Penaeus Monodon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Host-Parasite Interaction of Atlantic Salmon (Salmo Salar) and the Ectoparasite Neoparamoeba Perurans in Amoebic Gill Disease
ORIGINAL RESEARCH published: 31 May 2021 doi: 10.3389/fimmu.2021.672700 Host-Parasite Interaction of Atlantic salmon (Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease † Natasha A. Botwright 1*, Amin R. Mohamed 1 , Joel Slinger 2, Paula C. Lima 1 and James W. Wynne 3 1 Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia, 2 Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia, 3 Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease Edited by: (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production Samuel A. M. Martin, University of Aberdeen, cycle. The parasite elicits a highly localized response within the gill epithelium resulting in United Kingdom multifocal mucoid patches at the site of parasite attachment. This host-parasite response Reviewed by: drives a complex immune reaction, which remains poorly understood. To generate a model Diego Robledo, for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and University of Edinburgh, United Kingdom systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was Maria K. Dahle, explored. A dual RNA-seq approach together with differential gene expression and system- Norwegian Veterinary Institute (NVI), Norway wide statistical analyses of gene and transcription factor networks was employed. A multi- *Correspondence: tissue transcriptomic data set was generated from the gill (including both lesioned and non- Natasha A. Botwright lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon [email protected] sourced from an in vivo AGD challenge trial. -
A Web Tool for Hydrogenase Classification and Analysis
bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 HydDB: A web tool for hydrogenase 2 classification and analysis 3 Dan Søndergaarda, Christian N. S. Pedersena, Chris Greeningb, c* 4 5 a Aarhus University, Bioinformatics Research Centre, C.F. Møllers Allé 8, Aarhus 6 DK-8000, Denmark 7 b The Commonwealth Scientific and Industrial Research Organisation, Land and 8 Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia 9 c Monash University, School of Biological Sciences, Clayton, VIC 2800, Australia 10 11 Correspondence: 12 Dr Chris Greening ([email protected]), Monash University, School of 13 Biological Sciences, Clayton, VIC 2800, Australia 14 Dan Søndergaard ([email protected]), Aarhus University, Bioinformatics Research 15 Centre, C.F. Møllers Allé 8, Aarhus DK-8000, Denmark 1 bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 H2 metabolism is proposed to be the most ancient and diverse mechanism of 18 energy-conservation. The metalloenzymes mediating this metabolism, 19 hydrogenases, are encoded by over 60 microbial phyla and are present in all major 20 ecosystems. -
Tenacibaculum Maritimum, Causal Agent of Tenacibaculosis in Marine Fish
# 70 JANUARY 2019 Tenacibaculum maritimum, causal agent of tenacibaculosis in marine fish ICES IDENTIFICATION LEAFLETS FOR DISEASES AND PARASITES IN FISH AND SHELLFISH ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER ICES IDENTIFICATION LEAFLETS FOR DISEASES AND PARASITES OF FISH AND SHELLFISH NO. 70 JANUARY 2019 Tenacibaculum maritimum, causal agent of tenacibaculosis in marine fish Original by Y. Santos, F. Pazos and J. L. Barja (No. 55) Revised by Simon R. M. Jones and Lone Madsen International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES 2019. Tenacibaculum maritimum, causal agent of tenacibaculosis in marine fish. Orig- inal by Santos Y., F. Pazos and J. L. Barja (No. 55), Revised by Simon R. M. Jones and Lone Madsen. ICES Identification Leaflets for Diseases and Parasites of Fish and Shell- fish. No. 70. 5 pp. http://doi.org/10.17895/ices.pub.4681 Series Editor: Neil Ruane. Prepared under the auspices of the ICES Working Group on Pathology and Diseases of Marine Organisms. The material in this report may be reused for non-commercial purposes using the rec- ommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this re- port, you must contact the original copyright holder for permission. -
First Isolation of Virulent Tenacibaculum Maritimum Strains
