Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans

Total Page:16

File Type:pdf, Size:1020Kb

Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans viruses Article Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans Eric Noel 1,2,† , Anna Notaro 3,4,† , Immacolata Speciale 3,5,† , Garry A. Duncan 1, Cristina De Castro 5,* and James L. Van Etten 1,6,* 1 Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA; [email protected] (E.N.); [email protected] (G.A.D.) 2 School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA 3 Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy; [email protected] (A.N.); [email protected] (I.S.) 4 Information Génomique et Structurale, Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7256, IMM FR3479, Institut de Microbiologie (FR3479), CEDEX 9, 13288 Marseille, France 5 Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy 6 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722, USA * Correspondence: [email protected] (C.D.C.); [email protected] (J.L.V.E.) † These authors contributed equally to this work. Abstract: The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, except for antigenic mutant virus P1L6, which has four of the five sugars. A combination of ge- netic and structural analyses indicates that the protein coded by PBCV-1 gene a111/114r, conserved in Citation: Noel, E.; Notaro, A.; all chloroviruses, is a glycosyltransferase with three putative domains of approximately 300 amino Speciale, I.; Duncan, G.A.; De Castro, C.; Van Etten, J.L. Chlorovirus PBCV-1 acids each. Here, in addition to in silico sequence analysis and protein modeling, we measured the Multidomain Protein A111/114R Has hydrolytic activity of protein A111/114R. The results suggest that domain 1 is a galactosyltransferase, Three Glycosyltransferase Functions domain 2 is a xylosyltransferase and domain 3 is a fucosyltransferase. Thus, A111/114R is the protein Involved in the Synthesis of Atypical likely responsible for the attachment of three of the five conserved residues of the core region of this N-Glycans. Viruses 2021, 13, 87. complex glycan, and, if biochemically corroborated, it would be the second three-domain protein https://doi.org/10.3390/v13010087 coded by PBCV-1 that is involved in glycan synthesis. Importantly, these findings provide additional support that the chloroviruses do not use the canonical host endoplasmic reticulum–Golgi glycosyla- Academic Editors: Jacques Le Pendu tion pathway to glycosylate their glycoproteins; instead, they perform glycosylation independent of and Göran Larson cellular organelles using virus-encoded enzymes. Received: 9 December 2020 Accepted: 8 January 2021 Keywords: glycosyltransferases; multidomain protein; N-glycan; chloroviruses; PBCV-1 Published: 10 January 2021 Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- ms in published maps and institutio- 1. Introduction nal affiliations. Glycosylation is an important post-translational modification that confers a diver- sity of structures and functions in both cell and virus biology. One of the most common forms of protein modification is N-linked glycosylation, in which a high mannose core is linked to the amide nitrogen of asparagine in the context of the conserved motif Asn–X– Copyright: © 2021 by the authors. Li- Ser/Thr. This attachment occurs early in protein synthesis, followed by a complex process censee MDPI, Basel, Switzerland. of trimming and remodeling of the oligosaccharide during transit through the endoplas- This article is an open access article mic reticulum (ER) and Golgi [1] producing glycoproteins with varying oligosaccharide distributed under the terms and con- structures. Typically, viruses use host-encoded glycosyltransferases (GT) and glycosidases ditions of the Creative Commons At- N tribution (CC BY) license (https:// located in the ER and Golgi to add and remove -linked sugar residues to/from virus creativecommons.org/licenses/by/ glycoproteins either co-translationally or shortly after translation of the protein. The viral 4.0/). glycoproteins are then often transported to the host plasma-membrane where progeny Viruses 2021, 13, 87. https://doi.org/10.3390/v13010087 https://www.mdpi.com/journal/viruses Viruses 2021, 13, x FOR PEER REVIEW 2 of 15 Viruses 2021, 13, 87 cated in the ER and Golgi to add and remove N-linked sugar residues to/from virus2 ofgly- 14 coproteins either co-translationally or shortly after translation of the protein. The viral glycoproteins are then often transported to the host plasma-membrane where progeny viruses bud though the membrane, and so the viruses only become infectious as they leave viruses bud though the membrane, and so the viruses only become infectious as they