
MASTER'S THESIS Phase-0 study of a Disaster Management Satellite Constellation with a Focus on the Indian Subcontinent Eline Conijn 2015 Master of Science (120 credits) Space Engineering - Space Master Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Master Thesis Phase-0 study of a disaster management satellite constellation with a focus on the Indian subcontinent Eline Conijn Supervisors Narayan Prasad Nagendra Dhruva Space Bangalore, India Marappa KRISHNASWAMY NIU Nagercoil, India Peter von Ballmoos Institut de Recherche en Astrophysique et Planétologie Toulouse, France Johnny Ejemalm Lulea University of Technology Kiruna, Sweden April 13, 2015 Opgedragen aan Oma Conijn Voor altijd in herinnering Acknowledgment Foremost, I would like to express my sincere gratitude to my direct advisor, Narayan Prasad Nagendra for the continuous support of my master thesis and research, for his patience, motiva- tion, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master thesis. Also I am for ever grateful to him for offering an opportunity of a life time to come to India and showing me around this amazing country. The many trips on the back of the motor cycle navigating the buzzing streets filled with life have made a lasting impression. And expressed in his own words, it was also often a humbling experience. Besides my advisor, I would like to thank the rest of my thesis supervisors: Marappa Krish- naswany, Peter von Ballmoos and Johnny Ejemalm, for their encouragement, insightful com- ments, and hard questions. My thanks are also given to the many former ISRO scientists I had the pleasure to meet and who gave me insight into the Indian space industry. Also many thanks to William B. Gail, who gave me great advice about the cloud coverage. Special thanks are given to my dear colleagues at Dhruva Space, Sai, Divya and Ferran for their advice during the thesis and the "secret missions" to buy the "boss" a birthday present or eat a chicken hamburger. I am also very grateful for my Indian host family, as well as all the extending family which I had the pleasure to get to know, including all the aunties and uncles, cousins, nephews and nieces, in-laws and grandparents. They made me feel welcome, made certain that I was well taken care off, made me try new cuisine, made me part of their world including the many rituals and made me laugh. I pay tribute to all my fellow SpaceMasters, for making the two year adventure memorable, interesting and amazing. We were not just fellow students and friends, we became part of a special family. Lastly but not least, I would like to thank my parents Gijs and Adri Conijn-Meiborg and my brother Arnoud. Even when they were worried when I was so far away in countries slightly or very different from the Netherlands they were always supportive and encouraging. Résumé This report explores the feasibility of a small satellite constellation used for disaster management in India. It shows that a small satellite constellation for the Indian subcontinent is not feasible based on the requirements and constraints set in this report and thus not worth to pursue in this form. Although it has been made clear that effective disaster management is a must, especially in India and that remote sensing from space is an excellent tool for this purpose, based on the spatial and temporal requirements derived from the occurrence and impact of the disasters, it would be impossible to propose a mission within the constraints set by this report. After a careful analysis of the Indian space budget, existing missions and the economical impact of the disasters, it is determined that a disaster management mission for the Indian subcontinent has a maximum mission budget of 30 million USD, a mass constraint of 500 kg and a volume constraint of 5 m3 for all the satellites in the constellation combined. The two instrument types with proven capabilities in remote sensing disasters, microwave and passive optical instruments, have each its own reasons to be unsuitable for a small satellite constellation. Active microwave instruments, more specific SAR, are proven to be useful in detecting and monitoring disasters. However the instruments require an antenna panel that would be too large to fit on a small satellite to meet the spatial requirements or the constellation requires too many satellites and thus exceeding the budget to meet the required revisiting time. The number of satellites and size of the SAR antenna panel is determined with a developed algorithm in MATLAB. Optical instruments are not suitable for a mission dedicated to disaster management due to the cloud cover visibility constraint and limitations set by the usage of indexes. Denna rapport undersöker genomförbarheten av ett litet