Shield Defense of a Larval Tortoise Beetle

Total Page:16

File Type:pdf, Size:1020Kb

Shield Defense of a Larval Tortoise Beetle Journal of Chemical Ecology, Vol. 25, No. 3, 1999 SHIELD DEFENSE OF A LARVAL TORTOISE BEETLE FREDRIC V. VENCL,1,* TIMOTHY C. MORTON,2 RALPH O. MUMMA,3 and JACK C. SCHULTZ3 1Department of Neurobiology and Behavior State University of New York at Stony Brook Stony Brook, New York 11794-5230 and The Smithsonian Tropical Research Institute Balboa, Ancon, Republic of Panama 2Department of Ecology and Evolution University of Chicago Chicago, Illinois 60637 3Department of Entomology Pennsylvania State University University Park, Pennsylvania 16802 (Received December 29, 1997; accepted October 27, 1998) Abstract—Larvae of the folivorous tortoise beetle, Plagiometriona clavata, carry shields formed from feces and exuviae above their bodies. We used an ecologically relevant predatory ant, Formica subsericea, in a bioassay to deter- mine if shields functioned as simple barriers, as previous studies indicated, or whether they were chemical defenses. Shields were necessary for larval sur- vival; shield removal rendered larvae vulnerable. Shields produced by larvae reared on a substitute diet failed to provide protection. Solvent-leached shields also failed to deter ants, indicating the shield had a host-derived chemical component likely located in the feces, not in the exuviae. Solanum dulca- mara, the larval host plant, contained free phytol, steroidal glycoalkaloids, and saponins. Shields contained partially deglycosylated metabolites of host steroidal glycoalkaloids and saponins, a suite of fatty acids, and derivatives of phytol, which together formed a deterrent barrier against ant attack. We compared the mobile shield of P. clavata to the stationary shield of another S. dulcamara-feeding leaf beetle, Lema trilinea. Both larval shield defenses were formed from a very similar array of host-derived compounds with deter- rent properties. We concluded that convergent patterns of limited chemical transformation and selective incorporation of particular deterrent metabolites in shield defenses of two unrelated taxa represented responses to selection from invertebrate predators. Key Words—Plagiometriona clavata, Lema trilinea, Solanum, steroidal *To whom correspondence should be addressed at Stony Brook. 549 0098-0331/99/0300-0549$16.00/0 © 1999 Plenum Publishing Corporation 550 VENCL, MORTON, MUMMA, AND SCHULTZ glycoalkaloid, phytol, saponin, fatty acid, fecal shield, larval defense, Chrysomelidae. INTRODUCTION Members of the phytophagous leaf beetle family Chrysomelidae exhibit a diverse array of morphological and behavioral attributes for defense against predation. Among these, glandular secretions, maternal care, thanatosis, crypsis, stridula- tion, and mimicry, to name a few, have been investigated in some detail (Pas- teels et al., 1988, and references therein; Schmitt, 1994; Hilker, 1994; Windsor and Choe, 1995; Hespenheide, 1996). However, another putative defensive strat- egy, larval waste retention, remains poorly understood, although it is a remark- ably widespread habit within the Chrysomelidae. For example, nearly 20% of the described chrysomelid species, most notably the members of the Camptoso- mata, Hispinae, and Criocerinae, have some form of fecal covering or feces-laced structure. Despite their ubiquity, the defensive efficacy of waste-based struc- tures, or fecal shields, as these appurtenances are collectively termed, has yet to be demonstrated in the vast majority of cases (Blum, 1981, 1994; Pasteels et al., 1988; Olmstead, 1994). Available evidence from the few species studied in depth supports the hypothesis that shields, scatoshells, fecal cases, and other waste-based characters function primarily as nonchemical, barrier-type defenses, despite the fact that many species have diets rich in secondary chemicals (Eisner et al., 1967; Erber, 1988; Root and Messina, 1993; Olmstead and Denno, 1993). Fecal-based structures warrant further investigation because they may form more complex defenses than is presently appreciated, perhaps through the incorpora- tion of host-derived or autogenously synthesized compounds. Within the great variety of fecal attributes displayed by chrysomelid bee- tles, the shields of larval tortoise beetles, members of the cassidoid Hispinae (sensu Reid, 1995), are perhaps the most intriguing. Attached to a highly mov- able appendage (furca) emanating from the 8th abdominal segment, and held like a parasol above the larva, the shield is a composite structure made of accu- mulated feces and of exuviae or molted skins. A remarkable telescoping anus, formed by extrusion of the invaginated 9th and 10th abdominal segments, is capable of precisely depositing fecal material over the shield (Figure 1A). Long suspected to have a defensive function (Riley and Walsh, 1868), the shields of several species examined to date do provide protection by acting as mechani- cal barriers against some attacking enemies (Eisner et al., 1967; Olmstead and Denno, 1993; Olmstead, 1996). We report here on the larval shield of the abundant and widespread tor- toise beetle, Plagiometriona clavata (Fab.), which feeds on woody nightshade, Solanum dulcamara L. (Solanaceae), throughout North America. We suspected SHIELD DEFENSE OF TORTOISE BEETLE 551 FIG. 1. (A) Larval P. clavata (dorsal aspect) with a fecal shield (dark mass) held aloft. Mechanosensitive scoli (small arrows) fringe the larva's flanks. The telescoping anus—the evaginated 9th and 10th abdominal segments—is visible as the translucent tube (arrow), extended to a length of 4.5 mm, and about to apply a bolus of feces to the shield's right projection. (B) Response to perturbation of a P. clavata larva with a solvent-leached, experi- mentally reattached shield. The abdomen is arched over the larva's back, and the chemically modified, reattached shield (bounded by arrows) is aimed forward and is rapidly flagged toward a tactile stimulus, in this instance, by a cat whisker (arrowhead) touching the larva's anterior scoli. This behavior is typical of larvae with unmanipulated shields. 