Studies on the Molluscan Paleomacrofauna of the Texas Paleogene

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Molluscan Paleomacrofauna of the Texas Paleogene STUDIES ON THE MOLLUSCAN PALEOMACROFAUNA OF THE TEXAS PALEOGENE 384. THE MOLLUSC AN MACROFAUNA OF T HE SEGUIN FOR M A T ION (UPPER PALEOCENE ) IN CEN T RAL TEXAS 385. ADDI T IONS T O T HE MOLLUSCAN MACROFAUNA OF T HE REKLAW FOR M A T ION (EOCENE : LOWER CLAIBORNIAN ) AND TWO NEW TAXA FRO M T HE MIDDLE CLAIBORNIAN IN TEXAS 386. NEW EOCENE MOLLUSCA FRO M T HE COLLEC T IONS OF T HE TEXAS NA T URAL SCIENCE CEN T ER Christopher L. Garvie Bulletins of American Paleontology Number 384-386, March 2013 BULLETINS OF AMERICAN PALEONTOLOGY Established 1895 Paula M. Mikkelsen Warren D. Allmon Editor-in-Chief Director Editorial Board Jason S. Anderson, University of Calgary Kenneth Angielczyk, Field Museum of Natural History Rituparna Bose, City University of New York Carlton Brett, University of Cincinnati Ann F. Budd, University of Iowa Peter Dodson, University of Pennsylvania Daniel Fisher, University of Michigan Dana H. Geary, University of Wisconsin-Madison Peter J. Harries, University of South Florida John Pojeta, United States Geological Survey Carrie E. Schweitzer, Kent State University Geerat J. Vermeij, University of California at Davis Emily H. Vokes, Tulane University (Emerita) William Zinsmeister, Purdue University Bulletins of American Paleontology is published semiannually by Paleontological Re- search Institution. For a list of titles and to order back issues online, go to http://museum- oftheearth.org. Numbers 1-94 (1895-1941) of Bulletins of American Paleontology are available from Periodicals Service Company, Germantown, New York, http://www.pe- riodicals.com. Subscriptions to Bulletins of American Paleontology are available in hard-copy and electronic formats to individuals or institutions; non-US addressees pay an additional fee for postage and handling. For current rates, additional information or to place an order, see http://museumoftheearth.org or contact: Publications Office Paleontological Research Institution 1259 Trumansburg Road Ithaca, New York 14850-1313 Tel. (607) 273-6623, ext. 20 Fax (607) 273-6620 [email protected] This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). STUDIES ON THE MOLLUSCAN PALEOMACROFAUNA OF THE TEXAS PALEOGENE 384. THE MOLLUSC AN MACROFAUNA OF T HE SEGUIN FOR M A T ION (UPPER PALEOCENE ) IN CEN T RAL TEXAS 385. ADDI T IONS T O T HE MOLLUSCAN MACROFAUNA OF T HE REKLAW FOR M A T ION (EOCENE : LOWER CLAIBORNIAN ) AND TWO NEW TAXA FRO M T HE MIDDLE CLAIBORNIAN IN TEXAS 386. NEW EOCENE MOLLUSCA FRO M T HE COLLEC T IONS OF T HE TEXAS NA T URAL SCIENCE CEN T ER Christopher L. Garvie Bulletins of American Paleontology Numbers 384-386, March 2013 ISSN 0007-5779 ISBN 978-0-87710-500-8 Library of Congress Catalog Card Number 2013934944 © 2013, Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York 14850, U. S. A. THE MOLLUSCAN MACROFAUNA OF THE SEGUIN FORMATION (UPPER PALEOCENE) IN CENTRAL TEXAS Christopher L. Garvie Non-vertebrate Paleontology, Texas Natural Science Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, email [email protected]. ABstract Investigation of known Seguin localities led to the discovery of an overlooked diverse and abundant marine fauna in Solomon's Branch, a stream in Bastrop County, Texas. The fauna, a transported assemblage from a marine littoral environment, encompasses a mix of specimen types from large wave-worn individuals to the smallest unworn ornamented species. Following the discovery of this fauna, further field work was undertak- en and other Seguin localities with different depositional environments were found and collections made from those sites. Finally, a further suite of specimens was examined within the Texas Natural Science Center, some from localities no longer in existence or now lost. The environment is transitional in character from the deeper water Midway to the nonmarine environment of the chiefly terrestrial Texas Wilcox deposits, and repre- sents the last major marine transgression in this area prior to the Eocene. The fauna is a mix of that derived from early Paleocene and Cretaceous taxa as well as elements that appear to originate from western Africa, the Tethyan region, and the western coast of America. The inferred species' habitat includes a near-shore open marine element, a probable lagoonal component, and brackish water elements. From the 115 molluscan taxa recognized, six have not been recognized to date in sediments later than the Cretaceous, and 30 represent from the Eocene or later records. The following new gastropod genera and subgenera are