in an isopod host A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science By: Tracey Park July 2016 Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois 2 ABSTRACT Parasites are organisms that live on or in hosts, which they typically require to complete their life cycles. Acanthocephalus dirus is an acanthocephalan parasite that exhibits an indirect life cycle that requires two hosts, with a Caecidotea intermedius isopod as the intermediate host and fishes as the definitive hosts, in order to complete its life cycle. Infected C. intermedius individuals have been observed to have altered hiding behavior, in which they have an increased amount of time exposed to predators. Also, infected C. intermedius individuals have demonstrated an increase in activity patterns, which could increase their conspicuousness to visual predators. Infected C. intermedius individuals also exhibit pigmentation dystrophy, which makes infected isopods more conspicuous to visual predators than uninfected isopods. Using a combination of field-based and laboratory-based behavioral trials, I examined the associations of A. dirus infection with behavior (hiding and activity) and body color of male and female isopods. I also examined the relationships between parasite characteristics (intensity and volume) and host trait modification. This study is the first to examine the relationships between effects of infection status in individual C. intermedius and multiple host traits, as well as the correlations among modified host traits and behaviors in both the field- and laboratory-based settings. I tested for sex-associated effects on each of the traits using a Mann-Whitney U test. Spearman rank-order correlations were used to analyze the relationships between pairs of traits both in the field and laboratory experiments. To determine the potential impact of parasite characteristics (intensity and volume) on each of the traits, I used Spearman rank-order 3 correlation analysis on trait measures obtained in the field for behavior (hiding behavior and activity) and the laboratory for color (color score and % color). Infected and uninfected isopods (males and females) differed in hiding behavior in the laboratory. Only infected and uninfected males differed in hiding behavior in the field. Infected and uninfected males did not differ in activity in the field and laboratory. Infected females crossed fewer grid lines than uninfected females in the field and laboratory. These changes in female activity appear to be more likely associated with pathological effects of infection than adaptive manipulation. Infected isopods were lighter in color than uninfected isopods. The pigmentation dystrophy observed in this system may have been an adaptive mechanism used by parasites or a pathological side effect of infection. When using color score as the color measure, there was a positive correlation between color and activity that was present in only uninfected females in the field. However, there was not a correlation between these traits in the laboratory. The correlation between color and activity in uninfected females in the field may not be a meaningful correlation because it was expected that the correlation would occur in a different context, the laboratory, in addition to occurring in the field. Future research is needed to determine the potential significance of the correlations among traits identified in nature and disruptions to these correlations. For the results obtained here, it appears that different traits may be modulated by different mechanisms because the correlations among traits were not consistent between different contexts. 4 ACKNOWLEDGEMENTS I am immensely grateful to several people who have helped me during the course of completing my project. I want to first thank my cohort for all of their support in studying for my oral exams, helping with classes, and providing encouragement throughout my time at DePaul. I want to also thank Alaina, Danielle, Dimitar, Erica, Jordan, Sara, and Tim of the Sparkes laboratory for all of their technical, physical, and emotional support with my thesis - I will always treasure all of our wonderful conversations. Thank you especially to Drew Steffen and Emma Schremp for your valuable time spent helping me with data collection both in the field and in the lab. Melissa Horther, I owe you a special thank you for also helping with data collection and becoming one of my good friends at DePaul. My family and friends have supported me throughout my time at DePaul, and I could not have made it this far without their encouragement. I would