Pigment Composition and Photoacclimation As Keys to the Ecological Success of Gonyostomum Semen (Raphidophyceae, Stramenopiles)

Total Page:16

File Type:pdf, Size:1020Kb

Pigment Composition and Photoacclimation As Keys to the Ecological Success of Gonyostomum Semen (Raphidophyceae, Stramenopiles) Pigment composition and photoacclimation as keys to the ecological success of Gonyostomum semen (Raphidophyceae, Stramenopiles) Sassenhagen, Ingrid; Rengefors, Karin; Richardson, Tammi L.; Pinckney, James L. Published in: Journal of Phycology DOI: 10.1111/jpy.12246 2014 Link to publication Citation for published version (APA): Sassenhagen, I., Rengefors, K., Richardson, T. L., & Pinckney, J. L. (2014). Pigment composition and photoacclimation as keys to the ecological success of Gonyostomum semen (Raphidophyceae, Stramenopiles). Journal of Phycology, 50(6), 1146-1154. https://doi.org/10.1111/jpy.12246 Total number of authors: 4 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 J. Phycol. 50, 1146–1154 (2014) © 2014 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. DOI: 10.1111/jpy.12246 PIGMENT COMPOSITION AND PHOTOACCLIMATION AS KEYS TO THE ECOLOGICAL SUCCESS OF GONYOSTOMUM SEMEN (RAPHIDOPHYCEAE, STRAMENOPILES)1 Ingrid Sassenhagen,2 Karin Rengefors Aquatic Ecology, Department of Biology, Lund University, Solvegatan€ 37, Lund 22362, Sweden Tammi L. Richardson, and James L. Pinckney Department of Biological Science, University of South Carolina, 712 Sumter Street, Columbia, South Carolina 29208, USA Aquatic habitats are usually structured by light matter; HPLC, high performance liquid chromatog- attenuation with depth resulting in different raphy; neox, neoxanthin; violax, violaxanthin; zeax, microalgal communities, each one adapted to a zeaxanthin certain light regime by their specific pigment composition. Several taxa contain pigments restricted to one phylogenetic group, making them useful as Microalgae are usually highly adapted to different marker pigments in phytoplankton community light conditions, populating habitats suited for their studies. The nuisance and invasive freshwater specific pigment composition and absorption max- microalga Gonyostomum semen (Raphidophyceae) is ima. This is especially evident in marine ecosystems, mainly found in brown water lakes with sharp vertical as stratified water columns and significant changes gradients in light intensity and color. However, its in light intensity and color often cause selection pigment composition and potential photoadaptations and niche partitioning of phytoplankton taxa have not been comprehensively studied. We analyzed according to the prevailing light environment the photopigment composition of 12 genetically (Bidigare et al. 1990a, Stomp et al. 2004, Hickman different strains of G. semen by high performance et al. 2009). For example, Bidigare et al. (1990a) liquid chromatography after acclimation to different observed a vertically structured distribution of differ- light conditions. We confirmed the pigments chl a, ent phytoplankton taxa (cyanobacteria, diatoms, chl c1c2, diadinoxanthin, trans-neoxanthin, cis- and prymnesiophytes) in the Sargasso Sea suggesting neoxanthin, a and b carotene, which have already chromatic adaptation. Picoplanktonic cyanobacteria been reported for G. semen. In addition, we like Synechococcus sp. and Prochlorococcus sp. are well- identified, for the first time, the pigments violaxan- adapted to high irradiance in blue tropical waters thin, zeaxanthin, and alloxanthin in this species. by generating high concentrations of the photopro- Alloxanthin has never been observed in tective pigment zeaxanthin (zeax) (Lutz et al. 2003, raphidophytes before, suggesting differences in Hickman et al. 2009). evolutionary plastid acquisition between freshwater In environments with varying light conditions, lineages and the well-described marine species. The photoacclimation is frequently manifested as altera- amount of total chl a per cell generally decreased tions in the photosynthetic pigment content in with increasing light intensity. In contrast, the response