Master's Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Master's Thesis MASTER'S THESIS Phase-0 study of a Disaster Management Satellite Constellation with a Focus on the Indian Subcontinent Eline Conijn 2015 Master of Science (120 credits) Space Engineering - Space Master Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Master Thesis Phase-0 study of a disaster management satellite constellation with a focus on the Indian subcontinent Eline Conijn Supervisors Narayan Prasad Nagendra Dhruva Space Bangalore, India Marappa KRISHNASWAMY NIU Nagercoil, India Peter von Ballmoos Institut de Recherche en Astrophysique et Planétologie Toulouse, France Johnny Ejemalm Lulea University of Technology Kiruna, Sweden April 13, 2015 Opgedragen aan Oma Conijn Voor altijd in herinnering Acknowledgment Foremost, I would like to express my sincere gratitude to my direct advisor, Narayan Prasad Nagendra for the continuous support of my master thesis and research, for his patience, motiva- tion, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master thesis. Also I am for ever grateful to him for offering an opportunity of a life time to come to India and showing me around this amazing country. The many trips on the back of the motor cycle navigating the buzzing streets filled with life have made a lasting impression. And expressed in his own words, it was also often a humbling experience. Besides my advisor, I would like to thank the rest of my thesis supervisors: Marappa Krish- naswany, Peter von Ballmoos and Johnny Ejemalm, for their encouragement, insightful com- ments, and hard questions. My thanks are also given to the many former ISRO scientists I had the pleasure to meet and who gave me insight into the Indian space industry. Also many thanks to William B. Gail, who gave me great advice about the cloud coverage. Special thanks are given to my dear colleagues at Dhruva Space, Sai, Divya and Ferran for their advice during the thesis and the "secret missions" to buy the "boss" a birthday present or eat a chicken hamburger. I am also very grateful for my Indian host family, as well as all the extending family which I had the pleasure to get to know, including all the aunties and uncles, cousins, nephews and nieces, in-laws and grandparents. They made me feel welcome, made certain that I was well taken care off, made me try new cuisine, made me part of their world including the many rituals and made me laugh. I pay tribute to all my fellow SpaceMasters, for making the two year adventure memorable, interesting and amazing. We were not just fellow students and friends, we became part of a special family. Lastly but not least, I would like to thank my parents Gijs and Adri Conijn-Meiborg and my brother Arnoud. Even when they were worried when I was so far away in countries slightly or very different from the Netherlands they were always supportive and encouraging. Résumé This report explores the feasibility of a small satellite constellation used for disaster management in India. It shows that a small satellite constellation for the Indian subcontinent is not feasible based on the requirements and constraints set in this report and thus not worth to pursue in this form. Although it has been made clear that effective disaster management is a must, especially in India and that remote sensing from space is an excellent tool for this purpose, based on the spatial and temporal requirements derived from the occurrence and impact of the disasters, it would be impossible to propose a mission within the constraints set by this report. After a careful analysis of the Indian space budget, existing missions and the economical impact of the disasters, it is determined that a disaster management mission for the Indian subcontinent has a maximum mission budget of 30 million USD, a mass constraint of 500 kg and a volume constraint of 5 m3 for all the satellites in the constellation combined. The two instrument types with proven capabilities in remote sensing disasters, microwave and passive optical instruments, have each its own reasons to be unsuitable for a small satellite constellation. Active microwave instruments, more specific SAR, are proven to be useful in detecting and monitoring disasters. However the instruments require an antenna panel that would be too large to fit on a small satellite to meet the spatial requirements or the constellation requires too many satellites