Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions
Total Page:16
File Type:pdf, Size:1020Kb
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 9-11-2018 Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions Samantha R. Coy University of Tennessee, Knoxville Eric R. Gann University of Tennessee, Knoxville Helena L. Pound University of Tennessee, Knoxville Steven M. Short The University of Toronto Mississauga Steven W. Wilhelm University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Recommended Citation Coy, S.R.; Gann, E.R.; Pound, H.L.; Short, S.M.; Wilhelm, S.W. Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018, 10, 487.https://doi.org/10.3390/v10090487 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. viruses Review Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions Samantha R. Coy 1 , Eric R. Gann 1 , Helena L. Pound 1 , Steven M. Short 2 and Steven W. Wilhelm 1,* 1 The Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA; [email protected] (S.R.C.); [email protected] (E.R.G.); [email protected] (H.L.P.) 2 The Department of Biology, The University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-865-974-0665 Received: 7 August 2018; Accepted: 7 September 2018; Published: 11 September 2018 Abstract: The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale “-omics” approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology. Keywords: eukaryotic algal virus; algal-NCLDV; Picornavirales; phytoplankton 1. Introduction Viruses infecting eukaryotic algae are extremely diverse. They have been reported with DNA or RNA genomes in various architectures (linear, circular, double-stranded, single-stranded, segmented) and sizes (4.4 to 638kb) [1]. Some viruses accomplish infection with just a few viral genes at their disposal, while others maintain a gene arsenal nearly 100 times that size. Viruses infecting algae influence large ecological and biogeochemical processes. They direct the evolution of hosts through predator-prey selection and genetic exchange, consequently influencing algal fitness, population dynamics, and ultimately, microbial community structure. Infection can also alter the composition and distribution of organic matter in the environment (a process referred to as the aquatic ”viral shunt” [2]) and influence particle size-distribution, nutrient cycling, and biological system activity (e.g., respiration [3]). While algal viruses are important members in many aquatic environments, their contribution to these processes at the global scale primarily arises when they infect and lyse abundant bloom-forming algae. This includes harmful bloom formers and ecosystem scale specialists like coccolithophores that form blooms large enough to be observed from outer space [4]. Viruses 2018, 10, 487; doi:10.3390/v10090487 www.mdpi.com/journal/viruses Viruses 2018, 10, 487 2 of 27 It is a relatively recent realization that algal viruses are ecologically significant. In fact, the whole history of algal virus research has occurred primarily in just the last half century (Figure1). While there have been sporadic observations of virus infection of algae cultures since the early 1970s [5,6], the importance of algal viruses in natural systems was brought into the limelight by a series of observations of virus-like-particles associated with important bloom-forming algae [7–9]. These findings inspired questions about the identity and evolutionary relationships within these virus-host systems. Such questions, however, required viruses to be isolated and genetically characterized. VirusesViruses 20182018, 10, ,x10 , 487 3 of3 27 of 26 FigureFigure 1. Timeline 1. Timeline of eukaryotic of eukaryotic algal algal virus virus resear researchch with with important important milestones milestones highlighted. highlighted. Colored Colored bars bars represent represent the the annual annual citations citations and and publications publications generated generated from a Webfrom of Science a Web ofCitation Science Report Citation using Report the field using tag the TS field = (algal tag virus) TS = (algalfor all virus)databases. for all The databases. search was The conducted search was on 8 conducted May 2018 onat 11:00 8 May a.m. 2018 Citation at 11:00 Report a.m. results Citation were visualizedReport as results heatmaps were using visualized custom as R heatmaps scripts. Electron using custom microgra R scripts.ph image Electron [10] and micrograph electrophoretic image gel [10 [11]] and reprinted electrophoretic by permiss gelion. [11] Network reprinted analysis by permission. [12] reprinted Network under authorityanalysis of Creative [12] reprinted Commons. under authority of Creative Commons. Viruses 2018, 10, 487 4 of 27 One of the first algal-virus systems to achieve “model” status were the double-stranded DNA (dsDNA) viruses that infect the unicellular, ex-symbiotic, green alga Chlorella [13]. The Chlorella virus-host model system remains the best characterized of all the algae-virus models, with genomes [14–18], transcriptomes [19,20], and proteomes [14] documented in the literature. Indeed, it was sequencing of the DNA polymerase B (polB) genes from Chlorella viruses PBCV-1 and NY-2A [21], and later from Micromonas pusilla virus SP1, that revealed a conserved amino acid sequence distinct from other known polB protein sequences. This observation enabled the development of degenerate PCR primers that selectively amplified these algal-virus polB genes [11,22]. The sequences of these PCR amplicons supported a unique monophyletic viral clade, now recognized as the family Phycodnaviridae of the Nucleocytoplasmic Large dsDNA Viruses (NCLDV). For a while the Phycodnaviridae was thought to be home to all of the large dsDNA algal viruses: perhaps even dominating the overall algal virus community. This perspective changed when sequencing of new isolates demonstrated that their “core” genes were more closely related to genes from the protist-infecting “giant viruses” of family Mimiviridae [23–25]. In general, algal-infecting viruses are recognized as members of one of these two families, though future work may challenge the monophyletic nature of these groups. For example, clustering of the Phycodnaviridae is at times disrupted when homologs from other cellular or viral families are included in phylogenetic reconstructions [26–28] There have also been increasing reports of single-stranded DNA (ssDNA) viruses, mostly infecting diatoms, RNA viruses (Table1)[ 29,30], and even parasites of these large algal viruses known as virophage [31,32]. The most informative reports on these systems have come from metagenomic and metatranscriptomic datasets that can detect the presence and activity of a wide range of DNA and RNA viruses. In turn, the known diversity of eukaryotic algal viruses has greatly expanded, at times even yielding putative full-length viral genome assemblies [12]. Perhaps most promising is the possibility of predicting virus-host relationships in silico [12,33,34], whereas traditional methods have relied on virus isolation from a relative few cultivated algae. Shotgun -omics further create the opportunity to identify virus-host pairs from environmental data and place them in semi-quantitative ecological context. Indeed, these studies may even serve as preliminary assessments of the future cultivation requirements for isolating new virus-host systems. This burgeoning scientific frontier necessitates a review on the known diversity of eukaryotic algal viruses, the molecular toolkit available for in situ studies on their ecology, and the direction aquatic virology is taking to adapt to these methodologies. 2. Diversity of Cultured Virus-Host Systems The diversity of algal viruses mirrors that of their hosts, bearing in mind that the name “algae” does not denote