to changing irradiance (MacIntyre et al. increasing ratios of the prominent pigments 2002). Haptophytes, for example, adjust to heteroge- diadinoxanthin and alloxanthin per chl a with light neous light climates through highly plastic concentra- intensity suggest photoprotective functions. In tions of fucoxanthin-related carotenoids. The addition, we found significant variation in cell- concentrations of these pigments per chl a can differ specific pigment concentration among strains, among haptophyte species and strains (Buma et al. grouped by lake of origin, which might correspond to 1991, Stolte et al. 2000). Thus, acclimation does not genetic differences between strains and populations. involve a change in the genetic structure of the popu- Key index words: Gonyostomum semen lation under investigation whereas adaptation does. alloxanthin; ; The nuisance freshwater microalga Gonyostomum HPLC; photoacclimation; pigments; raphidophyte semen (Ehrenberg) has recently spread to several new Abbreviations: allo, alloxanthin; chl, chlorophyll; habitats and currently dominates the phytoplankton diadino, diadinoxanthin; DOM, dissolved organic community in many Scandinavian lakes (Lepisto€ et al. 1994, Rengefors et al. 2012, Lebret et al. 2013). 1Received 10 March 2014. Accepted 21 July 2014. Originally, it was encountered in dark, brown water 2Author for correspondence: e-mail [email protected]. lakes (Sorensen€ 1954) with very sharp gradients of Editorial Responsibility: L. Graham (Associate Editor) 1146 PIGMENT COMPOSITION AND PHOTOACCLIMATION IN GONYOSTOMUM 1147 light intensity because of rapid attenuation of light species at six different light intensities to study with depth. In these lakes, it may form extensive intra-specific differences and changes in pigment blooms during the summer and its cell number can concentration because of photoacclimation. We represent up to 97% of the phytoplankton commu- hypothesized that G. semen is equipped with a very nity (Cronberg et al. 1988, Findlay et al. 2005, Lebret powerful light harvesting system to effectively photo- et al. 2012b). Gonyostomum semen is considered a nui- synthesize under low light intensity, but negligible sance species, as its mucous threads and trichocysts photoprotective capabilities since they can migrate may cause skin irritation in swimmers (Sorensen€ downwards to avoid supersaturating irradiance. As 1954). Its rapid expansion and high competitiveness the strains originated from habitats with different has recently aroused much scientific interest. There water color and light conditions, we expected to is evidence that a lack of grazers, the ability to feed find significant differences in pigment ratios among heterotrophically on dissolved organic matter strains because of genetic adaptation to local (DOM), preferences for low pH and higher water environmental conditions. temperatures enable this species to outcompete other algae (Findlay et al. 2005, Rengefors et al. 2008, Le- bret et al. 2012a, Rengefors et al. 2012, Johansson MATERIALS AND METHODS et al. 2013). Furthermore, G. semen is able to migrate Culturing conditions and microscopy. Twelve genetically dis- vertically through the water column (Cronberg et al. tinct strains of the microalgae G. semen, which were distin- 1988, Salonen and Rosenberg 2000), presumably as a guished earlier by amplified fragment length polymorphism way of choosing an optimal light intensity for photo- (Lebret et al. 2013), were used for this experiment. These synthesis during the day, and at night it migrates strains originated from five lakes with varying absorbance down in anoxic zones below the thermocline to (Table 1), resulting in different light climates. Cultures were incubated for 6 weeks at six different light conditions (5, 10, access higher nutrient concentrations (Salonen and À2 À1 25, 150, 200 lmol photons Á m Á s of white light and À À Rosenberg 2000). This is an important advantage in 25 lmol photons Á m 2 Á s 1 of red light, AURA Luminette the competition with many other microalgae, which 36W 840, Aura Light International AB, Karlskrona, Sweden) are dependent on buoyancy or suspension for access in artificial medium (modified Woods Hole medium, pH 7.0; to light near to the surface (Olli 1999, Richardson Guillard and Lorenzen 1972). The red light climate was et al. 2001). Despite the importance of light as a achieved by filtering out all other wavelength (<600 nm) with structuring environmental