and thus exceeding the budget to meet the required revisiting time. The number of satellites and size of the SAR antenna panel is determined with a developed algorithm in MATLAB. Optical instruments are not suitable for a mission dedicated to disaster management due to the cloud cover visibility constraint and limitations set by the usage of indexes. Denna rapport undersöker genomförbarheten av ett litet satellitkonstellation som används för katastrofhantering i Indien. Den visar att en liten satellitkonstellation för den indiska subkonti- nenten är inte möjligt utifrån de krav och begränsningar som anges i denna rapport och därmed inte värt att fortsätta i denna form. Även om det har gjorts klart att en effektiv hantering av katastrofer är ett måste, särskilt i Indien och att fjärranalys från rymden är ett utmärkt verktyg för detta ändamål, bygger på de rumsliga och tidskrav som härrör från förekomsten och effek- terna av de katastrofer, skulle det vara omöjligt att föreslå ett uppdrag inom de begränsningar som framgår av denna rapport. Efter en noggrann analys av den indiska rymdbudget, befintliga uppdrag och de ekonomiska effekterna av katastrofer är det bestämt att en katastrofuppdrag för den indiska subkontinenten har en maximal budget uppdrag på 30 miljoner USD, en massa hinder på 500 kg och en volymbegränsning på 5 m3 för alla satelliter i konstellationen kombineras. De två instrumenttyper med bevisad kapacitet i fjärranalys katastrofer, mikrovågsugn och passiva op- tiska instrument, har vardera sina egna skäl att vara olämpliga för en liten satellitkonstellation. Aktiva mikrovågsinstrument, mer specifik SAR, har visat sig vara användbart för att upptäcka och övervaka katastrofer. Men instrumenten kräver en antenn panel som skulle vara för stor för att passa på en liten satellit för att uppfylla utrymmeskrav eller konstellationen kräver alltför många satelliter och därmed överskrider budgeten för att uppfylla kraven återbesök tiden. Antalet satelliter och storlek SAR antennpanelen bestäms med en utvecklad algoritm i MATLAB. Optiska instrument är inte lämpliga för ett uppdrag tillägnad katastrofhantering på grund av molntäcke synlighet tvång och begränsningar som fastställts av användningen av index. Abbreviations AC Alarm and Crisis AVHRR Advanced Very High Resolution Radiometer CACOLA Climatic Atlas of Clouds Over Land and Ocean DDI Daily Drought Index DEM Digital Elevation Model DInSAR Differential Interferometric Synthetic Aperture Radar GSD Ground Spacing Distance InSAR Interferometric Synthetic Aperture Radar ISCPP Iternational Satellite Cloud Climatology Project INR INdian Rupies IR Infra Red ISRO INdian Space Research Organization KP Knowledge and Prevention NDVI Normalized Difference VegetationIndex NIR Near Infra Red LEO Low Earth Orbit PC Post Crisis damage SAR Synthetic Aperture Radar SWIR Short Wave Infra Red TIR ThermalInfra Red UN United Nations USD United States Dollars VIS VISible i Symbols 3 Ae effective area of SAR panel m 3 ASAR area of SAR panel m awa azimuth impulse response broadening - factor awr range impulse response broadening fac- - tor c speed of light 299792458 m=s FN system noise factor for the receiver - Ga Antenna gain - K Design margin 1-3 k Boltzmann’s constant 1.3810−23J=K La length of the SAR panel m Latmos atmospheric loss factor due to the prop- - agating wave Lion loss factor due to ionosphere - Lradar microwave transmission loss factor due - to miscellaneous sources N nominal scene noise temperature 290 K NEσ0 Noise-equivalent sigma-zero - −1 Pavg average power at transceiver W (Js ) −1 Pr received power W (Js ) −1 Pt transmitted power W (Js ) R Range vector from target to antenna m Ru Unambiguous range m SNR Signal-to-Noise ratio - vx satellite speed in slong track direction m=s Wa width of the SAR panel m η efficiency of SAR panel 0.6 λ wavelength m ρy slant-range resolution required m σ target radar cross section m2 ! angular frequency rads−1 ii Contents 1 Introduction 1 2 Disasters and their remote sensing requirements2 2.1 Disasters in India and their impact.......................... 2 2.1.1 Disaster definition ............................... 2 2.1.2 Disaster data.................................. 2 2.1.3 Indian disaster scenario ............................ 3 2.1.4 Disasters, poverty and development...................... 6 2.1.5 Disaster Management ............................. 