like to thank DePaul University and the Biology Department for funding my project and education. Thank you for the experiences you have provided me over these past years. I am also thankful for the opportunities to study and work with such wonderful faculty at DePaul. Dr. Windsor Aguirre and Dr. Kenshu Shimada, thank you for your questions as well as suggestions, they have helped me develop my thesis while keeping the ‘big picture’ in mind. Last, but definitely not least, I would like to thank my advisor, Dr. Timothy Sparkes. Thank you for helping me to create a project and write a thesis that I could be proud of, as well as pushing me to become a better writer and scientist. I am also thankful for your refreshing outlook on science, teaching, and life in general- it helped me put my whole project into perspective. 5 TABLE OF CONTENTS TITLE PAGE 1 ABSTRACT 2 ACKNOWLEDGEMENTS 4 TABLE OF CONTENTS 5 TABLES 7 FIGURES 8 THESIS Introduction 9 Methods Study System 22 Parasite Infection and Multi-Trait Modification 23 Consistency and Repeatability 23 Field and Laboratory Experiments Hiding Behavior (Field) 25 Activity (Field) 26 Hiding Behavior and Activity (Laboratory) Body Color 28 Statistical Analysis 30 Results Parasite Infection and Multi-trait Modification Body Size 33 Hiding Behavior 33 Activity 34 Consistency and Repeatability of Behavior 34 6 Body Color 35 Multi-Trait Correlations 36 Parasite Characteristics and Multi-Trait Expression 37 Discussion Modification of Focal Traits: Hiding Behavior, Activity, Body Color 38 Correlations among Focal Traits and Disruptions in the Correlations 43 Candidate Proximate Mechanisms 45 Correlations between Parasite Characteristics (Intensity and Volume) and Modification of Focal Traits 46 Conclusions 47 Limitations of the Approach 48 REFERENCES 50 7 TABLES TABLE PAGE Table 1: Modification of behavioral and physiological traits of isopods infected by cystacanth- stage Acanthocephalus dirus 61 Table 2: Modification of behavioral and physiological traits of isopods infected by cystacanth- stage Acanthocephalus species in various countries 63 Table 3: Traits of the host, infection status of the host, and location of the trials 65 Table 4: Estimates of consistency and repeatability for each behavior measured in the field and the laboratory 67 Table 5: Partial correlation coefficients between traits for infected and uninfected male and female isopods in the field and laboratory 69 Table 6: Spearman correlation coefficients examining the relationships among traits of the host (field measures) and parasite characteristics 71 Table 7: Host sex, host body size, and parasite characteristics 73 8 FIGURES FIGURE PAGE Figure 1: Locality and depiction of study site 75 Figure 2: Experimental arenas used for behavioral trials 77 Figure 3: An example of a round experimental arena used for the analysis of activity 79 Figure 4: World Color Survey stimulus array used for color analysis 81 Figure 5: An example of a captured image of an isopod that was used for body color analysis with ImageJ 83 Figure 6: Body sizes of infected and uninfected male and female isopods 85 Figure 7: Captured images of isopods for body color analysis 87 Figure 8: Correlation coefficients between traits for infected and uninfected male and female isopods in the field 89 Figure 9: Correlation coefficients between traits for infected and uninfected male and female isopods in the field 91 9 INTRODUCTION A parasite is any organism that lives on or in a host in order to complete its development and reproduction (Moore 2002). Parasites are commonly found in multiple taxa and systems worldwide. As a consequence, most organisms will be infected by at least one parasite within their lifetime. However, parasite infection does not necessarily result in the death of a host. In some cases, parasites may modify the behavioral and physiological traits of one host (intermediate host) to increase
Recommended publications
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Acanthocephala: Rhadinorhynchidae) from the Red Porgy Pagrus Pagrus (Teleostei: Sparidae) of the Red Sea, Egypt: a Morphological Study