leave the cell [[2].2]. However, thethe largelarge dsDNA dsDNA chloroviruses chloroviruses in in the the family familyPhycodnaviridae Phycodnaviridaeare are interesting interest- because,ing because, unlike unlike other other viruses, viruses, they they encode encode most, most, if not if all, not of all, the of machinery the machinery to glycosylate to glyco- theirsylate major their capsidmajor proteinscapsid protei (MCP)ns independent(MCP) independent of the cellular of the organellescellular organelles [3,4]. Furthermore, [3,4]. Fur- thethermore, process the occurs process in the occurs cytoplasm, in the andcytoplasm, infectious and viruses infectious are formed viruses inside are formed the cell inside prior tothe cell cell lysis. prior Theto cell prototype lysis. The chlorovirus, prototype chlorovirus, Paramecium Paramecium bursaria chlorella bursaria virus chlorella (PBCV-1), virus has(PBCV-1), a 330-kb has genome a 330-kb that genome is predicted that is topredic encodeted to as encode many as as 400 many proteins, as 400 manyproteins, of which many areof which unusual are for unusual a virus for [5], a including virus [5], at including least 17 related at least to 17 various related aspects to various of carbohydrate aspects of metabolismcarbohydrate [6 metabolism]. [6]. The PBCV-1 MCP (also referred to asas Vp54)Vp54) isis codedcoded byby genegene a430la430l,, andand thethe proteinprotein has four four glycosylation glycosylation sites sites [7]. [7 ].The The predominant predominant oligosaccharide oligosaccharide is a nonasaccharide is a nonasaccharide (Fig- (Figureure 1) with1) with several several unique unique features, features, includin includingg the the following: following: (i) its (i) itsstructure structure does does not not re- resemblesemble any any structure structure previously previously reported reported in the in thethree three domains domains of life of life[8]; [(ii)8]; the (ii) four the fourgly- glycoformscoforms are generated are generated by the by non-stochiom the non-stochiometricetric presence presence of two ofmonosaccharides, two monosaccharides, L-arab- L-arabinoseinose (Araf) and (Ara Df-mannose) and D-mannose (Man); (iii) (Man); the most (iii) theabunda mostnt abundant glycoform glycoform consists of consists nine neu- of ninetral monosaccharide neutral monosaccharide residues residuesorganized organized in a highly-branched in a highly-branched fashion; (iv) fashion; none (iv)of the none N- oflinked the Nglycans-linked is glycans attached is to attached a typical to Asn–X– a typical(Thr/Ser) Asn–X–(Thr/Ser) consensus site consensus in the protein site in the[9]; protein(v) the glycans [9]; (v) the are glycans attached are to attached the protein to the by protein a β-glucose by a β -glucose(Glc) linkage, (Glc) linkage,which is which rare in is rarenature in natureand has and only has been only reported been reported in glyc inoproteins glycoproteins from froma few a organisms few organisms [10–13]; [10– and13]; and(vi) the (vi) glycoform the glycoform contains contains a dimethylated a dimethylated rhamnose rhamnose (Rha) (Rha)as theas capping the capping residue residue of the ofmain the chain, main a chain, hyper-branched a hyper-branched fucose (Fuc) fucose residue (Fuc) residueand two andRha tworesidues Rha residueswith opposite with oppositeconfigurations. configurations. Figure 1. StructureStructure of ofthe the N-glycan N-glycan attached attached to the to chlorovirus the chlorovirus PBCV-1 PBCV-1 major major capsid capsid protein protein (Vp54).(Vp54). Monosaccharides Monosaccharides (Man (Man and and Ara Araf)f )connected connected by by dashed dashed lines lines are are non-stoichiometric non-stoichiometric sub- sub- stituents. The The larger larger black black box box encloses encloses the the conserved conserved pentasaccharide pentasaccharide core core structure structure common common to to all chloroviruses analyzed to date. The The inner inner red red box box indicates indicates the the tetrasaccharide tetrasaccharide structure structure of of the the N-glycan of the antigenic mutant chlorovirus PIL6PIL6 [[6].6]. Interestingly, allall thethe chloroviruseschloroviruses studiedstudied toto date,date, includingincluding thosethose withwith differentdifferent hosthost specificities,specificities, have the capsid protein N-glycosylated with other types of oligosaccharides; however, allall chloroviruseschloroviruses shareshare thethe
Recommended publications