7 2.2 Remote sensing of disasters .............................. 8 3 Small satellites 16 3.1 Definition........................................ 16 3.2 Cost estimation disaster monitor constellation mission for India.......... 16 3.3 Constraints ....................................... 17 3.3.1 Mass....................................... 17 3.3.2 Volume ..................................... 17 3.3.3 Power ...................................... 18 4 Satellite constellations 19 4.1 Possible constellations ................................. 19 4.1.1 Sun synchronous orbits ............................ 19 5 Feasibility of microwave instruments for the a small satellite constellation
Recommended publications
  • Strategic Assessment, Vol 16, No 1
    Volume 16 | No. 1 | April 2013 Leading from Behind: The “Obama Doctrine” and US Policy in the Middle East | Sanford Lakoff Eleven Years to the Arab Peace Initiative: Time for an Israeli Regional Strategy | Ilai Alon and Gilead Sher The Emergence of the Sunni Axis in the Middle East | Yoel Guzansky and Gallia Lindenstrauss Islam and Democracy: Can the Two Walk Together? | Yoav Rosenberg The US and Israel on Iran: Whither the (Dis)Agreement? | Ephraim Kam Walking a Fine Line: Israel, India, and Iran | Yiftah S. Shapir Response Essays Civilian Casualties of a Military Strike in Iran | Ephraim Asculai If it Comes to Force: A Credible Cost-Benefit Analysis of the Military Option against Iran | Amos Yadlin, Emily B. Landau, and Avner Golov המכון למחקרי ביטחון לאומי THE INSTITUTE FOR NATIONAL SECURcITY STUDIES INCORPORATING THE JAFFEE bd CENTER FOR STRATEGIC STUDIES Strategic ASSESSMENT Volume 16 | No. 1 | April 2013 CONTENTS Abstracts | 3 Leading from Behind: The “Obama Doctrine” and US Policy in the Middle East | 7 Sanford Lakoff Eleven Years to the Arab Peace Initiative: Time for an Israeli Regional Strategy | 21 Ilai Alon and Gilead Sher The Emergence of the Sunni Axis in the Middle East | 37 Yoel Guzansky and Gallia Lindenstrauss Islam and Democracy: Can the Two Walk Together? | 49 Yoav Rosenberg The US and Israel on Iran: Whither the (Dis)Agreement? | 61 Ephraim Kam Walking a Fine Line: Israel, India, and Iran | 75 Yiftah S. Shapir Response Essays Civilian Casualties of a Military Strike in Iran | 87 Ephraim Asculai If it Comes to Force: A Credible Cost-Benefit Analysis of the Military Option against Iran | 95 Amos Yadlin, Emily B.
    [Show full text]
  • Satellite Characterization, Classification, and Operational Assessment Via the Exploitation of Remote Photoacoustic Signatures
    Satellite Characterization, Classification, and Operational Assessment Via the Exploitation of Remote Photoacoustic Signatures Justin Spurbeck1 The University of Texas at Austin Moriba K. Jah, Ph.D.2 The University of Texas at Austin Daniel Kucharski, Ph.D.3 Space Environment Research Centre & The University of Texas at Austin James C. S. Bennett, Ph.D.4 EOS Space Systems & Space Environment Research Centre James G. Webb, Ph.D.5 EOS Space Systems ABSTRACT Current active satellite maneuver detection techniques have the ability to detect maneuvers as quickly as fifteen minutes post maneuver for large delta-v when using angles only optical tracking. Medium to small magnitude burn detection times range from 6-24 hours or more. Small magnitude burns may be indistinguishable from natural perturbative effects if passive techniques are employed. Utilizing a photoacoustic signature detection scheme would allow for near real time maneuver detection and spacecraft parameter estimation. We define the acquisition of high rate photometry data as photoacoustic sensing because the data can be played back as an acoustic signal. Studying the operational frequency spectra, profile, and aural perception of an active satellite event such as a thruster fire or any on-board component activation will provide unique signature identifiers that support Resident Space Object (RSO) characterization efforts. A thruster fire induces vibrations in a satellite body which then modulate incident rays of light. If the reflected photon flux is sampled at a sufficient rate, the change in light intensity due to the propulsive event can be detected. Sensing vibrational mode changes allows for a direct timestamp of thruster fire events and thus makes possible the near real time estimation of spacecraft delta-v and maneuver type if coupled with active observations immediately post maneuver.