    Acta Parasitologica Globalis 9 (3): 133-140 2018 ISSN 2079-2018 © IDOSI Publications, 2018 DOI: 10.5829/idosi.apg.2018.133.140 Serrasentis Sagittifer Linton, 1889 (Acanthocephala: Rhadinorhynchidae) from the Red Porgy Pagrus pagrus (Teleostei: Sparidae) of the Red Sea, Egypt: A Morphological Study 11Nahed Saed, Mahrashan Abdel-Gawad, 2Sahar El-Ganainy, 21Manal Ahmed, Kareem Morsy and 3Asmaa Adel 1Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt 2Zoology Department, Faculty of Science, Minia University, Minya, Egypt 3Zoology Department, Faculty of Science, South Valley University, Qena, Egypt Abstract: In the present study, an acanthocephalan parasite was recovered from the intestine of the red porgy Pagrus pagrus (Sparidae) captured from water locations along the Red Sea at Hurghada coasts, Egypt. The parasite was observed attached to the wall of the host intestine by an armed proboscis equipped by recurved hooks. 14 out of 40 fish specimens (35.0%) were found to be infected during winter season only. The mean intensity ranged from 4-10 parasites/infected fish. The recovered worms were creamy white, elongated with narrow posterior end. Light and scanning electron microscopy showed that the parasite has distinctive rows of spines (combs) on the ventral surface. Body was 3.55±0.02 (3.33-3.58) mm long. Width at the base of probocis was 0.10±0.02 (0.08-0.12) mm. Proboscis club-shaped with a broad anterior end, euipped by longitudinal rows of hooks, each with 15-19 of curved hooks. Neck smooth, the double-walled receptacle was attached to the proboscis wall. Trunk was spinose anteriorly, spines arranged in 7-10 collar rows, each was equipped with 15-18 spines.
    [Show full text]
  • Luth Wfu 0248D 10922.Pdf
    SCALE-DEPENDENT VARIATION IN MOLECULAR AND ECOLOGICAL PATTERNS OF INFECTION FOR ENDOHELMINTHS FROM CENTRARCHID FISHES BY KYLE E. LUTH A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADAUTE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2016 Winston-Salem, North Carolina Approved By: Gerald W. Esch, Ph.D., Advisor Michael V. K. Sukhdeo, Ph.D., Chair T. Michael Anderson, Ph.D. Herman E. Eure, Ph.D. Erik C. Johnson, Ph.D. Clifford W. Zeyl, Ph.D. ACKNOWLEDGEMENTS First and foremost, I would like to thank my PI, Dr. Gerald Esch, for all of the insight, all of the discussions, all of the critiques (not criticisms) of my works, and for the rides to campus when the North Carolina weather decided to drop rain on my stubborn head. The numerous lively debates, exchanges of ideas, voicing of opinions (whether solicited or not), and unerring support, even in the face of my somewhat atypical balance of service work and dissertation work, will not soon be forgotten. I would also like to acknowledge and thank the former Master, and now Doctor, Michael Zimmermann; friend, lab mate, and collecting trip shotgun rider extraordinaire. Although his need of SPF 100 sunscreen often put our collecting trips over budget, I could not have asked for a more enjoyable, easy-going, and hard-working person to spend nearly 2 months and 25,000 miles of fishing filled days and raccoon, gnat, and entrail-filled nights. You are a welcome camping guest any time, especially if you do as good of a job attracting scorpions and ants to yourself (and away from me) as you did on our trips.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Seasonal Changes in Host Phenotype Manipulation by an Acanthocephalan: Time to Be Transmitted?
    219 Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted? D. P. BENESH1*, T. HASU2,O.SEPPA¨ LA¨ 3 and E. T. VALTONEN2 1 Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plo¨n, Germany 2 Department of Biological and Environmental Science, POB 35, FI-40014 University of Jyva¨skyla¨, Finland 3 EAWAG, Swiss Federal Institute of Aquatic Science and Technology, and ETH-Zu¨rich, Institute of Integrative Biology (IBZ), U¨ berlandstrasse 133, PO Box 611, CH-8600, Du¨bendorf, Switzerland (Received 23 July 2008; revised 25 September and 7 October 2008; accepted 7 October 2008; first published online 18 December 2008) SUMMARY Many complex life cycle parasites exhibit seasonal transmission between hosts. Expression of parasite traits related to transmission, such as the manipulation of host phenotype, may peak in seasons when transmission is optimal. The acanthocephalan Acanthocephalus lucii is primarily transmitted to its fish definitive host in spring. We assessed whether the parasitic alteration of 2 traits (hiding behaviour and coloration) in the isopod intermediate host was more pronounced at this time of year. Refuge use by infected isopods was lower, relative to uninfected isopods, in spring than in summer or fall. Infected isopods had darker abdomens than uninfected isopods, but this difference did not vary between seasons. The level of host alteration was unaffected by exposing isopods to different light and temperature regimes. In a group of infected isopods kept at 4 xC, refuge use decreased from November to May, indicating that reduced hiding in spring develops during winter.