  • Chlorovirus: a Genus of Phycodnaviridae That Infects Certain Chlorella-Like Green Algae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2005 Chlorovirus: A Genus of Phycodnaviridae that Infects Certain Chlorella-Like Green Algae Ming Kang University of Nebraska-Lincoln, [email protected] David Dunigan University of Nebraska-Lincoln, [email protected] James L. Van Etten University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Kang, Ming; Dunigan, David; and Van Etten, James L., "Chlorovirus: A Genus of Phycodnaviridae that Infects Certain Chlorella-Like Green Algae" (2005). Papers in Plant Pathology. 130. https://digitalcommons.unl.edu/plantpathpapers/130 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Molecular Plant Pathology 6:3 (2005), pp. 213–224; doi 10.1111/j.1364-3703.2005.00281.x Copyright © 2005 Black- well Publishing Ltd. Used by permission. http://www3.interscience.wiley.com/journal/118491680/ Published online May 23, 2005. Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae Ming Kang,1 David D. Dunigan,1,2 and James L. Van Etten 1,2 1 Department of Plant Pathology and 2 Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA Correspondence — M. Kang, [email protected] ; J. L. Van Etten, [email protected] Abstract INTRODUCTION Taxonomy: Chlorella viruses are assigned to the family Phy- The chlorella viruses are large, icosahedral, plaque-form- codnaviridae, genus Chlorovirus, and are divided into ing, dsDNA viruses that infect certain unicellular, chlorella- three species: Chlorella NC64A viruses, Chlorella Pbi vi- like green algae (Van Etten et al., 1991).
    [Show full text]
  • Seasonal Determinations of Algal Virus Decay Rates Reveal Overwintering in a Temperate Freshwater Pond
    The ISME Journal (2016) 10, 1602–1612 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond Andrew M Long1 and Steven M Short1,2 1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada and 2Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h− 1. Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature.
    [Show full text]
  • Extended Evaluation of Viral Diversity in Lake Baikal Through Metagenomics
    microorganisms Article Extended Evaluation of Viral Diversity in Lake Baikal through Metagenomics Tatyana V. Butina 1,* , Yurij S. Bukin 1,*, Ivan S. Petrushin 1 , Alexey E. Tupikin 2, Marsel R. Kabilov 2 and Sergey I. Belikov 1 1 Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia; [email protected] (I.S.P.); [email protected] (S.I.B.) 2 Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia; [email protected] (A.E.T.); [email protected] (M.R.K.) * Correspondence: [email protected] (T.V.B.); [email protected] (Y.S.B.) Abstract: Lake Baikal is a unique oligotrophic freshwater lake with unusually cold conditions and amazing biological diversity. Studies of the lake’s viral communities have begun recently, and their full diversity is not elucidated yet. Here, we performed DNA viral metagenomic analysis on integral samples from four different deep-water and shallow stations of the southern and central basins of the lake. There was a strict distinction of viral communities in areas with different environmental conditions. Comparative analysis with other freshwater lakes revealed the highest similarity of Baikal viromes with those of the Asian lakes Soyang and Biwa. Analysis of new data, together with previ- ously published data allowed us to get a deeper insight into the diversity and functional potential of Baikal viruses; however, the true diversity of Baikal viruses in the lake ecosystem remains still un- Citation: Butina, T.V.; Bukin, Y.S.; Petrushin, I.S.; Tupikin, A.E.; Kabilov, known.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • DNA Viruses: the Really Big Ones (Giruses)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 5-2010 DNA Viruses: The Really Big Ones (Giruses) James L. Van Etten University of Nebraska-Lincoln, [email protected] Leslie C. Lane University of Nebraska-Lincoln, [email protected] David Dunigan University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Van Etten, James L.; Lane, Leslie C.; and Dunigan, David, "DNA Viruses: The Really Big Ones (Giruses)" (2010). Papers in Plant Pathology. 203. https://digitalcommons.unl.edu/plantpathpapers/203 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Annual Review of Microbiology 64 (2010), pp. 83–99; doi: 10.1146/annurev.micro.112408.134338 Copyright © 2010 by Annual Reviews. Used by permission. http://micro.annualreviews.org Published online May 12, 2010. DNA Viruses: The Really Big Ones (Giruses) James L. Van Etten,1,2 Leslie C. Lane,1 and David D. Dunigan 1,2 1. Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska 68583 2. Nebraska Center for Virology, University of Nebraska–Lincoln, Lincoln, Nebraska 68583 Corresponding author — J. L. Van Etten, email [email protected] Abstract Viruses with genomes greater than 300 kb and up to 1200 kb are being discovered with increas- ing frequency.