    [Show full text]
  • Technical Profile 4
    Technical Profile 4 General Specifications • Orbital location 65° East Scheduled for launch in 2013, Spacecom’s AMOS-4 satellite will establish a new orbital position at 65°E, providing a full range of • Frequency band Ku, Ka satellite services for India, Southeast Asia, Russia, the Middle East • Number of available and other additional service areas. Ku-band Transponders 8 x 108MHz • Number of available AMOS-4's multiple Ku and Ka transponders create a powerful platform, Ka-band Transponders 4 x 216MHz enabling a wide range of cross-band, cross-beam connectivity options. For our customers, this means extensive broadcast and broadband • Service areas reach into the vast urban and rural areas of these regions. Available - Ku-band beams: satellite services for customers include Direct-To-Home (DTH), video two shaped steerable beams covering Russia distribution, VSAT communications and broadband Internet. and India with optional steering to: Southeast Asia, the Middle East, Central Asia, India, South Africa and Central East Europe With its new orbital slot, additional capacity, expanded coverage areas and cross-region connectivity, AMOS-4 positions Spacecom at the - Ka-band beam: one shaped steerable beam covering the Middle forefront of international satellite operators delivering comprehensive East. Optional steering to: Russia, India, China, satellite solutions. Our constellation, which provides comprehensive Central Asia, Southeast Asia, and South Africa coverage for Europe, Africa and the Middle East, also includes our AMOS-2 and AMOS-3 satellites, co-located at the 4°W orbital "Hot • Full cross beam connectivity Ku to Ku Spot”, and AMOS-5 located at 17°E. • Full cross band connectivity Ka to Ku – U/L in Ka beam and D/L in any Ku beam • Expected Launch date .............................................2013 space to expand 44 47 49 51 53 India Beam (Ku-1) Parameters Number of Transponders ..............
    [Show full text]
  • AMOS-5 Handnook
    AMOS-4 Ku-2 Beam Technical Handbook / Version 1.3 January 2015 This document contains proprietary information of Space-Communication Ltd., and may not be reproduced, copied, disclosed or utilized in any way, in whole or in part, without the prior written consent of Space-Communication Ltd. 1. INTRODUCTION Launched in 2013, Spacecom’s AMOS-4 satellite established a new orbital position at 65°E, providing a full range of satellite services for Asia, Russia, the Middle East as well as other service areas. Picture 1- AMOS-4 Deployed View AMOS-4 Technical Specifications / Space-Communications Ltd. th Gibor Sport Building, 20 fl. 7 Menachem Begin St. Ramat-Gan, 52521, Israel Page 2 of 6 Tel. +972 3 7551000 Fax + 972 3 7551001 email: [email protected] 2. GENERAL SPECIFICATIONS Orbital location..........................................................65° East Launch date...............................................................August 2013 Number of available Ku-band Transponders…………..4 x 108MHz Ku-2 beam coverage……………………………………………....Steerable beam 3. FREQUENCY BANDS AND POLARIZATION Uplink frequencies...................................................... 13.00 to 13.25 GHz 13.75 to 14.00 GHz Vertical/ Horizontal Downlink frequencies................................................. 10.70 to 10.59 MHz 11.20 to 11.45 MHz Vertical/ Horizontal The channels' connectivity is fully flexible. AMOS-4 Technical Specifications / Space-Communications Ltd. th Gibor Sport Building, 20 fl. 7 Menachem Begin St. Ramat-Gan, 52521, Israel Page 3 of 6 Tel. +972 3 7551000 Fax + 972 3 7551001 email: [email protected] 4. PAYLOAD CHARACTERISTICS 4.1. EIRP at Beam Peak Band Ku-2 EIRP [dBW] 91.5 4.2. G/T at Beam Peak Band Ku-2 G/T [dB/K] 3.3 4.3.
    [Show full text]
  • D Ossier De Pres Se
    20 Juillet 2017 Venµs (Vegetation and Environment monitoring on a New Microsatellite) PRESSE DE OSSIER D 1 Sommaire INTRODUCTION…………………………………………………. 3 Venus : un satellite remarquable pour trois raisons………3 Un nouvel outil contre le changement climatique………….4 Les objectifs de la mission…………………………................5 Les acteurs de la mission……………………………...............5 L’historique de Venus……………………………………..........6 Un instrument de pointe……………………………………..….7 Une mission innovante……………………………………….....8 Une coopération internationale exemplaire……………..…..9 Un choix de sites géographiques varié………………….…10 Des applications pour des secteurs variés……………..…11 Géographie des 110 sites retenus dans le monde……….12 2 INTRODUCTION Jean-Yves Le Gall, Président du CNES : « Alors que la COP21 et la COP22 ont mis en exergue le rôle fondamental des satellites pour l’étude et la préservation du climat, je me réjouis de voir que les meilleurs ingénieurs du spatial au niveau mondial ont développé ensemble Venµs, qui aidera la communauté internationale à lutter contre le changement climatique et que cette coopération va se poursuivre». Avi Blasberger, Directeur de l'Agence Spatiale Israélienne au Ministère de la Science et de la Technologie : « Venµs est le premier satellite de recherche pour l'environnement conçu par Israël, conjointement avec la France. Il est également le plus grand projet de l'Agence Spatiale Israélienne et nous sommes heureux qu'il ait été créé avec la France. Le lancement du Satellite "Venµs " vient juste avant la célébration des 70 ans des relations étroites d'Israël avec la France, qui seront fêtées l'année prochaine par le biais de différentes activités en France et en Israël. Les capacités de ce satellite démontrent l'innovation et l'audace Israélienne combinée à l’excellence française.