proposed: Texaficus, Crassauris, Latirus (Levarlatirus), Praesurcula, and Apiotoma (Lavarotoma). The following new species and subspecies are described: Bivalvia:Calorhadia diminutia, Adrana seguinensis, Bornia solomonis, Mactra (Eomactra) piscinasina, Arcopagia (Arcopagia) solomonis, A. (Johnsonella) seguinensis; Gastropoda: Turritella mortoni crassa, Tylotrochus extremus, Teinostoma (Idioraphie) seguinensis, Cochliolepis (Tylaxis) palaeocenica, Solariorbis velarum, Natica (Carinacca) seguinensis, Polinices (Euspira) perspecta texana, Texmelanatria contracta, T. brevis, Loxotrema texana, Pseudoliva globosa, Cantharus seguinensis, Colwellia humerosa, C. nodulina, C. nodulina meta, Tritiaria? seguinensis, Metula reticulata, Latirus (Levarlatirus) undus, L. (Levarlatirus) textilis, Strepsidura cancellata, Texaficus obesus, Levifusus pagoda seguinensis, L. actuocarinata, Fulgurofusus grande, Palaeorhaphis palaeocenica, Volutocorbis olssoni gracilis, Eoancilla hordea, Caveola ostium, Clinuropsis yanceyi, C. tuberculata, Praesurcula palaeocenica, Coronia vallare, Eopleurotoma molineuxae, Tropisurcula? (Eodrillia) cingula, Apiotoma (Lavarotoma) alva, Crassauris seguinensis, Pyramidella (Syrnola) bilineata, Turbonilla (Chemnitzia) obliqueata, Odostoma (Doliella) deprimere, Cylichna (Cylichnopsis) bicarinata, Mnestia ovata, Retusa (Cylichnina) bastropensis; Cephalopoda: Cimomia contraria, Angulithes? palaeocenica. Other changes in taxonomic assignment include: the genus Lisbonia is moved from the Nassariidae to the Buccinidae; the genus Palaeorhaphis is moved from the Mitridae to the Fasciolariidae; the genus Fictoacteon is made a subgenus of Eoacteon; Baluchicardia wilcoxensis replaces Venericardia wilcoxensis; Cochlodesma howei replaces Periploma howei; Pachymelania penrosei replaces Cerithium penrosei; Lisbonia pauper replaces Pseudoliva ostrarupis pauper; Pleuroploca plummeri replaces Fasciolaria? plummeri; Fulgurofusus perobliquus replaces aff. Falsifusus perobliquus; Eoancilla mediavia replaces Ancilla mediavia; Apiotoma (Lavarotoma) capex replaces "Pleurotoma" capex; the genus Ancillarina should be used in place of Ancilla for several U. S. and European Eocene species; the genus Coronia is discussed and several species of that genus in the U. S. Gulf Coast are reassigned to Gemmula; the genus Protosurcula is moved from the Borsoniinae to the Cochlespirinae. Neotypes are designated for Turritella polysticha and Pseudoliva ostrarupis. INTRODUCTION cate some localities described by Gardner (1935), the author This monograph is the continuation of a project to investigate visited Solomon's Branch in Bastrop County where large con- the central Texas Tertiary molluscan faunas in finer tempo- cretions, up to 2 m in diameter, were found in the creek bed, ral resolution than is presently known. The Middle Eocene and in situ embedded in the creek-side walls. Many of these Claibornian Texas faunas are well known from the results of contained a layer of densly concentrated fossil shells, some numerous studies, particularly those of Palmer (1937), Harris very large. Even a cursory examination indicated the existence (1937), Stenzel (1943), Stenzel & Turner (1943), Stenzel et of many new forms. The discovery of a fauna from a nearshore al. (1957), and Garvie (1996); for the underlying Midway litoral environment is of particular interest, because there ap- Group (Paleocene), Harris (1895a, 1896) and Gardner (1935) pears to be no other known from a similar environment in the should be mentioned. During exploratory field work to relo- Gulf Coast Paleogene. 2 Bulletins of American Paleontology, No. 384 HISTORY topmost fossiliferous marine unit of the Paleocene in Texas, Harris (1895a, 1897a) originally described fossils coming from however, Beckman & Turner (1943) noted a marine lentil 61 Smiley's Bluff, from a well near Elgin, and doubtfully from m above the top of the Caldwell Knob Member in Milam Rocky Cedar Creek, near Elmo, Kaufman County, which he County, and recent work by Yancey (pers. comm., 2011) has regarded as being in the Midway Stage. The first evidence of established that marine mollusks and shark teeth occur in marine deposits of lower Wilcox age west of the Sabine River the upper part of the Calvert Bluff Formation indicating that was reported by Trowbridge (1923) and Gardner (1923), marine strata do occur well up into the Wilcox Group. The and was expanded on by Gardner (1924). F. B. Plummer in Seguin Formation is recognized as a surface outcrop up to 1.5 Sellards et al. (1933: 574) defined the Seguin Formation to km wide, extending from the Trinity River to the Rio Grande encompass all marine strata between the compact silty clays of (F. B. Plummer in Sellards et al., 1933), and on into Mexico the Midway Group and the base of the nonmarine Rockdale (Perrilliat & Vega, 2003). In the subsurface, the thickness has (now Wilcox) Formation and further divided it into two been measured as between