Recommended publications
  • Vertical Distribution of Expansive, Bloom-Forming Algae Gonyostomum Semen Vs
    Knowl. Manag. Aquat. Ecosyst. 2018, 419, 28 Knowledge & © W. Pęczuła et al., Published by EDP Sciences 2018 Management of Aquatic https://doi.org/10.1051/kmae/2018017 Ecosystems www.kmae-journal.org Journal fully supported by Onema RESEARCH PAPER Vertical distribution of expansive, bloom-forming algae Gonyostomum semen vs. plankton community and water chemistry in four small humic lakes Wojciech Pęczuła1,*, Magdalena Grabowska2, Piotr Zieliński3, Maciej Karpowicz2 and Mateusz Danilczyk2,4 1 Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Lublin, Poland 2 Department of Hydrobiology, Institute of Biology, University of Białystok, Białystok, Poland 3 Department of Environmental Protection, Institute of Biology, University of Białystok, Białystok, Poland 4 Wigry National Park, Krzywe, Poland Abstract – One of the features of Gonyostomum semen, a bloom-forming and expansive flagellate, is uneven distribution in the vertical water column often observed in humic lakes. In this paper, we analysed vertical distribution of the algae in four small (0.9–2.5 ha) and humic (DOC: 7.4–16.5 mg dmÀ3) lakes with similar morphometric features with the aim to test the hypothesis that vertical distribution of G. semen may be shaped by zooplankton structure and abundance. In addition, we wanted to check whether high biomass of this flagellate has any influence on the chemical composition as well as on planktonic bacteria abundance of the water column. The results of the study showed that vertical distribution of the algae during the day varied among all studied lakes. Our most important finding was that (a) the abundance and structure of zooplankton community (especially in case of large bodied daphnids Daphnia pulicaria, D.
    [Show full text]
  • An Experimental Study on the Influence of The
    Knowl. Manag. Aquat. Ecosyst. 2017, 418, 15 Knowledge & © W. Pęczuła et al., Published by EDP Sciences 2017 Management of Aquatic DOI: 10.1051/kmae/2017006 Ecosystems www.kmae-journal.org Journal fully supported by Onema RESEARCH PAPER An experimental study on the influence of the bloom-forming alga Gonyostomum semen (Raphidophyceae) on cladoceran species Daphnia magna Wojciech Pęczuła1,*, Magdalena Toporowska1, Barbara Pawlik-Skowrońska1 and Judita Koreiviene2 1 Department of Hydrobiology, University of Life Sciences in Lublin, Lublin, Poland 2 Institute of Botany, Nature Research Center, Vilnius, Lithuania Abstract – The effect of the unicellular, bloom-forming alga Gonyostomum semen (Raphidiophyceae)on the survival rate and body size of Daphnia magna was tested under experimental laboratory conditions. Using samples from four humic lakes with a long history of Gonyostomum blooms, we exposed D. magna for 72 h to various Gonyostomum treatments which included homogenized biomass (frozen and fresh), live cell populations as well as lake water separated from the concentrated biomass of live cells. Filtered lake water and the chlorophycean alga Stichococcus bacillaris population (homogenized biomass or live cells) we used as controls. Our study revealed that (1) frozen homogenized G. semen biomass in the concentrations typical for blooms was not harmful for Daphnia and appeared to have a nutritive effect because it supported its growth; however, Daphnia mortality occurred after exposure to fresh and highly concentrated cell homogenate containing high amount of mucilage; (2) it is unlikely that living Gonyostomum cells excrete extracellular substances harmful for Daphnia; however, dense live Gonyostomum population that formed mucilaginous aggregates immobilized Daphnia and increased its mortality.