    [Show full text]
  • OFEK-9 Soars Into Space
    A MONTHLY REPORT COVERING NEWS AND INVESTMENT OPPORTUNITIES JOSEPH MORGENSTERN, PUBLISHER July 2010 Vol. XXV Issue No.7 You are invited to visit us at our website: http://ishitech.co.il OFEK-9 Soars into Space Towards the end of With the launch of Ofek-9, Israel has six spy satel- June Israel launched lites in space. a spy satellite from Defense News is a leading international news a base in the south weekly covering the global defense industry. of the country, the Barbara Opall-Rome, the Defense News’ Israeli defence ministry said, with the device report- edly capable of monitoring arch-foe Iran. co.il “A few minutes ago the State of Israel launched http://ishitech. the Ofek-9 (Horizon-9) satellite from the Pal- machim base,” the ministry said. “The results of the launch are being examined by the technical In this Issue team.” It gave no details on the satellite, but public Ofek-9 soars into space radio said it, like its predecessors in the Ofek BiolineRX deal with Cypress Bioscience worth up to $365m series, were capable of taking high resolution Merck Serono to expand Israel operations pictures and aimed at monitoring Iran’s nuclear Collagen made from transgenic tobacco plants Economic Developments Q1 2010 programme. Computers used in drive to test stress Computers used in drive to test stress The radio said the satellite was developed by Diamonds in space Israel Aircraft Industries and launched on a Sha- Nano-diamonds are forever “Bad Name” vit rocket. “A Nice Shower” Odds & Ends Israel, regards Iran as its principal threat after Medtronic invests $70m in cardiology co BioControl repeated predictions by the Islamic republic’s hardline President Mahmoud Ahmadinejad of the Jewish state’s demise.
    [Show full text]
  • Amos Free Channels
    Amos free channels click here to download SatBeams - Satellite charts (channels) Amos 3 (Amos 60) / Amos 7 (Asiasat 8) / Thor 3. Television channels at satellites Amos 3 and Amos 7 [4° West]. Frequency and Polarisation V. SR FEC 2/3. Modulation DVB-S2 8PSK. Satellite. Amos 3/7 at °W - LyngSat Channel Name, System Encryption, SR-FEC SID- VPID, ONID-TID C/N lock 0, Knesset Channel, DVB-S, /3 1 - ?-?. Logo, Channel Name, Position, Satellite, Beam, EIRP. Channel 10, °W, Amos 7 · Middle East, 0. LyngSat Stream. Channel 20, LyngSat Stream · Hala TV, °. Amos 2/3/7, West, satellite Amos 2/3 TV, satellite radio channels 4 West, transponder Amos 2/3. Free To Air TV-channels (DVB-S / MPEG-2 / FTA): . [url=www.doorway.ru sat/beam/44/www.doorway.ru][img]www.doorway.ru Amos 3 (°W) - All transmissions Orbital position, Satellite, www.doorway.ru, News, channels, Free To Air only, Longitude, Declination now, Max . Disney Channel Hungary & Czechia, Hungary, Children, T-Home, Conax, , 48, hun. What equipment do I need to access the AMOS services? Basically all you need is What kind of channels are being broadcasted on AMOS? AMOS broadcasts . free to air channels on amos: *Wassaman TV *NET2 *eGhana *RIG TV *Kingdom *Fashion TV Africa *RR Promo *TV Madagascar *NEWTV *LC2/AFNEX. V, Channel Ten, Addresses, DVB-S2/ . V, Kennis Music Channel, DVB- S/MPEG -4, 42, 41 .. , V, TV 5 Monde Afrique, Addresses · Free to Air. AMOS 4 (65'E) www.doorway.ru All Fta Channels www.doorway.ru Plus www.doorway.ru TV www.doorway.ru 24 www.doorway.ru Sports www.doorway.ru Utsav www.doorway.rus TV www.doorway.ruya TV www.doorway.ru World TV 9.