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435441; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 First isolation of virulent Tenacibaculum maritimum 2 strains from diseased orbicular batfish (Platax orbicularis) 3 farmed in Tahiti Island 4 Pierre Lopez 1¶, Denis Saulnier 1¶*, Shital Swarup-Gaucher 2, Rarahu David 2, Christophe Lau 2, 5 Revahere Taputuarai 2, Corinne Belliard 1, Caline Basset 1, Victor Labrune 1, Arnaud Marie 3, Jean 6 François Bernardet 4, Eric Duchaud 4 7 8 9 1 Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, Labex Corail, F‐98719 10 Taravao, Tahiti, Polynésie française, France 11 2 DRM, Direction des ressources marines, Fare Ute Immeuble Le caill, BP 20 – 98713 Papeete, Tahiti, 12 Polynésie française 13 3 Labofarm Finalab Veterinary Laboratory Group, 4 rue Théodore Botrel, 22600 Loudéac, France 14 4 Unité VIM, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France 15 * Corresponding author 16 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435441; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 17 Abstract 18 The orbicular batfish (Platax orbicularis), also called 'Paraha peue' in Tahitian, is the most important 19 marine fish species reared in French Polynesia. -
Influencia De La Comunidad Bacteriana En Los Ciclos Biogeoquímicos Del Carbono Y El Nitrógeno En El Ecosistema De Manglar
FACULTAD CIENCIAS DE LA SALUD BACTERIOLOGÍA Y LABORATORIO CLÍNICO BOGOTÁ D.C. 2020 Proyecto: INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR Meritoria: _____Si______ Laureada: ___________ Aprobada: ___________ JURADOS _____________________ ________________ ____________________ _________________ _________________________________________________ ASESOR(es) _________ Martha Lucía Posada Buitrago___________________ _________________________________________ ÉTICA, SERVICIO Y SABER INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR Danya Gabriela Ramírez Lozada Nicolás David Rojas Villamil Asesor interno PhD. Martha Lucía Posada Buitrago Monografía para optar al título de Bacteriólogo y Laboratorista Clínico UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATORIO CLÍNICO PROYECTO DE GRADO BOGOTÁ D.C 2020 DEDICATORIA A todas las personas y docentes que hicieron parte de nuestro proceso de formación profesional, a nuestras familias y amigos, que nos brindaron su apoyo, tiempo, consejos y paciencia en este camino que no ha culminado y aún está lleno de sueños, esperanzas y metas por alcanzar. AGRADECIMIENTOS Principalmente a nuestras familias porque han sido la base de nuestra formación aportando grandes cosas en nuestras vidas, por confiar y creer en nuestras capacidades y destrezas a lo largo de esta carrera. -
Full Article in Pdf Format
DISEASES OF AQUATIC ORGANISMS Vol. 58: 1–8, 2004 Published January 28 Dis Aquat Org Phenotyphic characterization and description of two major O-serotypes in Tenacibaculum maritimum strains from marine fishes Ruben Avendaño-Herrera, Beatriz Magariños, Sonia López-Romalde, Jesús L. Romalde, Alicia E. Toranzo* Departamento de Microbiología y Parasitología, Facultad de Biología, Universidad de Santiago, 15782 Santiago de Compostela, Spain ABSTRACT: Tenacibaculum maritimum is the etiological agent of marine flexibacteriosis disease, with the potential to cause severe mortalities in various cultured marine fishes. The development of effective preventive measures (i.e. vaccination) requires biochemical, serological and genetic knowl- edge of the pathogen. With this aim, the biochemical and antigenic characteristics of T. maritimum strains isolated from sole, turbot and gilthead sea bream were analysed. Rabbit antisera were pre- pared against sole and turbot strains to examine the antigenic relationships between the 29 isolates and 3 reference strains. The results of the slide agglutination test, dot-blot assay and immunoblotting of lipopolysaccharides (LPS) and membrane proteins were evaluated. All bacteria studied were biochemically identical to the T. maritimum reference strains. The slide agglutination assays using O-antigens revealed cross-reaction for all strains regardless of the host species and serum employed. However, when the dot-blot assays were performed, the existence of antigenic heterogeneity was demonstrated. This heterogeneity was supported by immunoblot analysis of the LPS, which clearly revealed 2 major serological groups that were distinguishable without the use of absorbed antiserum: Serotypes O1 and O2. These 2 serotypes seem to be host-specfic. In addition, 2 sole isolates and the Japanese reference strains displayed cross-reaction with both sera in all serological assays, and are considered to constitute a minor serotype, O1/O2. -
Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones
International Journal of Environmental Research and Public Health Article Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones Yongkui Yang 1,2 , Longfei Wang 1, Feng Xiang 1, Lin Zhao 1,2 and Zhi Qiao 1,2,* 1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; [email protected] (Y.Y.); [email protected] (L.W.); [email protected] (F.X.); [email protected] (L.Z.) 2 China-Singapore Joint Center for Sustainable Water Management, Tianjin University, Tianjin 300350, China * Correspondence: [email protected]; Tel.: +86-22-87402072 Received: 14 November 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs. Keywords: activated sludge; industrial zone; metabolic function; microbial community; wastewater treatment 1. -
Depthwise Microbiome and Isotopic Profiling of a Moderately Saline
www.nature.com/scientificreports OPEN Depthwise microbiome and isotopic profling of a moderately saline microbial mat in a solar saltern Varun Paul1*, Yogaraj Banerjee2, Prosenjit Ghosh2,3 & Susheel Bhanu Busi4 The solar salterns in Tuticorin, India, are man-made, saline to hypersaline systems hosting some uniquely adapted populations of microorganisms and eukaryotic algae that have not been fully characterized. Two visually diferent microbial mats (termed ‘white’ and ‘green’) developing on the reservoir ponds (53 PSU) were isolated from the salterns. Firstly, archaeal and bacterial diversity in diferent vertical layers of the mats were analyzed. Culture-independent 16S rRNA gene analysis revealed that both bacteria and archaea were rich in their diversity. The top layers had a higher representation of halophilic archaea Halobacteriaceae, phylum Chlorofexi, and classes Anaerolineae, Delta- and Gamma- Proteobacteria than the deeper sections, indicating that a salinity gradient exists within the mats. Limited presence of Cyanobacteria and detection of algae-associated bacteria, such as Phycisphaerae, Phaeodactylibacter and Oceanicaulis likely implied that eukaryotic algae and other phototrophs could be the primary producers within the mat ecosystem. Secondly, predictive metabolic pathway analysis using the 16S rRNA gene data revealed that in addition to the regulatory microbial functions, methane and nitrogen metabolisms were prevalent. Finally, stable carbon 13 and nitrogen isotopic compositions determined from both mat samples showed that the δ Corg 15 and δ Norg values increased slightly with depth, ranging from − 16.42 to − 14.73‰, and 11.17 to 13.55‰, respectively. The isotopic signature along the microbial mat profle followed a pattern that is distinctive to the community composition and net metabolic activities, and comparable to saline mats in other salterns. -
Life in the Cold Biosphere: the Ecology of Psychrophile
Life in the cold biosphere: The ecology of psychrophile communities, genomes, and genes Jeff Shovlowsky Bowman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Jody W. Deming, Chair John A. Baross Virginia E. Armbrust Program Authorized to Offer Degree: School of Oceanography i © Copyright 2014 Jeff Shovlowsky Bowman ii Statement of Work This thesis includes previously published and submitted work (Chapters 2−4, Appendix 1). The concept for Chapter 3 and Appendix 1 came from a proposal by JWD to NSF PLR (0908724). The remaining chapters and appendices were conceived and designed by JSB. JSB performed the analysis and writing for all chapters with guidance and editing from JWD and co- authors as listed in the citation for each chapter (see individual chapters). iii Acknowledgements First and foremost I would like to thank Jody Deming for her patience and guidance through the many ups and downs of this dissertation, and all the opportunities for fieldwork and collaboration. The members of my committee, Drs. John Baross, Ginger Armbrust, Bob Morris, Seelye Martin, Julian Sachs, and Dale Winebrenner provided valuable additional guidance. The fieldwork described in Chapters 2, 3, and 4, and Appendices 1 and 2 would not have been possible without the help of dedicated guides and support staff. In particular I would like to thank Nok Asker and Lewis Brower for giving me a sample of their vast knowledge of sea ice and the polar environment, and the crew of the icebreaker Oden for a safe and fascinating voyage to the North Pole. -