    [Show full text]
  • Phylogeography of the Freshwater Raphidophyte Gonyostomum Semen Confirms a Recent Expansion in Northern Europe by a Single Haplotype1
    J. Phycol. 51, 768–781 (2015) © 2015 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and dis- tribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. DOI: 10.1111/jpy.12317 PHYLOGEOGRAPHY OF THE FRESHWATER RAPHIDOPHYTE GONYOSTOMUM SEMEN CONFIRMS A RECENT EXPANSION IN NORTHERN EUROPE BY A SINGLE HAPLOTYPE1 Karen Lebret,2 Sylvie V. M. Tesson, Emma S. Kritzberg Department of Biology, Lund University, Ecology Building, Lund SE-22362, Sweden Carmelo Tomas University of North Carolina at Wilmington, Center for Marine Science, Myrtle Grove 2336, Wilmington, North Carolina, USA and Karin Rengefors Department of Biology, Lund University, Ecology Building, Lund SE-22362, Sweden Gonyostmum semen is a freshwater raphidophyte DNA region; SSU, small subunit of the ribosomal that has increased in occurrence and abundance in DNA region several countries in northern Europe since the 1980s. More recently, the species has expanded rapidly also in north-eastern Europe, and it is frequently referred to as invasive. To better Raphidophytes are planktonic autotrophic protists, understand the species history, we have explored which form blooms in both marine and limnic envi- the phylogeography of G. semen using strains from ronments. Many raphidophyte species are consid- northern Europe, United States, and Japan. Three ered harmful, causing for instance mass mortality in regions of the ribosomal RNA gene (small subunit fish due to toxin production (Edvardsen and Imai [SSU], internal transcribed spacer [ITS] and large 2006).
    [Show full text]
  • Sequencing and Phylogenetic Analysis of Chloroplast Genes in Freshwater Raphidophytes
    G C A T T A C G G C A T genes Article Sequencing and Phylogenetic Analysis of Chloroplast Genes in Freshwater Raphidophytes Ingrid Sassenhagen 1,* and Karin Rengefors 2 1 Laboratoire d’Océanologie et des Geosciences, UMR CNRS 8187, Université du Littoral Côte d’Opale, 62930 Wimereux, France 2 Aquatic Ecology, Department of Biology, Lund University, 22362 Lund, Sweden; [email protected] * Correspondence: [email protected] Received: 8 February 2019; Accepted: 20 March 2019; Published: 22 March 2019 Abstract: The complex evolution of chloroplasts in microalgae has resulted in highly diverse pigment profiles. Freshwater raphidophytes, for example, display a very different pigment composition to marine raphidophytes. To investigate potential differences in the evolutionary origin of chloroplasts in these two groups of raphidophytes, the plastid genomes of the freshwater species Gonyostomum semen and Vacuolaria virescens were sequenced. To exclusively sequence the organelle genomes, chloroplasts were manually isolated and amplified using single-cell whole-genome-amplification. Assembled and annotated chloroplast genes of the two species were phylogenetically compared to the marine raphidophyte Heterosigma akashiwo and other evolutionarily more diverse microalgae. These phylogenetic comparisons confirmed the high relatedness of all investigated raphidophyte species despite their large differences in pigment composition. Notable differences regarding the presence of light-independent protochlorophyllide oxidoreductase (LIPOR) genes among raphidophyte algae were also revealed in this study. The whole-genome amplification approach proved to be useful for isolation of chloroplast DNA from nuclear DNA. Although only approximately 50% of the genomes were covered, this was sufficient for a multiple gene phylogeny representing large parts of the chloroplast genes.