    [Show full text]
  • Meta-Transcriptomic Detection of Diverse and Divergent RNA Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Meta-transcriptomic detection of diverse and divergent 2 RNA viruses in green and chlorarachniophyte algae 3 4 5 Justine Charon1, Vanessa Rossetto Marcelino1,2, Richard Wetherbee3, Heroen Verbruggen3, 6 Edward C. Holmes1* 7 8 9 1Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 10 Environmental Sciences and School of Medical Sciences, The University of Sydney, 11 Sydney, Australia. 12 2Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical 13 Research, Westmead, NSW 2145, Australia. 14 3School of BioSciences, University of Melbourne, VIC 3010, Australia. 15 16 17 *Corresponding author: 18 Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 19 Environmental Sciences and School of Medical Sciences, 20 The University of Sydney, 21 Sydney, NSW 2006, Australia. 22 Tel: +61 2 9351 5591 23 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Table of Contents
    SEPTEMBER 2012 • VOLUME 86 • NO. 17 TABLE OF CONTENTS SPOTLIGHT Articles of Significant Interest Selected from This Issue by the 8919 Editors MINIREVIEW Targeted DNA Mutagenesis for the Cure of Chronic Viral Joshua T. Schiffer, Martine Aubert, 8920–8936 Infections Nicholas D. Weber, Esther Mintzer, Daniel Stone, and Keith R. Jerome STRUCTURE AND ASSEMBLY Cell Culture-Adaptive Mutations Promote Viral Protein-Protein Jieyun Jiang and Guangxiang Luo 8987–8997 Interactions and Morphogenesis of Infectious Hepatitis C Virus Biochemical Analysis of the Complex between the Tetrameric Janina S. Langner, Nina V. Fuchs, Jan 9079–9087 Export Adapter Protein Rec of HERV-K/HML-2 and the Hoffmann, Alexander Wittmann, Responsive RNA Element RcRE pck30 Bernhard Brutschy, Roswitha Löwer, and Beatrix Suess GENOME REPLICATION AND REGULATION OF VIRAL GENE EXPRESSION Drosophila melanogaster as a Model Organism for Bluetongue Andrew E. Shaw, Eva Veronesi, 9015–9024 Virus Replication and Tropism Guillemette Maurin, Najate Ftaich, Francois Guiguen, Frazer Rixon, Maxime Ratinier, Peter Mertens, Simon Carpenter, Massimo Palmarini, Christophe Terzian, and Frederick Arnaud Hepatitis D Virus Isolates with Low Replication and Epithelial- Hsuan Hui Shih, I-Jane Sheen, Chien- 9044–9054 Mesenchymal Transition-Inducing Activity Are Associated with Wei Su, Wei-Li Peng, Ling-Hui Lin, Disease Remission and Jaw-Ching Wu Latent HIV-1 Infection Occurs in Multiple Subsets of Lucy A. McNamara, Janani A. Ganesh, 9337–9350 Hematopoietic Progenitor Cells and Is Reversed by NF-␬B and Kathleen L. Collins Activation Cohesins Repress Kaposi’s Sarcoma-Associated Herpesvirus Horng-Shen Chen, Priyankara 9454–9464 Immediate Early Gene Transcription during Latency Wikramasinghe, Louise Showe, and Paul M.