Recommended publications
  • Shell Classification – Using Family Plates
    Shell Classification USING FAMILY PLATES YEAR SEVEN STUDENTS Introduction In the following activity you and your class can use the same techniques as Queensland Museum The Queensland Museum Network has about scientists to classify organisms. 2.5 million biological specimens, and these items form the Biodiversity collections. Most specimens are from Activity: Identifying Queensland shells by family. Queensland’s terrestrial and marine provinces, but These 20 plates show common Queensland shells some are from adjacent Indo-Pacific regions. A smaller from 38 different families, and can be used for a range number of exotic species have also been acquired for of activities both in and outside the classroom. comparative purposes. The collection steadily grows Possible uses of this resource include: as our inventory of the region’s natural resources becomes more comprehensive. • students finding shells and identifying what family they belong to This collection helps scientists: • students determining what features shells in each • identify and name species family share • understand biodiversity in Australia and around • students comparing families to see how they differ. the world All shells shown on the following plates are from the • study evolution, connectivity and dispersal Queensland Museum Biodiversity Collection. throughout the Indo-Pacific • keep track of invasive and exotic species. Many of the scientists who work at the Museum specialise in taxonomy, the science of describing and naming species. In fact, Queensland Museum scientists
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Gastropoda: Turbinellidae)
    Ruthenica, 200 I, II (2): 81-136. ©Ruthenica, 2001 A revision of the Recent species of Exilia, formerly Benthovoluta (Gastropoda: Turbinellidae) I 2 3 Yuri I. KANTOR , Philippe BOUCHET , Anton OLEINIK 1 A.N. Severtzov Institute of Problems of Evolution of the Russian Academy of Sciences, Leninski prosp. 33, Moscow 117071, RUSSIA; 2 Museum national d'Histoire naturelle, 55, Rue BufJon, 75005 Paris, FRANCE; 3 Department of Geography & Geology Florida Atlantic University, 777 Glades Rd, Physical Sciences Building, PS 336, Boca Raton FL 33431-0991, USA ABSTRACT. The range of shell characters (overall established among some of these nominal taxa. shape, sculpture, columellar plaits, protoconchs) Schematically, Exilia Conrad, 1860, Palaeorhaphis exhibited by fossil and Recent species placed in Stewart, 1927, and Graphidula Stephenson, 1941 Exilia Conrad, 1860, Mitraefusus Bellardi, 1873, are currently used as valid genera for Late Creta­ Mesorhytis Meek, 1876, Surculina Dall, 1908, Phe­ ceous to Neogene fossils; and Surculina Dall, 1908 nacoptygma Dall, 1918, Palaeorhaphis Stewart, 1927, and Benthovoluta Kuroda et Habe, 1950 are cur­ Zexilia Finlay, 1926, Graphidula Stephenson, 1941, rently used as valid genera for Recent deep-water Benthovoluta Kuroda et Habe, 1950, and Chatha­ species from middle to low latitudes. Each of these midia Dell, 1956 and the anatomy of the Recent nominal taxa has had a complex history of family species precludes separation of more than one genus. allocation, which has not facilitated comparisons Consequently all of these nominal genera are sy­ on a broader scale. Exilia and Benthovoluta are the nonymised with Exilia, with a stratigraphical range genera best known in the fossil and Recent litera­ from Late Cretaceous to Recent.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Bulletin of the Geological Society of Denmark, Vol. 27/03-04, Pp. 105-116
    Bivalves from the white chalk (Maastrichtian) of Denmark, II: Arcoida CLAUS HEINBERG Heinberg, C: Bivalves from the white chalk (Maastrichtian) of Denmark, II: Arcoida. Bull. geol. Soc. DGF Denmark, vol. 27, pp. 105-116, Copenhagen, March 23rd, 1979. Eight new species of Arcoida (Bivalvia) are described, the genus belonging to the families Limopsidae, Arcidae, Noetidae and Parallelodontidae. Two species (Barbatia) are redescribed and revised. Pseudo- grammatodon Aikell, 1930, is reinstated. Claus Heinberg, Institut for historisk Geologi og Palæontologi, Øster Voldgade 10, DK-1350 København K, Denmark. July 4th, 1978. The present paper is the continuation of a pro­ Type locality: Stevns Klint, north of Kulsti. ceeding one on Limopsidae (Heinberg 1976). Type stratum: The top hardground in the