    [Show full text]
  • Biological Recording in 2019 Outer Hebrides Biological Recording
    Outer Hebrides Biological Recording Discovering our Natural Heritage Biological Recording in 2019 Outer Hebrides Biological Recording Discovering our Natural Heritage Biological Recording in 2019 Robin D Sutton This publication should be cited as: Sutton, Robin D. Discovering our Natural Heritage - Biological Recording in 2019. Outer Hebrides Biological Recording, 2020 © Outer Hebrides Biological Recording 2020 © Photographs and illustrations copyright as credited 2020 Published by Outer Hebrides Biological Recording, South Uist, Outer Hebrides ISSN: 2632-3060 OHBR are grateful for the continued support of NatureScot 1 Contents Introduction 3 Summary of Records 5 Insects and other Invertebrates 8 Lepidoptera 9 Butterflies 10 Moths 16 Insects other than Lepidoptera 20 Hymenoptera (bees, wasps etc) 22 Trichoptera (caddisflies) 24 Diptera (true flies) 26 Coleopotera (beetles) 28 Odonata (dragonflies & damselflies) 29 Hemiptera (bugs) 32 Other Insect Orders 33 Invertebrates other than Insects 35 Terrestrial & Freshwater Invertebrates 35 Marine Invertebrates 38 Vertebrates 40 Cetaceans 41 Other Mammals 42 Amphibians & Reptiles 43 Fish 44 Fungi & Lichens 45 Plants etc. 46 Cyanobacteria 48 Marine Algae - Seaweeds 48 Terrestrial & Freshwater Algae 49 Hornworts, Liverworts & Mosses 51 Ferns 54 Clubmosses 55 Conifers 55 Flowering Plants 55 Sedges 57 Rushes & Woodrushes 58 Orchids 59 Grasses 60 Invasive Non-native Species 62 2 Introduction This is our third annual summary of the biological records submitted by residents and visitors, amateur naturalists, professional scientists and anyone whose curiosity has been stirred by observing the wonderful wildlife of the islands. Each year we record an amazing diversity of species from the microscopic animals and plants found in our lochs to the wild flowers of the machair and the large marine mammals that visit our coastal waters.
    [Show full text]
  • Gonyostomum Semen (Ehr.) Diesing Bloom Formation in Nine Lakes of Polesie Region (Central–Eastern Poland)
    Ann. Limnol. - Int. J. Lim. 49 (2013) 301–308 Available online at: Ó EDP Sciences, 2013 www.limnology-journal.org DOI: 10.1051/limn/2013059 Gonyostomum semen (Ehr.) Diesing bloom formation in nine lakes of Polesie region (Central–Eastern Poland) Wojciech Pe˛czuła1*,Małgorzata Poniewozik2 and Agnieszka Szczurowska3 1 Department of Hydrobiology, University of Life Sciences, Dobrzan´ skiego 37, Lublin 20-062, Poland 2 Department of Botany and Hydrobiology, The John Paul II Catholic University of Lublin, Konstantyno´ w 1H, Lublin 20-708, Poland 3 Department of General Ecology, University of Life Sciences, Akademicka 15, Lublin 20-950, Poland Received 28 May 2013; Accepted 19 July 2013 Abstract – Using data from nine lakes, sampled between 2002 and 2010, as well as literature we have ana- lysed blooms of Gonyostomum semen (Ehr.) Diesing in a new spreading area (Polesie region, Central–Eastern Poland). We tried to determine habitat suitability for high biomass of the species, including both physico- 1 chemical and morphometric features. High biomass of Gonyostomum (>1.4 mg.Lx ) was found in three 2 groups of coloured water bodies: (a) very small (<0.002 km ) peat pits with low pH values and mineral content; (b) larger ponds with neutral pH values and intermediate conductivity; (c) natural lakes with inter- mediate parameters in terms of area, pH and mineral content. There were no statistical differences regarding the values of the species biomass among the groups of lakes. Gonyostomum biomass was closely positively correlated with water colour, whereas it was weakly negatively correlated with lake area and depth. The results show that G.