    [Show full text]
  • October 2016 ASTRO-H Spacecraft Fragments Inside
    National Aeronautics and Space Administration OrbitalQuarterly Debris News Volume 20, Issue 4 October 2016 ASTRO-H Spacecraft Fragments Inside... During Payload Check-out Operations New SOZ Breakup in July 2016 2 The ASTRO-H/Hitomi/New X-Ray Telescope actual rotation of the spacecraft. The ACS assessed the BeiDou G2 Spacecraft (NeXT) high energy astrophysics observatory satellite spacecraft to be in a critical situation and attempted to Fragments in GEO Orbit 2 experienced an operationally-induced fragmentation use the RCS to enter a Safe-Hold mode. Unfortunately, event on 26 March 2016 at approximately 1:42 GMT. incorrect thruster control parameters led to the thrusters WorldView 2 Spacecraft The spacecraft (International Designator 2016-012A, increasing the angular acceleration of the spacecraft. As Fragments in July 2016 3 U.S. Strategic Command [USSTRATCOM] Space rotational speed exceeded design parameters, several Indian RISAT-1 Spacecraft Surveillance Network [SSN] catalog number 41337), major components separated from the spacecraft, Experiences Possible managed and operated by the Japan Aerospace leading to mission loss. JAXA post mortem analyses Fragmentation 4 Exploration Agency (JAXA) but including payloads from NASA/Goddard Space continued on page 2 Disposal of GOES-3 4 Flight Center, the Canadian UNCOPUOS Reaches Space Agency, and the European Consensus on First Set of Space Agency, had concluded Guidelines for Long-term its Phase 0 Critical Operations Sustainability of OSA 5 Phase and was approximately 60% complete in its Initial Changes to ODPO Website 6 Function Check Phase. The ISS Debris Avoidance Process 7 spacecraft had been on-orbit slightly over one month and CubeSat PMD by Drag was in a 31.0° inclination, 578 Enhancement 8 by 536 km orbit at the time of Abstracts 10 the event.
    [Show full text]
  • Alex Friedman
    From small dream to brilliant reality Israeli Space Program History by Alexander Friedman My life short story I was borne in 1950 in Moscow – Russia. Short time after my born my father was arrested together with many other “Hasidic” people and send to labor camp in Kazakhstan. Up to age 6.5 years I never meet my father. First my years i live at my Grandparents house in Moscow My pillars Schoolboy in Russia Making “Alia” יב' כסלו תשל"א )10.12.1970( My family after alia My short CV At 1967 I start my study in the state University of Leningrad (1967- 1970) After Alia I continue my study in Jerusalem Hebrew University (1971 – 1973). In 1974 I was Graduated as M. Sc. In Applied Mathematics by Jerusalem Hebrew University. Space Department. 1976 - 1979 INF operational research department manager 1979 – 1980 Systems design & analysis at MBT/IAI My short CV (cont.) 1981- 1988 Founder & first manager of the System Engineering department at MBT SPACE 1990 - 2009 System Engineering manager of AMOS1/2/3 Communication satellites programs in IAI 2009 - 2011 AMOS 5 Technical Monitoring team manager 2011 - 2014 Satellites sub systems Manager in Spacecom Ltd. Deeply involved in AMOS 6 program 2015 – 2019 - System Engineering manager & Mission Director of “Beresheet” Lunar Lander in SpaceIL The Beginning Somewhere in 1980 Israeli Government decide to approve ambitious secret space program – design & development of small reconnaissance satellites that will launched from Israel. IAI (Israeli Aircraft Industry) was defined as the prime contractor for the satellite design & development Small group of engineers in IAI was teamed as a task team for this project.