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Anxiété Et Manipulation Parasitaire Chez Un Invertébré Aquatique : Approches Évolutive Et Mécanistique Marion Fayard
    Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique Marion Fayard To cite this version: Marion Fayard. Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique. Biodiversité et Ecologie. Université Bourgogne Franche-Comté, 2020. Français. NNT : 2020UBFCI006. tel-02940949v1 HAL Id: tel-02940949 https://tel.archives-ouvertes.fr/tel-02940949v1 Submitted on 16 Sep 2020 (v1), last revised 17 Sep 2020 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE PREPAREE A L’UNITE MIXTE DE RECHERCHE CNRS 6282 BIOGEOSCIENCES Ecole doctorale n°554 Environnement, Santé Doctorat des Sciences de la Vie Spécialité Ecologie Evolutive Par Fayard Marion _______________________________________________________________________________________ ANXIETE ET MANIPULATION PARASITAIRE CHEZ UN INVERTEBRE AQUATIQUE : APPROCHES EVOLUTIVE ET MECANISTIQUE Thèse présentée et soutenue à Dijon, le 28 Août 2020 Composition
    [Show full text]
  • 3. Eriyusni Upload
    Aceh Journal of Animal Science (2019) 4(2): 61-69 DOI: 10.13170/ajas.4.2.14129 Printed ISSN 2502-9568 Electronic ISSN 2622-8734 SHORT COMMUNICATION Endoparasite worms infestation on Skipjack tuna Katsuwonus pelamis from Sibolga waters, Indonesia Eri Yusni*, Raihan Uliya Faculty of Agriculture, University of North Sumatera, Medan, Indonesia. *Corresponding author’s email: [email protected] Received: 24 July 2019 Accepted: 11 August 2019 ABSTRACT Skipjack tuna Katsuwonus pelamis is one of the commercial species of fishes in Indonesia frequently caught by fishermen in Sibolga waters, North Sumatra Province. There is, however, presently no study conducted on the endoparasites infestation in these fishes. Therefore, the objectives of the present study were to identify endoparasitic worms and examine the intensity level in skipjack tuna K. pelamis from Sibolga waters. Sampling was conducted in Debora Private Fishing Port, Sibolga from 4th to 18th June 2019 and a total of 20 fish samples with weight ranged between 740 g and 1.200 g and length from 37.2 cm to 41.4 cm were analyzed in the study. The identification of the worm was conducted in the laboratory using a stereo microscope. The results showed seven species or genera of worms were found in the intestine and stomach of the fish with varying level of intensity and incidence. For example, Echinorhynchus sp. was found with 100% intestinal and 10% stomach incidences at a total intensity of 8.5; Acanthocephalus sp. with 25% intestinal incidence and 1.6 intensity, Rhadinorhynchus sp. with 25% intestinal and 5% stomach incidences, and 1.5 intensity; Leptorhynchoides sp.