    [Show full text]
  • Abstracts Symposia Talks the Evolution of Protists And
    J. Phycol. 47, S1–S98 (2011) Ó 2011 Phycological Society of America DOI: 10.1111/j.1529-8817.2011.01050.x ABSTRACTS SYMPOSIA TALKS studying marine picoeukaryotes and resulting insights on their evolution, diversity and physiology will be discussed. THE EVOLUTION OF PROTISTS AND THEIR ORGANELLES: NEW INSIGHTS FROM THE FRONTIERS OF GENOMICS ECOLOGICAL ASPECTS OF NITROGEN- Roger, Andrew FIXING CYANOBACTERIA ILLUMINATED BY Centre for Comparative Genomics and Evolutionary GENOMICS AND METAGENOMICS Bioinformatics, Department of Biochemistry and Molecular Zehr, J. P. Biology, Dalhousie University University of California, Santa Cruz, USA, [email protected] The availability of inexpensive genome and tran- Tripp, H. J. scriptome sequencing capacity has furnished insights University of California, Santa Cruz, USA, into the biology, biochemistry, evolutionary relation- [email protected] ships and dynamics of protistan genomes at an Hilton, J. unprecedented rate. From these data, large concate- University of California, Santa Cruz, USA, nated data sets of conserved protein genes have been [email protected] assembled and phylogenomic analyses are converging Moisander, P. H., University of Massachusetts, USA, to a stable picture of the inter-relationships of the [email protected] major eukaryotic super-groups. At the same time, Foster, R., Max Planck Institute for Marine Microbiology, comparative assessments of gene contents of diverse Germany, [email protected] microbial eukaryote genomes are allowing us to tease apart the relative impact of primary and secondary Nitrogen is a key nutrient limiting the productivity endosymbiotic organelle-based gene transfer versus of the oceans. Nitrogen fixation is an important lateral gene transfer in shaping the biochemical prop- source of nitrogen to the surface waters of oligo- erties of these organisms and their subcellular com- trophic oceans and was believed to be primarily due partments.
    [Show full text]
  • Algal Blooms Increase Heterotrophy at the Base of Boreal Lake Food Webs-Evidence from Fatty Acid Biomarkers
    LIMNOLOGY and Limnol. Oceanogr. 61, 2016, 1563–1573 OCEANOGRAPHY VC 2016 Association for the Sciences of Limnology and Oceanography doi: 10.1002/lno.10296 Algal blooms increase heterotrophy at the base of boreal lake food webs-Evidence from fatty acid biomarkers Karin S. L. Johansson,a,*1 Cristina Trigal,2 Tobias Vrede,1 Pieter van Rijswijk,3 Willem Goedkoop,1 Richard K. Johnson1 1Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden 2Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden 3Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands Abstract Physical defenses and grazer avoidance of the bloom-forming microalga Gonyostomum semen may reduce the direct coupling between phytoplankton and higher trophic levels and result in an increased importance of alternative basal food resources such as bacteria and heterotrophic protozoans. To assess the importance of algal and heterotrophic food resources for zooplankton during G. semen blooms and the effects of zooplank- ton diets on a higher consumer, we analyzed the fatty acid composition of zooplankton and the invertebrate predator Chaoborus flavicans from eight lakes along a gradient in the predominance of G. semen relative to other algae and the duration of G. semen blooms. The proportion of fatty acids of bacterial origin increased significantly along the G. semen gradient in all consumers studied. In addition, the proportion of polyunsatu- rated fatty acids (PUFA) decreased in cladocerans. These results suggest that heterotrophic pathways can com- pensate for a reduced trophic coupling between phytoplankton and filter-feeding zooplankton. The lower PUFA content in cladoceran prey from lakes at the higher end of the G.
    [Show full text]
  • Heteroxanthin As a Pigment Biomarker for Gonyostomum Semen (Raphidophyceae)
    RESEARCH ARTICLE Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae) 1☯ 1☯ 2 Camilla Hedlund Corneliussen HagmanID *, Thomas Rohrlack , Silvio Uhlig , Vladyslava Hostyeva3 1 Limnology and Hydrology group, Section for Soil and Water, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway, 2 Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway, 3 Norwegian Culture Collection of Algae, Section for Microalgae, Norwegian Institute for Water Research, Oslo, Norway a1111111111 ☯ These authors contributed equally to this work. [email protected] a1111111111 * a1111111111 a1111111111 a1111111111 Abstract The ability to identify drivers responsible for algal community shifts is an important aspect of environmental issues. The lack of long-term datasets, covering periods prior to these shifts, is often limiting our understanding of drivers responsible. The freshwater alga, Gonyosto- OPEN ACCESS mum semen (Raphidophyceae), has significantly increased distribution and mass occur- Citation: Hagman CHC, Rohrlack T, Uhlig S, rences in Scandinavian lakes during the past few decades, often releasing a skin irritating Hostyeva V (2019) Heteroxanthin as a pigment slime that causes discomfort for swimmers. While the alga has been extensively studied, biomarker for Gonyostomum semen (Raphidophyceae). PLoS ONE 14(12): e0226650. long-term data from individual lakes are often absent or greatly limited and drivers behind https://doi.org/10.1371/journal.pone.0226650 this species' success are still not clear. However, if specific and persistent taxa biomarkers Editor: Steven Arthur Loiselle, University of Siena, for G. semen could be detected in dated sediment cores, long-term data would be improved ITALY and more useful. To test for biomarkers, we examined the pigment composition of several Received: August 14, 2019 G.