    [Show full text]
  • An Examination and Revision of the Love Attitude Scale in Serbia
    An Examination and Revision of the Love Attitude Scale in Serbia Bojan Todosijević1, Aleksandra Arančić and Snežana Ljubinković Deparment of Psychology, University of Novi Sad, Serbia Abstract The research reports on results of an initial application of the Love Attitude Scale (Hendrick & Hendrick, 1986) in Serbia. The study was conducted on the sample of 127 respondents, mainly of adolescent age, from Subotica, Serbia. We explored the factor structure of the Love Attitude Scale, analyzed relationships between its subscales, and examined relevant correlates of its dimensions. We also performed extensive item analysis of the scale, and proposed several new items for the use in the revised Love Attitude Scale for Serbia. Correlates of the revised subscales correspond to those obtained with the original scale and in other countries. The results confirm cross-cultural stability of the six-dimensional structure of the Love Attitude Scale. It was concluded that the Serbian adaptation was successful, and that the translated and slightly revised scale can be used as a valid instrument for the assessment of the six love styles. Keywords: Love styles; factor analysis; romantic behavior; Serbia For many years academic psychologists had not been interested in research on love. However, the last two decades witnessed rising interest in this aspect of human psychology with many developments and research programs. One of the outcomes is a number of operationalizations of different attitudes to love, love styles, or dimensions of love. Some examples are Rubin's (1970) Love Scale, the Love Scale developed by Munro and Adams (1978), the „Erotometer‟ developed by Bardis (1978), and Sternberg‟s Triangular Love Scale (1986, 1987, 1997).
    [Show full text]
  • The IDF on All Fronts Dealing with Israeli Strategic Uncertainty ______
    FFooccuuss ssttrraattééggiiqquuee nn°° 4455 bbiiss ______________________________________________________________________ The IDF on All Fronts Dealing with Israeli Strategic Uncertainty ______________________________________________________________________ Pierre Razoux August 2013 Laboratoire de Recherche sur la Défense The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental, non-profit organization. As an independent think tank, Ifri sets its own agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With office in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of the European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-36567-192-7 © Ifri – 2013 – All rights reserved All requests for information, reproduction or distribution may be addressed to: [email protected]. Ifri Ifri-Bruxelles 27 rue de la Procession Rue Marie-Thérèse, 21 75740 Paris Cedex 15 – FRANCE 1000 – Bruxelles – BELGIQUE Tel : +33 (0)1 40 61 60 00 Tel : +32 (0)2 238 51 10 Fax : +33 (0)1 40 61 60 60 Fax : +32 (0)2 238 51 15 Email : [email protected] Email : [email protected] Website : www.ifri.org “Focus stratégique” Resolving today’s security problems requires an integrated approach. Analysis must be cross-cutting and consider the regional and global dimensions of problems, their technological and military aspects, as well as their media linkages and broader human consequences.
    [Show full text]
  • Burned Area Mapping Using Multi-Temporal Sentinel-2 Data by Applying the Relative Differenced Aerosol-Free Vegetation Index (Rdafri)
    remote sensing Article Burned Area Mapping Using Multi-Temporal Sentinel-2 Data by Applying the Relative Differenced Aerosol-Free Vegetation Index (RdAFRI) Manuel Salvoldi 1 , Gil Siaki 2, Michael Sprintsin 3 and Arnon Karnieli 1,* 1 The Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel; [email protected] 2 Jewish National Fund-Keren Kayemet LeIsrael, Southern Region’s Forestry Division, Gilat Center 85105, Israel; [email protected] 3 Jewish National Fund-Keren Kayemet LeIsrael, Land Development Authority, Eshtaol 99775, Israel; [email protected] * Correspondence: [email protected]; Tel.: +97-286-596-855 Received: 4 August 2020; Accepted: 24 August 2020; Published: 25 August 2020 Abstract: Assessing the development of wildfire scars during a period of consecutive active fires and smoke overcast is a challenge. The study was conducted during nine months when Israel experienced massive pyro-terrorism attacks of more than 1100 fires from the Gaza Strip. The current project strives at developing and using an advanced Earth observation approach for accurate post-fire spatial and temporal assessment shortly after the event ends while eliminating the influence of biomass burning smoke on the ground signal. For fulfilling this goal, the Aerosol-Free Vegetation Index (AFRI), which has a meaningful advantage in penetrating an opaque atmosphere influenced by biomass burning smoke, was used. On top of it, under clear sky conditions, the AFRI closely resembles the widely used Normalized Difference Vegetation Index (NDVI), and it retains the same level of index values under smoke.
    [Show full text]