FISH Handbook for Biological Wastewater Treatment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Novel Type of N-Acetylglutamate Synthase Is Involved in the First Step
Petri et al. BMC Genomics 2013, 14:713 http://www.biomedcentral.com/1471-2164/14/713 RESEARCH ARTICLE Open Access A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum Kathrin Petri, Frederik Walter, Marcus Persicke, Christian Rückert and Jörn Kalinowski* Abstract Background: Arginine biosynthesis in Corynebacterium glutamicum consists of eight enzymatic steps, starting with acetylation of glutamate, catalysed by N-acetylglutamate synthase (NAGS). There are different kinds of known NAGSs, for example, “classical” ArgA, bifunctional ArgJ, ArgO, and S-NAGS. However, since C. glutamicum possesses a monofunctional ArgJ, which catalyses only the fifth step of the arginine biosynthesis pathway, glutamate must be acetylated by an as of yet unknown NAGS gene. Results: Arginine biosynthesis was investigated by metabolome profiling using defined gene deletion mutants that were expected to accumulate corresponding intracellular metabolites. HPLC-ESI-qTOF analyses gave detailed insights into arginine metabolism by detecting six out of seven intermediates of arginine biosynthesis. Accumulation of N-acetylglutamate in all mutants was a further confirmation of the unknown NAGS activity. To elucidate the identity of this gene, a genomic library of C. glutamicum was created and used to complement an Escherichia coli ΔargA mutant. The plasmid identified, which allowed functional complementation, contained part of gene cg3035, which contains an acetyltransferase domain in its amino acid sequence. Deletion of cg3035 in the C. glutamicum genome led to a partial auxotrophy for arginine. Heterologous overexpression of the entire cg3035 gene verified its ability to complement the E. coli ΔargA mutant in vivo and homologous overexpression led to a significantly higher intracellular N-acetylglutamate pool. -
Fotografía De Un Espeleotema De La Cueva De Castañar De Ibor (Extremadura)
Todos los derechos reservados. La totalidad o una parte de este libro no puede ser reproducida o utilizada en cualquier forma o medio, electrónico o mecánico, incluyendo copias o grabaciones o por cualquier medio de almacenar información y sistema de recuperación, sin el previo permiso por escrito del IRNAS‐CSIC. © Estefanía Porca Belío Diseño y maquetación: Estefanía Porca Belío. Portada: Fotografía de un espeleotema de la Cueva de Castañar de Ibor (Extremadura). Diseño de Miguel Ángel Rogerio Candelera y Estefanía Porca Belío. Editado por: Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS‐CSIC, España, Noviembre 2011 I.S.B.N: 978‐84‐695‐0670‐7 Impreso en España‐ Printed in Spain Aerobiología: mecanismos de dispersión de los microorganismos en cuevas turísticas. Memoria que presenta la Licenciada en Biología Dña. ESTEFANÍA PORCA BELÍO para optar al título de Doctor Europeo en Biología por la Universidad de Sevilla. Sevilla 2011 Memoria que presenta la Licenciada en Biología Dña. ESTEFANÍA PORCA BELÍO para optar al título de Doctor Europeo en Biología por la Universidad de Sevilla. Aerobiología: mecanismos de dispersión de los microorganismos en cuevas turísticas. Visado en Sevilla, a 11 de Noviembre de 2011 LOS DIRECTORES Prof. Dr. D. CESÁREO SÁIZ JIMÉNEZ Dra. Dña. VALME JURADO Profesor de Investigación en el Instituto de Doctora contratada en el Instituto Recursos Naturales y Agrobiología de Sevilla de Recursos Naturales y Agrobiología (IRNAS‐CSIC) de Sevilla (IRNAS‐CSIC). LA TUTORA Dra. Dña. CAROLINA SOUSA MARTÍN Profesora Titular de la Universidad de Sevilla Departamento de Microbiología y Parasitología, Facultad de Farmacia. PROF. DR. D. CESÁREO SÁIZ JIMÉNEZ, PROFESOR DE INVESTIGACIÓN DEL INSTITUTO DE RECURSOS NATURALES Y AGROBIOLOGÍA DE SEVILLA DEL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (IRNAS‐CSIC) Y DRA. -
Contamination in Daphnia Culture