    [Show full text]
  • Supporting Information
    Supporting Information Wu et al. 10.1073/pnas.0905115106 20 15 10 5 0 10 15 20 25 30 35 40 Fig. S1. HGT cutoff and tree topology. Robinson-Foulds (RF) distance [Robinson DF, Foulds LR (1981) Math Biosci 53:131–147] between viral proteome trees with different horizontal gene transfer (HGT) cutoffs h at feature length 8. Tree distances are between h and h-1. The tree topology remains stable for h in the range 13–31. We use h ϭ 20 in this work. Wu et al. www.pnas.org/cgi/content/short/0905115106 1of6 20 18 16 14 12 10 8 6 0.0/0.5 0.5/0.7 0.7/0.9 0.9/1.1 1.1/1.3 1.3/1.5 Fig. S2. Low complexity features and tree topology. Robinson-Foulds (RF) distance between viral proteome trees with different low-complexity cutoffs K2 for feature length 8 and HGT cutoff 20. The tree topology changes least for K2 ϭ 0.9, 1.1 and 1.3. We choose K2 ϭ 1.1 for this study. Wu et al. www.pnas.org/cgi/content/short/0905115106 2of6 Table S1. Distribution of the 164 inter-viral-family HGT instances bro hr RR2 RR1 IL-10 Ubi TS Photol. Total Baculo 45 1 10 9 11 1 77 Asco 11 7 1 19 Nudi 1 1 1 3 SGHV 1 1 2 Nima 1 1 2 Herpes 48 12 Pox 18 8 2 3 1 3 35 Irido 1 1 2 4 Phyco 2 3 2 1 8 Allo 1 1 2 Total 56 8 35 24 6 17 14 4 164 The HGT cutoff is 20 8-mers.
    [Show full text]
  • Briefcontents
    BRIEF CONTENTS SECTION I: INTRODUCTION 11. Picornaviruses 125 TO VIROLOGY Bert L. Semler, University of California, Irvine 1 2. Flaviviruses 137 1. Introduction to Virology 2 Richard Kuhn, Purdue University Nicholas H. Acheson, McGill University 1 3. Togaviruses 148 2. Virus Structure and Assembly 18 Milton Schlesinger, Washington University Stephen C. Harrison, Harvard University in St. Louis Sondra Schlesinger, Washington University 3. Virus Classification: The World in St. Louis of Viruses 31 Revised by: Richard Kuhn, Purdue University Nicholas H. Acheson, McGill University 1 4. Coronaviruses 159 4. Virus Entry 45 Mark Denison, Vanderbilt University Ari Helenius, Swiss Federal Institute of Michelle M. Becker, Vanderbilt University Technology, Zurich SECTION II: VIRUSES OF SECTION IV: NEGATIVE-STRAND BACTERIA AND ARCHAEA AND DOUBLE-STRANDED RNA VIRUSES OF EUKARYOTES 5. Single-Stranded RNA Bacteriophages 59 1 5. Paramyxoviruses and Rhabdoviruses 175 Jan van Duin, University of Leiden Nicholas H. Acheson, McGill University 6. Microviruses 69 Daniel Kolakofsky, University of Geneva Christopher Richardson, Dalhousie University Bentley Fane, University of Arizona Revised by: Laurent Roux, University of Geneva 7. Bacteriophage T7 77 1 6. Filoviruses 188 William C. Summers, Yale University Heinz Feldmann, Division of Intramural Research, MAID, NIH 8. Bacteriophage Lambda 85 Hans-Dieter Klenk, University of Marburg Michael Feiss, University of Iowa Nicholas H. Acheson, McGill University 9. Viruses of Archaea 97 17. Bunyaviruses 200 David Prangishvili, Institut Pasteur Richard M. Elliott, University of St. Andrews SECTION III: POSITIVE-STRAND 1 8. Influenza Viruses 210 RNA VIRUSES OF EUKARYOTES DaliusJ. Briedis, McGill University 1 O. Cucumber Mosaic Virus 112 1 9. Reoviruses 225 Ping XΜ, J.