    [Show full text]
  • Chapter 9 in Biology of the Acanthocephala]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1985 Epizootiology: [Chapter 9 in Biology of the Acanthocephala] Brent B. Nickol University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Nickol, Brent B., "Epizootiology: [Chapter 9 in Biology of the Acanthocephala]" (1985). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 505. https://digitalcommons.unl.edu/parasitologyfacpubs/505 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Nickol in Biology of the Acanthocephala (ed. by Crompton & Nickol) Copyright 1985, Cambridge University Press. Used by permission. 9 Epizootiology Brent B. Nickol 9.1 Introduction In practice, epizootiology deals with how parasites spread through host populations, how rapidly the spread occurs and whether or not epizootics result. Prevalence, incidence, factors that permit establishment ofinfection, host response to infection, parasite fecundity and methods of transfer are, therefore, aspects of epizootiology. Indeed, most aspects of a parasite could be related in sorne way to epizootiology, but many ofthese topics are best considered in other contexts. General patterns of transmission, adaptations that facilitate transmission, establishment of infection and occurrence of epizootics are discussed in this chapter. When life cycles are unknown, little progress can be made in under­ standing the epizootiological aspects ofany group ofparasites.
    [Show full text]
  • (Acanthocephala). David Joseph Demont Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1978 The Life Cycle and Ecology of Octospiniferoides Chandleri Bullock 1957 (Acanthocephala). David Joseph Demont Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Demont, David Joseph, "The Life Cycle and Ecology of Octospiniferoides Chandleri Bullock 1957 (Acanthocephala)." (1978). LSU Historical Dissertations and Theses. 3276. https://digitalcommons.lsu.edu/gradschool_disstheses/3276 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • Development and Life Cycles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1985 Development and life cycles Gerald D. Schmidt University of Northern Colorado Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Schmidt, Gerald D., "Development and life cycles" (1985). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 694. https://digitalcommons.unl.edu/parasitologyfacpubs/694 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Schmidt in Biology of the Acanthocephala (ed. by Crompton & Nickol) Copyright 1985, Cambridge University Press. Used by permission. 8 Development and life cycles Gerald D. Schmidt 8.1 Introduction Embryological development and biology of the Acanthocephala occupied the attention of several early investigators. Most notable among these were Leuckart (1862), Schneider (1871), Hamann (1891 a) and Kaiser (1893). These works and others, including his own observations, were summarized by Meyer (1933) in the monograph celebrated by the present volume. For this reason findings of these early researchers are not discussed further, except to say that it would be difficult to find more elegant, detailed and correct studies of acanthocephalan ontogeny than those published by these pioneers.
    [Show full text]
  • UNIVERSITY of WISCONSIN-LA CROSSE Graduate Studies FISH
    UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies FISH HEALTH ASSESMENTS OF GREAT LAKES COREGONIDS A Manuscript Style Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology Christopher M. Olds College of Science and Health Aquatic Science Concentration May, 2012 FISH HEALTH ASSESSMENTS OF GREAT LAKES COREGONIDS By Christopher M. Olds We recommend acceptance of this thesis in partial fulfillment of the candidate's requirements for the degree of Master of Science in Biology (Aquatic Sciences Concentration) The candidate has completed the oral defense of the thesis. A- r-1;)_ Date (-f--ZVIZ... Gregory Sanclt n , Ph.D. Date Thesis Committee Co-Chairperson .x IJ(..;{. 6/2 Roger H ro, P .D. I ate Thesis Committee Member 'd.--+ -J.o 12 Date Thesis Committee Member Thesis accepted 2 -"1~ -.?a/~ Robert H. Hoar, Ph.D. Date Associate Vice Chancellor for Academic Affairs ABSTRACT Olds, C. M. Fish health assessments of Great Lakes Coregonids. MS in Biology, May 2012, 70pp. (B. Lasee and G. Sandland) Health of Great Lakes coregonids is continuously monitored for the spread of pathogens because of their economic importance. An infectious disease and parasite survey was conducted to build on previous data collected in the past but to also examine other factors that may affect distribution of pathogens in Great Lakes lake whitefish, round whitefish, · and bloater populations. Coregonids (n=394) were collected from 3-4 regions in Lake Michigan, Lake Huron and Lake Superior and screened for target pathogens according to the procedures outlined in the AFS Blue Book Fish Health Section Inspection Manual.
    [Show full text]