Contamination in Daphnia Culture Samples: A5, B5, C6, F2, F6, G4 Fig. 1 Phylogenetic analysis (PhyML v.3.0.1) of the 6 samples. MSA: 10 20 30 40 50 60 70 80 90 100 ----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----| Con AGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGTATGCCTTACACATGCAAGTCGAACGGTAGAGGgGCAACCCTtGAG--n-AGTGGCGAACGGGTG A5 .................................................................................----............... F6 .................................................................................----...............Primer fD1 C6 .................................................................................----............... G4 ....................................................................A....T...C...----............... F2 .....................AC............C.G..T.A..................------------...CGC.AGGGG......AG....... B5 ....................GG.............CG...T.A.G................--------...GT.T.C.GACTGT.......C....... 110 120 130 140 150 160 170 180 190 200 ----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----| Con AGTAATACATCGnGAACGTGCCCAGTCGTGGGGGATAACGTAGCGAAAGCTACGCTAATACCGCATACGAnnnnnnnnCCTGAGGGTGAAAGCGGGGGAt A5 ............-.........................................................--------...................... F6 ............-.........................................................--------...................... C6 ............-.........................................................--------..................... -
Mississippi River Sphaerotilus Natans Total Maximum Daily Load
This page is blank to facilitate double-sided printing. Mississippi River Sphaerotilus natans Total Maximum Daily Load TABLE OF CONTENTS 1 Summary..................................................................................................................................1 2 Mississippi River, Description and History ......................................................................5 2.1 Mississippi River (IA 01-NEM-0010_4)........................................................................ 6 2.2 The Watershed (IA 01-NEM-0010_4)............................................................................ 8 3 TMDL for Sphaerotilus natans ............................................................................................11 3.1 Problem Identification.................................................................................................. 11 3.1.1 Impaired Beneficial Uses and Applicable Water Quality Standards.................... 11 3.1.1.1 Interpreting Mississippi River Impaired Segment Water Quality Data............ 12 3.1.2 Key Sources of Data ............................................................................................. 12 3.2 TMDL Target................................................................................................................ 13 3.3 Pollution Source Assessment........................................................................................ 13 3.3.1 Identification of Pollution Sources ....................................................................... 13 3.3.1.1 -
DGGE) and PGR Cloning of 16S Rrna Genes
THE UNIVERSITY OF NEW SOUTH thesis/Dissertation Sheet Surname or Family name:LE Rrst ^ I Other narne/s: Abbreviation for degree as given in the University calendar: MSc | ScliooliBiotechnolo^^^^^^ and Biomolecular ScienoBS Faculty: Science Title:Community analysis and physiological characterisation of bacterial isolates from a nitrifying membrane bioreactor Abstract This thesis focuses on the identification of early colonisers on membrane surfaces used in wastewater treatment, as well as the physiological characterisation of bacterial cultures isolated from different micro- environments of a membrane bioreactor (MBR). The bacterial community composition of early biofilms on membrane surfaces under different hydrodynamic conditions (pressurised and non-pressurised) and of the activated sludge in an MBR were examined by culture-independent, molecular-based methods of PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and PGR cloning of 16S rRNA genes. A bench-scale, nitrifying MBR treating artificial waste was employed. The hollow fibre ultrafiltration membrane was made of polypropylene with an average pore diameter of 0.04 \im. Analysis of DGGE profiles of the sessile communities on membrane surfaces revealed that Tetrasphaera elongata species were important colonisers due to their ability to bind to membrane surfaces irrespective of the hydrodynamic context and exposure time. Interactions between isolates from the bioreactor and membrane surfaces were further investigated by characterising the physiological traits important in biofilm initiation and proliferation on membrane surfaces such as motility, auto-aggregation, co-aggregation, hydrophobicity and quorum sensing. Bacterial strains were isolated from floes and supernatant phases of the activated sludge as well as from pressurised membrane surfaces. Microbacterium sp. were prevalent in all culture collections. -