UNIVERSITE DE PERPIGNAN VIA DOMITIA Etude De La Réponse
Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l’école doctorale ED 305 Et de l’unité de recherche UMR 5244 Interactions Hôtes Pathogènes Environnements (IHPE) Discipline : BIOLOGIE Spécialité : Evolution Présentée par Manon Fallet Etude de la réponse environnementale et transgénérationnelle chez l’huitre creuse Crassostrea gigas. Focus sur les mécanismes épigénétiques Soutenue le 12 décembre 2019 devant le jury composé de Mme. Frédérique PITEL, DR2, INRA Toulouse Rapporteur Mme. Christine PAILLARD, DR CNRS, Brest Rapporteur M. Benoit PUJOL, CR CNRS, Perpignan Examinateur Mme. Caroline MONTAGNANI, CR, Ifremer, Montpellier Examinateur M. Guillaume MITTA, PR, UPVD, Perpignan Examinateur Mme. Céline COSSEAU, MCF, UPVD, Perpignan Directeur de thèse M. Christoph GRUNAU, PR, UPVD, Perpignan Co-directeur de thèse M. Bruno PETTON, IR, Ifremer, Brest Invité A Yvonne Geoffray, Remerciements Ça y est, je touche au but et j’achève la rédaction de ce manuscrit de thèse ! Ces trois dernières années ont été intenses, passionnantes, souvent dures, mais toujours enrichissantes ! De nombreuses personnes m’ont accompagné durant ces trois ans. Parfois dans le cadre professionnel, m’aidant ainsi à réaliser les travaux présentés dans ce manuscrit et à me familiariser au monde de la recherche, parfois dans le domaine personnel, m’encourageant et me soutenant au quotidien. Certaines personnes ont également joué sur les deux tableaux. L’écriture de ces remerciements me touche énormément car c’est pour moi le moyen de vous montrer toute ma reconnaissance. Tout d’abord, je souhaite remercier Frédérique Pitel et Christine Paillard. Merci d’avoir accepté d’être les rapporteurs de ma thèse et de prendre le temps d’évaluer mon travail. -
Tenacibaculum Adriaticum Sp. Nov., from a Bryozoan in the Adriatic Sea
International Journal of Systematic and Evolutionary Microbiology (2008), 58, 542–547 DOI 10.1099/ijs.0.65383-0 Tenacibaculum adriaticum sp. nov., from a bryozoan in the Adriatic Sea Herwig Heindl, Jutta Wiese and Johannes F. Imhoff Correspondence Kieler Wirkstoff-Zentrum (KiWiZ) at the Leibniz-Institute for Marine Sciences, Am Kiel-Kanal 44, Johannes F. Imhoff D-24106 Kiel, Germany [email protected] A rod-shaped, translucent yellow-pigmented, Gram-negative bacterium, strain B390T, was isolated from the bryozoan Schizobrachiella sanguinea collected in the Adriatic Sea, near Rovinj, Croatia. 16S rRNA gene sequence analysis indicated affiliation to the genus Tenacibaculum, with sequence similarity levels of 94.8–97.3 % to type strains of species with validly published names. It grew at 5–34 6C, with optimal growth at 18–26 6C, and only in the presence of NaCl or sea salts. In contrast to other type strains of the genus, strain B390T was able to hydrolyse aesculin. The predominant menaquinone was MK-6 and major fatty acids were iso-C15 : 0, iso-C15 : 0 3-OH and iso-C15 : 1. The DNA G+C content was 31.6 mol%. DNA–DNA hybridization and comparative physiological tests were performed with type strains Tenacibaculum aestuarii JCM 13491T and Tenacibaculum lutimaris DSM 16505T, since they exhibit 16S rRNA gene sequence similarities above 97 %. These data, as well as phylogenetic analyses, suggest that strain B390T (5DSM 18961T 5JCM 14633T) should be classified as the type strain of a novel species within the genus Tenacibaculum, for which the name Tenacibaculum adriaticum sp. nov. is proposed. -
Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2019 Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin Katherine Marie Fullerton University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Fullerton, Katherine Marie, "Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5439 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Katherine Marie Fullerton entitled "Microbial Community Composition Reflects Subduction Geochemistry in the Costa Rica Convergent Margin." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Microbiology. Karen G. Lloyd, Major Professor We have read this thesis and recommend its acceptance: Allison Buchan, Frank Loeffler, Ania Sszynkiewicz Accepted for the Council: Dixie L. Thompson Vice Provost