Upper The first paper contained information on biome- Maarstrichtian white chalk. tric parameters, collecting procedures, localities and lithostratigraphic position of the hardground Diagnosis: An equilateral, smooth shelled Li­ which has yielded the material. mopsis, flat lenticular in shape, subcircular in outline; umbo small; shell margins moulding each Systematic descriptions other, the right margin having a commarginal ridge which fits into the commarginal furrow of Family: Limposidae Dall, 1895 the left margin; equal sized adductor scars with Genus: Limopsis Sassi, 1827 myophoric flanges; area circumscribed by pallial Type species: Area aurita Brocchi, 1814 line bearing radiating striae. Limopsis maggae n. sp. Description: The shell is flat lenticular having a Fig. 1 subcircular outline. It is nearly equilateral, the Holotype: MGUH 14400. Height 5.4 mm, length anterodorsal shell margin being straighter than ca 6.5 mm the postero-dorsal one. The orthogyrate umbo is Fig.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • 24 Relationships Within the Ellobiidae
    Origin atld evoltctiorzai-y radiatiotz of the Mollrisca (ed. J. Taylor) pp. 285-294, Oxford University Press. O The Malacological Sociery of London 1996 R. Clarke. 24 paleozoic .ine sna~ls. RELATIONSHIPS WITHIN THE ELLOBIIDAE ANTONIO M. DE FRIAS MARTINS Departamento de Biologia, Universidade dos Aqores, P-9502 Porzta Delgada, S6o Miguel, Agores, Portugal ssification , MusCum r Curie. INTRODUCTION complex, and an assessment is made of its relevance in :eny and phylogenetic relationships. 'ulmonata: The Ellobiidae are a group of primitive pulmonate gastropods, Although not treated in this paper, conchological features (apertural dentition, inner whorl resorption and protoconch) . in press. predominantly tropical. Mostly halophilic, they live above the 28s rRNA high-tide mark on mangrove regions, salt-marshes and rolled- and radular morphology were studied also and reference to ~t limpets stone shores. One subfamily, the Carychiinae, is terrestrial, them will be made in the Discussion. inhabiting the forest leaf-litter on mountains throughout ago1 from the world. MATERIAL AND METHODS 'finities of The Ellobiidae were elevated to family rank by Lamarck (1809) under the vernacular name "Les AuriculacCes", The anatomy of 35 species representing 19 genera was ~Ctiquedu properly latinized to Auriculidae by Gray (1840). Odhner studied (Table 24.1). )llusques). (1925), in a revision of the systematics of the family, preferred For the most part the animals were immersed directly in sciences, H. and A. Adarns' name Ellobiidae (in Pfeiffer, 1854). which 70% ethanol. Some were relaxed overnight in isotonic MgCl, ochemical has been in general use since that time. and then preserved in 70% ethanol. A reduced number of Grouping of the increasingly growing number of genera in specimens of most species was fixed in Bouin's, serially Gebriider the family was based mostly on conchological characters.
    [Show full text]
  • Catalog of Recent and Fossil Molluscan Types in the Santa Barbara Museum of Natural History. I. Caudofoveata
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256082238 Catalog of Recent and Fossil Molluscan Types in the Santa Barbara Museum of Natural History. I. Caudofoveata... Article in Veliger -Berkeley- · January 1990 CITATIONS READS 4 108 3 authors: Paul Valentich-Scott F.G. Hochberg Santa Barbara Museum of Natural History Santa Barbara Museum of Natural History 66 PUBLICATIONS 537 CITATIONS 48 PUBLICATIONS 755 CITATIONS SEE PROFILE SEE PROFILE Barry Roth 176 PUBLICATIONS 1,113 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Marine Bivalve Mollusks of Western South America View project Description of new polygyrid land snails from Oregon and California View project Available from: Paul Valentich-Scott Retrieved on: 21 November 2016 THE VELIGER © CMS, Inc., 1990 The Veliger 33(Suppl. 1):1-27 (January 2, 1990) Catalog of Recent and Fossil Molluscan Types in the Santa Barbara Museum of Natural History. I. Caudofoveata, Polyplacophora, Bivalvia, Scaphopoda, and Cephalopoda by PAUL H. SCOTT, F. G. HOCHBERG, AND BARRY ROTH Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, California 93105, USA Abstract. The non-gastropod molluscan types currently housed in the Department of Invertebrate Zoology at the Santa Barbara Museum are listed. Three hundred seventeen type lots are reported, representing 211 recent species and 9 species originally described as fossils. Each type lot recorded includes a complete citation, type locality, and the current type status of the specimens. An author index and alphabetic index are provided.
    [Show full text]