Penaeus Monodon
www.nature.com/scientificreports OPEN Bacterial analysis in the early developmental stages of the black tiger shrimp (Penaeus monodon) Pacharaporn Angthong1,3, Tanaporn Uengwetwanit1,3, Sopacha Arayamethakorn1, Panomkorn Chaitongsakul2, Nitsara Karoonuthaisiri1 & Wanilada Rungrassamee1* Microbial colonization is an essential process in the early life of animal hosts—a crucial phase that could help infuence and determine their health status at the later stages. The establishment of bacterial community in a host has been comprehensively studied in many animal models; however, knowledge on bacterial community associated with the early life stages of Penaeus monodon (the black tiger shrimp) is still limited. Here, we examined the bacterial community structures in four life stages (nauplius, zoea, mysis and postlarva) of two black tiger shrimp families using 16S rRNA amplicon sequencing by a next-generation sequencing. Although the bacterial profles exhibited diferent patterns in each developmental stage, Bacteroidetes, Proteobacteria, Actinobacteria and Planctomycetes were identifed as common bacterial phyla associated with shrimp. Interestingly, the bacterial diversity became relatively stable once shrimp developed to postlarvae (5-day-old and 15-day- old postlarval stages), suggesting an establishment of the bacterial community in matured shrimp. To our knowledge, this is the frst report on bacteria establishment and assembly in early developmental stages of P. monodon. Our fndings showed that the bacterial compositions could be shaped by diferent host developmental stages where the interplay of various host-associated factors, such as physiology, immune status and required diets, could have a strong infuence. Te shrimp aquaculture industry is one of the key sectors to supply food source to the world’s growing pop- ulation. -
The Unseen Majority”: Heterotrophic Bacteria in Freshwater, More Than Just Small and Non-Cultivable
Eawag_07258 Diss. ETH No. 17894 “The unseen majority”: heterotrophic bacteria in freshwater, more than just small and non-cultivable A dissertation submitted to ETH ZÜRICH for the degree of Doctor of Sciences presented by Yingying Wang MPhil, The University of Hong Kong born March 16, 1980 in Tianjin citizen of China accepted on the recommendation of Prof. Dr. Thomas Egli, examiner Dr. Frederik Hammes, co-examiner Prof. Dr. Nico Boon, co-examiner Prof. Dr. Jakob Pernthaler, co-examiner Prof. Dr. Martin Ackermann, co-examiner July, 2008 Acknowledgement I am extremely grateful to Prof. Dr. Thomas Egli for his great supervision, invaluable advice, and providing many academic opportunities for me to widen and enrich my knowledge, vision and experience. I am also full of gratitude to Dr. Frederik Hammes for generously sharing his invaluable research experience, and for numerous inspirational discussions. Their professional and excellent guidance during my doctoral study and academic development are highly appreciated. My special thanks go to Prof. Dr. Nico Boon from Ghent University and Dr. Mohamed Chami from University of Basel, who share a lot of great ideas and give a lot of kind help in our collaboration. Furthermore, I would like to express my sincere thanks to: Hansueli, Thommy, Christoph, Karin, Teresa and Colette for their great technical support. All members in the “Egli group” (Alessandro, Julian, Michael, Frederik, Marius, Karin, Tony, Franzi, Carina, Stefan, Hans Peter, Eva, Margarete, Ines, Teresa, Felix, Beat and Liz) for the very pleasant working atmosphere, and excellent team work. We shared a lot of enjoyable time in the lab, office and outdoors, as well as plenty of Apéros. -