    [Show full text]
  • Chlorella Viruses Evoke a Rapid Release of K+ from Host Cells During the Early Phase of Infection
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 3-15-2008 Chlorella Viruses Evoke a Rapid Release of K+ from Host Cells During the Early Phase of Infection Monika Neupartl Institute of Botany, Technische Universität Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany Christine Meyer Institute of Botany, Technische Universität Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany Isabell Woll Institute of Botany, Technische Universität Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany Florian Frohns Institute of Botany, Technische Universität Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Virology Commons Neupartl, Monika; Meyer, Christine; Woll, Isabell; Frohns, Florian; Kang, Ming; Van Etten, James L.; Kramer, Detlef; Hertel, Brigitte; Moroni, Anna; and Thiel, Gerhard, "Chlorella Viruses Evoke a Rapid Release of K+ from Host Cells During the Early Phase of Infection" (2008). Virology Papers. 165. https://digitalcommons.unl.edu/virologypub/165 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Monika Neupartl, Christine Meyer, Isabell Woll, Florian Frohns, Ming Kang, James L. Van Etten, Detlef Kramer, Brigitte Hertel, Anna Moroni, and Gerhard Thiel This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/165 Published in Virology 372:2 (March 15, 2008), pp.
    [Show full text]
  • High-Level Diversity of Tailed Phages, Eukaryote-Associated Viruses, and Virophage-Like Elements in the Metaviromes of Antarctic Soils
    High-Level Diversity of Tailed Phages, Eukaryote-Associated Viruses, and Virophage-Like Elements in the Metaviromes of Antarctic Soils a,d b a,d d b c a,d Olivier Zablocki, Lonnie van Zyl, Evelien M. Adriaenssens, Enrico Rubagotti, Marla Tuffin, Stephen Craig Cary, Don Cowan Downloaded from Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africaa; Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, South Africab; The International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealandc; Genomics Research Institute, University of Pretoria, Pretoria, South Africad The metaviromes of two distinct Antarctic hyperarid desert soil communities have been characterized. Hypolithic communities, cyanobacterium-dominated assemblages situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, showed higher virus diversity than surface soils, which correlated with previous bacterial community studies. Prokaryotic vi- ruses (i.e., phages) represented the largest viral component (particularly Mycobacterium phages) in both habitats, with an identi- http://aem.asm.org/ cal hierarchical sequence abundance of families of tailed phages (Siphoviridae > Myoviridae > Podoviridae). No archaeal viruses were found. Unexpectedly, cyanophages were poorly represented in both metaviromes and were phylogenetically distant from currently characterized cyanophages. Putative phage genomes were assembled and showed a high level of unaffiliated genes, mostly from hypolithic viruses. Moreover, unusual gene arrangements in which eukaryotic and prokaryotic virus-derived genes were found within identical genome segments were observed. Phycodnaviridae and Mimiviridae viruses were the second-most- abundant taxa and more numerous within open soil. Novel virophage-like sequences (within the Sputnik clade) were identified.
    [Show full text]
  • Host Range and Coding Potential of Eukaryotic Giant Viruses
    viruses Review Host Range and Coding Potential of Eukaryotic Giant Viruses Tsu-Wang Sun 1,2 , Chia-Ling Yang 1, Tzu-Tong Kao 1 , Tzu-Haw Wang 1, Ming-Wei Lai 1 and Chuan Ku 1,2,* 1 Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; [email protected] (T.-W.S.); [email protected] (C.-L.Y.); [email protected] (T.-T.K.); [email protected] (T.-H.W.); [email protected] (M.-W.L.) 2 Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan * Correspondence: [email protected] Received: 7 November 2020; Accepted: 19 November 2020; Published: 21 November 2020 Abstract: Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions.
    [Show full text]