satellitkonstellation som används för katastrofhantering i Indien. Den visar att en liten satellitkonstellation för den indiska subkonti- nenten är inte möjligt utifrån de krav och begränsningar som anges i denna rapport och därmed inte värt att fortsätta i denna form. Även om det har gjorts klart att en effektiv hantering av katastrofer är ett måste, särskilt i Indien och att fjärranalys från rymden är ett utmärkt verktyg för detta ändamål, bygger på de rumsliga och tidskrav som härrör från förekomsten och effek- terna av de katastrofer, skulle det vara omöjligt att föreslå ett uppdrag inom de begränsningar som framgår av denna rapport. Efter en noggrann analys av den indiska rymdbudget, befintliga uppdrag och de ekonomiska effekterna av katastrofer är det bestämt att en katastrofuppdrag för den indiska subkontinenten har en maximal budget uppdrag på 30 miljoner USD, en massa hinder på 500 kg och en volymbegränsning på 5 m3 för alla satelliter i konstellationen kombineras. De två instrumenttyper med bevisad kapacitet i fjärranalys katastrofer, mikrovågsugn och passiva op- tiska instrument, har vardera sina egna skäl att vara olämpliga för en liten satellitkonstellation. Aktiva mikrovågsinstrument, mer specifik SAR, har visat sig vara användbart för att upptäcka och övervaka katastrofer. Men instrumenten kräver en antenn panel som skulle vara för stor för att passa på en liten satellit för att uppfylla utrymmeskrav eller konstellationen kräver alltför många satelliter och därmed överskrider budgeten för att uppfylla kraven återbesök tiden. Antalet satelliter och storlek SAR antennpanelen bestäms med en utvecklad algoritm i MATLAB. Optiska instrument är inte lämpliga för ett uppdrag tillägnad katastrofhantering på grund av molntäcke synlighet tvång och begränsningar som fastställts av användningen av index. Abbreviations AC Alarm and Crisis AVHRR Advanced Very High Resolution Radiometer CACOLA Climatic Atlas of Clouds Over Land and Ocean DDI Daily Drought Index DEM Digital Elevation Model DInSAR Differential Interferometric Synthetic Aperture Radar GSD Ground Spacing Distance InSAR Interferometric Synthetic Aperture Radar ISCPP Iternational Satellite Cloud Climatology Project INR INdian Rupies IR Infra Red ISRO INdian Space Research Organization KP Knowledge and Prevention NDVI Normalized Difference VegetationIndex NIR Near Infra Red LEO Low Earth Orbit PC Post Crisis damage SAR Synthetic Aperture Radar SWIR Short Wave Infra Red TIR ThermalInfra Red UN United Nations USD United States Dollars VIS VISible i Symbols 3 Ae effective area of SAR panel m 3 ASAR area of SAR panel m awa azimuth impulse response broadening - factor awr range impulse response broadening fac- - tor c speed of light 299792458 m=s FN system noise factor for the receiver - Ga Antenna gain - K Design margin 1-3 k Boltzmann’s constant 1.3810−23J=K La length of the SAR panel m Latmos atmospheric loss factor due to the prop- - agating wave Lion loss factor due to ionosphere - Lradar microwave transmission loss factor due - to miscellaneous sources N nominal scene noise temperature 290 K NEσ0 Noise-equivalent sigma-zero - −1 Pavg average power at transceiver W (Js ) −1 Pr received power W (Js ) −1 Pt transmitted power W (Js ) R Range vector from target to antenna m Ru Unambiguous range m SNR Signal-to-Noise ratio - vx satellite speed in slong track direction m=s Wa width of the SAR panel m η efficiency of SAR panel 0.6 λ wavelength m ρy slant-range resolution required m σ target radar cross section m2 ! angular frequency rads−1 ii Contents 1 Introduction 1 2 Disasters and their remote sensing requirements2 2.1 Disasters in India and their impact.......................... 2 2.1.1 Disaster definition ............................... 2 2.1.2 Disaster data.................................. 2 2.1.3 Indian disaster scenario ............................ 3 2.1.4 Disasters, poverty and development...................... 6 2.1.5 Disaster Management ............................. 7 2.2 Remote sensing of disasters .............................. 8 3 Small satellites 16 3.1 Definition........................................ 16 3.2 Cost estimation disaster monitor constellation mission for India.......... 16 3.3 Constraints ....................................... 17 3.3.1 Mass....................................... 17 3.3.2 Volume ..................................... 17 3.3.3 Power ...................................... 18 4 Satellite constellations 19 4.1 Possible constellations ................................. 19 4.1.1 Sun synchronous orbits ............................ 19 5 Feasibility of microwave instruments for the a small satellite constellation
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages68 Page
-
File Size-