Life in the Cold Biosphere: the Ecology of Psychrophile
Life in the cold biosphere: The ecology of psychrophile communities, genomes, and genes Jeff Shovlowsky Bowman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Jody W. Deming, Chair John A. Baross Virginia E. Armbrust Program Authorized to Offer Degree: School of Oceanography i © Copyright 2014 Jeff Shovlowsky Bowman ii Statement of Work This thesis includes previously published and submitted work (Chapters 2−4, Appendix 1). The concept for Chapter 3 and Appendix 1 came from a proposal by JWD to NSF PLR (0908724). The remaining chapters and appendices were conceived and designed by JSB. JSB performed the analysis and writing for all chapters with guidance and editing from JWD and co- authors as listed in the citation for each chapter (see individual chapters). iii Acknowledgements First and foremost I would like to thank Jody Deming for her patience and guidance through the many ups and downs of this dissertation, and all the opportunities for fieldwork and collaboration. The members of my committee, Drs. John Baross, Ginger Armbrust, Bob Morris, Seelye Martin, Julian Sachs, and Dale Winebrenner provided valuable additional guidance. The fieldwork described in Chapters 2, 3, and 4, and Appendices 1 and 2 would not have been possible without the help of dedicated guides and support staff. In particular I would like to thank Nok Asker and Lewis Brower for giving me a sample of their vast knowledge of sea ice and the polar environment, and the crew of the icebreaker Oden for a safe and fascinating voyage to the North Pole. -
UNIVERSITE DE PERPIGNAN VIA DOMITIA Etude De La Réponse
Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l’école doctorale ED 305 Et de l’unité de recherche UMR 5244 Interactions Hôtes Pathogènes Environnements (IHPE) Discipline : BIOLOGIE Spécialité : Evolution Présentée par Manon Fallet Etude de la réponse environnementale et transgénérationnelle chez l’huitre creuse Crassostrea gigas. Focus sur les mécanismes épigénétiques Soutenue le 12 décembre 2019 devant le jury composé de Mme. Frédérique PITEL, DR2, INRA Toulouse Rapporteur Mme. Christine PAILLARD, DR CNRS, Brest Rapporteur M. Benoit PUJOL, CR CNRS, Perpignan Examinateur Mme. Caroline MONTAGNANI, CR, Ifremer, Montpellier Examinateur M. Guillaume MITTA, PR, UPVD, Perpignan Examinateur Mme. Céline COSSEAU, MCF, UPVD, Perpignan Directeur de thèse M. Christoph GRUNAU, PR, UPVD, Perpignan Co-directeur de thèse M. Bruno PETTON, IR, Ifremer, Brest Invité A Yvonne Geoffray, Remerciements Ça y est, je touche au but et j’achève la rédaction de ce manuscrit de thèse ! Ces trois dernières années ont été intenses, passionnantes, souvent dures, mais toujours enrichissantes ! De nombreuses personnes m’ont accompagné durant ces trois ans. Parfois dans le cadre professionnel, m’aidant ainsi à réaliser les travaux présentés dans ce manuscrit et à me familiariser au monde de la recherche, parfois dans le domaine personnel, m’encourageant et me soutenant au quotidien. Certaines personnes ont également joué sur les deux tableaux. L’écriture de ces remerciements me touche énormément car c’est pour moi le moyen de vous montrer toute ma reconnaissance. Tout d’abord, je souhaite remercier Frédérique Pitel et Christine Paillard. Merci d’avoir accepté d’être les rapporteurs de ma thèse et de prendre le temps d’évaluer mon travail. -
Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)
Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) Eleni Nikouli1, Alexandra Meziti1, Efthimia Antonopoulou2, Eleni Mente1, Konstantinos Ar. Kormas1* 1 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece 2 Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece * Corresponding author; Tel.: +30-242-109-3082, Fax: +30-242109-3157, E-mail: [email protected], [email protected] Supplementary material 1 Table S1. Body weight of the Sparus aurata and Dicentrarchus labrax individuals used in this study. Chania Chios Igoumenitsa Yaltra Atalanti Sample Body weight S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax (g) 1 359 378 558 420 433 448 481 346 260 785 2 