    [Show full text]
  • Xanthophyta and Phaeophyta
    AWWA MANUAL M57 Chapter 12 Xanthophyta and Phaeophyta John D. Wehr BIOLOGY _________________________________________________ Description The algae described in this chapter are a diverse and heterogeneous collection of pho- tosynthetic protists that vary from simple, tiny unicells—members of the so-called picoplankton such as Nannochloropsis—to macroscopic species that form mats in lakes, streams, and reservoirs. The most conspicuous forms are filamentous and colo- nize lake sediments, rocks in rapidly flowing streams, and mud banks along drainage ditches. They include well-known taxa such as the xanthophyte species Vaucheria and Tribonema, and the crust-forming phaeophyte Heribaudiella. At least one species is conspicuous as a symbiont in green sponges (Frost et al. 1997), while others, such as Botrydium, form colonies on damp soil. Many species though are microscopic, unicel- lular, or colonial organisms that live in planktonic or sessile aquatic habitats and are reported infrequently from few localities. All of these organisms possess the photosynthetic pigment chlorophyll-a, and most also have chlorophyll-c, (but lack chlorophyll-b), plus β-carotene and various xan- thophylls. The result is that many species appear pale green, yellow-green, golden, or brownish in color, rather than grass green, when viewed in a microscope. The motile cells (or motile stages) are biflagellate and heterokont (unequal), having one long tinsel flagellum (with tubular hairs) directed forward and a shorter, smooth flagellum that is directed backward. Further details of their reproduction, as well as flagellar, plastid, and general cellular ultrastructure are described elsewhere (van den Hoek et al. 1995, Graham and Wilcox 2000, Ott and Oldham-Ott 2003).
    [Show full text]
  • Joint Meeting of the Phycological Society of America, International Society of Protistologists & Northwest Algal Symposium
    Joint Meeting of the Phycological Society of America, International Society of Protistologists & Northwest Algal Symposium July 12-16, 2011 University of Washington Seattle, Washington The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrolment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2011 PSA ANNUAL MEETING: Tim Nelson, Seattle Pacific University Evelyn Lessard, University of Washington PROGRAM DIRECTORS FOR 2011: Dale Casamatta, University of North Florida (PSA) Alastair Simpson, Dalhousie University (ISoP) ii 2011 Organizing Committee Susan Brawley T.J. Evens Dale Casamatta Tim Nelson Julie Koester Dan Reed Evelyn Lessard Alastair Simpson Jon Zehr Please visit the conference headquarters at the Kane Hall Office Space (Kane 234) for registration, assistance, awesome merchandise and up-to-date conference information.
    [Show full text]
  • Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 9-11-2018 Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions Samantha R. Coy University of Tennessee, Knoxville Eric R. Gann University of Tennessee, Knoxville Helena L. Pound University of Tennessee, Knoxville Steven M. Short The University of Toronto Mississauga Steven W. Wilhelm University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Recommended Citation Coy, S.R.; Gann, E.R.; Pound, H.L.; Short, S.M.; Wilhelm, S.W. Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018, 10, 487.https://doi.org/10.3390/v10090487 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. viruses Review Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions Samantha R. Coy 1 , Eric R. Gann 1 , Helena L. Pound 1 , Steven M. Short 2 and Steven W. Wilhelm 1,* 1 The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA; [email protected] (S.R.C.); [email protected] (E.R.G.); [email protected] (H.L.P.) 2 The Department of Biology, The University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-865-974-0665 Received: 7 August 2018; Accepted: 7 September 2018; Published: 11 September 2018 Abstract: The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures.
    [Show full text]