355 294 579 442 493 556 516 397 240 340 3 376 275 468 554 450 464 540 415 440 500 4 392 395 530 460 440 483 492 493 365 860 5 420 362 483 479 542 492 406 995 6 521 505 506 461 Mean 380.40 340.80 523.17 476.67 471.60 487.75 504.50 419.67 326.25 696.00 SEs 11.89 23.76 17.36 19.56 20.46 23.85 8.68 21.00 46.79 120.29 2 Table S2. Ingredients of the diets used at the time of sampling. Ingredient Sparus aurata Dicentrarchus labrax (6 mm; 350-450 g)** (6 mm; 450-800 g)** Crude proteins (%) 42 – 44 37 – 39 Crude lipids (%) 19 – 21 20 – 22 Nitrogen free extract (NFE) (%) 20 – 26 19 – 25 Crude cellulose (%) 1 – 3 2 – 4 Ash (%) 5.8 – 7.8 6.2 – 8.2 Total P (%) 0.7 – 0.9 0.8 – 1.0 Gross energy (MJ/Kg) 21.5 – 23.5 20.6 – 22.6 Classical digestible energy* (MJ/Kg) 19.5 18.9 Added vitamin D3 (I.U./Kg) 500 500 Added vitamin E (I.U./Kg) 180 100 Added vitamin C (I.U./Kg) 250 100 Feeding rate (%), i.e. -
Exploiting the Natural Products of Novel Myxobacteria: Phylogenetic and Fatty Acid Perspectives and Bioactive Compound Discovery
Exploiting the natural products of novel myxobacteria: Phylogenetic and fatty acid perspectives and bioactive compound discovery Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Ronald O. Garcia Saarbrücken 2011 Tag des Kolloquiums: 12 August, 2011 Dekan: Univ.-Prof. Dr. Wilhelm F. Maier Berichterstatter: Prof. Dr. Rolf Müller Priv.-Doz. Dr. Marc Stadler Vorsitz: Prof. Dr. Manfred J. Schmitt Akad. Mitarbeiterin: Frau Dr. Kerstin M. Ewen Acknowledgements I sincerely and gratefully thank the following for making my studies possible. Prof. Dr. Rolf Müller, my wonderful adviser, for the trust and giving me the opportunity to work in his laboratory. I am very grateful for the guidance and staunch support during my entire course of my studies. Prof. Dr. Helge Bode, as my second adviser, for his supervision in the laboratory and inspiration. The Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research) and Universität des Saarlandes for funding my PhD study and travel costs for many international conferences. Bundesministerium für Bildung und Forschung (BMBF) and Deutsche Forschungsgemeinschaft (DFG) for the project grants. Dr. Marc Stadler and the staff of InterMed Drug Discovery for their supportive cooperation in PUFA-related projects. Prof. Dr. Irineo J. Dogma Jr. and Prof. Edward Quinto for all their support, motivation, and encouragement for pursuing a PhD. Dr. Alberto Plaza for his excellent advice in compound isolation and Mr. Dominik Pistorius for performing GC-MS measurements of the fatty acids. Dr. Kira J. Wiessman for the inspiration on scientific writing and Dr. -
非会員: 10,000 円 12,000 円 *要旨集(2,000 円)のみをご希望の方は, 大会事務局までご連絡下さい。
A B C D 1990年12月18日 第4種郵便物認可 ISSN 0914-5818 2019 VOL. 33 NO. 1 C 2019 T VOL. 33 NO. 1 IN (公開用) O ACTINOMYCETOLOGICA M Y C E T O L O G 日 本 I 放 C 線 菌 学 http://www. actino.jp/ 会 日本放線菌学会誌 第28巻 1 号 誌 Published by ACTINOMYCETOLOGICA VOL.28 NO.1, 2014 The Society for Actinomycetes Japan SAJ NEWS Vol. 33, No. 1, 2019 Contents • Outline of SAJ: Activities and Membership S2 • List of New Scientific Names and Nomenclatural Changes in the Phylum Actinobacteria Validly Published in 2018 S3 • Award Lecture (Dr. Yasuhiro Igarashi) S50 • Publication of Award Lecture (Dr. Yasuhiro Igarashi) S55 • Award Lecture (Dr. Yuki Inahashi) S56 • Publication of Award Lecture (Dr. Yuki Inahashi) S64 • Award Lecture (Dr. Yohei Katsuyama) S65 • Publication of Award Lecture (Dr. Yohei Katsuyama) S72 • 64th Regular Colloquim S73 • 65th Regular Colloquim S74 • The 2019 Annual Meeting of the Society for Actinomycetes Japan S75 • Online access to The Journal of Antibiotics for SAJ members S76 S1 Outline of SAJ: Activities and Membership The Society for Actinomycetes Japan (SAJ) Annual membership fees are currently 5,000 yen was established in 1955 and authorized as a for active members, 3,000 yen for student mem- scientific organization by Science Council of Japan bers and 20,000 yen or more for supporting mem- in 1985. The Society for Applied Genetics of bers (mainly companies), provided that the fees Actinomycetes, which was established in 1972, may be changed without advance announce- merged in SAJ in 1990. SAJ aims at promoting ment.