552 VENCL, MORTON, MUMMA, AND SCHULTZ shields might be chemical defenses because S. dulcamara is well known to con- tain many potentially toxic, complex secondary compounds, including steroidal glycoalkaloids (SGAs) and steroidal saponins (Mathe and Mathe, 1979; Tingey, 1984; Roddick, 1986; Hegnauer, 1992). Although a chemical component was suspected in one species (Eisner et al., 1967), the first evidence in support of the idea that shields were chemical defenses appeared only recently (Gomez, 1997; Morton, 1997). The possibility clearly existed that P. clavata larvae take advantage of the allelochemicals available in their diet. Our objectives in this study were fourfold. Firstly, we wanted to know whether P. clavata shields provided effective protection from predators, as was indicated by preliminary behavioral observations in the field. Secondly, we wanted to know whether there was a chemical component to what evidently was, according to earlier studies, a simple barrier defense. Thirdly, if shields were found to be chemically deterrent or repellent, we wanted to determine to what extent they were dependent on host-derived compounds. We previously investigated another Solanum-feeding leaf beetle, Lema trilinea (Criocerinae), and found its shield to be a very effective chemical defense that contained deriva- tives of the noxious compounds found in the host. Fourthly, we hoped a compar- ison between P. clavata's mobile, parasollike shield and L. trilinea's static, fecal mound-type shield might reveal convergent metabolic mechanisms for handling inimical host allelochemicals—a comparison of unrelated species, occupying the same trophic niche, afforded us an opportunity to infer whether or not particular chemical or morphological shield features evolved as defensive adaptations or if they were fortuitous by-products of digestion and elimination. METHODS AND MATERIALS Collection and Rearing of Insects. Nine adults and a small number of eggs of P. clavata were collected from wild populations of 5. dulcamara in Setauket, New York, on June 10, 1995. They were transported to Penn State University and were reared in cages in a walk-in growth chamber on S. dulcamara obtained from root stocks (V&J Seed Farms, Woodstock, IL) and grown in a greenhouse. Shields were collected with fine forceps by slowly teasing the complex of feces and exuviae off the urogomphi of third or fourth instars. This procedure did not harm the larvae (cf. Olmstead and Denno, 1993). Several 2-g samples were collected, immediately weighed, and stored until processed at 4°C in 20 ml of 80% methanol (MeOH). For comparison, we extracted 200 g of the S. dulcamara leaves used to feed P. clavata. Bioassays of Larvae by Ant Attacks. Larvae (N = 135), collected as first instars from a host population growing in Crystal Brook Park, Mt. Sinai, New York, during June 1997, were divided into five groups for use in bioassays. SHIELD DEFENSE OF TORTOISE BEETLE 553 Larvae in all groups were reared under natural light (14L: 10D) and ambient temperature conditions to the third instar (mean length = 4 ± 0.3 mm and with three visible exuviae; N = 20) on 50-cm branches of S. dulcamara inside 2-gal- lon ZipLoc bags. The third instar was selected for assay because it was shown to suffer intermediate levels of predation in two other tortoise beetle species of (cf. Olmstead and Denno, 1993). Twenty-seven larvae had their shields removed with soft forceps 3 hr before being assayed. Shield removal did not harm larvae (Olmstead and Denno, 1993). Shields
Recommended publications
  • Chrysomela 43.10-8-04
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion.
    [Show full text]
  • Utilizing Novel Grasslands for the Conservation and Restoration Of
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Utilizing novel grasslands for the conservation and restoration of butterflies nda other pollinators in agricultural ecosystems John Thomas Delaney Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Delaney, John Thomas, "Utilizing novel grasslands for the conservation and restoration of butterflies and other pollinators in agricultural ecosystems" (2014). Graduate Theses and Dissertations. 14097. https://lib.dr.iastate.edu/etd/14097 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Utilizing novel grasslands for the conservation and restoration of butterflies and other pollinators in agricultural ecosystems by John Thomas Delaney A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee: Diane M. Debinski, Major Professor David M. Engle Mary A. Harris Amy L. Toth Brian J. Wilsey Iowa State University Ames, Iowa 2014 Copyright © John Thomas Delaney, 2014. All rights reserved. ii Dedication I dedicate this dissertation to all of my family, friends, and mentors who have helped me along in this journey.
    [Show full text]
  • Coleoptera: Chrysomelidae: Cassidinae: Cassidini)
    Genus Vol. 18(3): 487-492 Wrocław, 30 IX 2007 A new species of Microctenochira SPAETH from Belize (Coleoptera: Chrysomelidae: Cassidinae: Cassidini) LECH BOROWIEC Department of Biodiversity and Evolutionary Taxonomy, Zoological Institute, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland, e-mail: [email protected] AbsTRACT. Microctenochira belizensis, species new to science, is described from Belize. It belongs to the group of species with elytral pattern forming a regular black ring. Key words: entomology, taxonomy, new species, Coleoptera, Chrysomelidae, Cassidinae, Cassidini, Microctenochira, Belize. CHAPUIS (1875) proposed the genus Ctenochira for small Cassidinae with pectinate claws. WEISE (1896) designated Coptocycla aciculata Boheman, 1855 as type species of Ctenochira CHAPUIS. SPAETH (1926) in his monograph of the genera from the New World with pectinate claws described within Ctenochira a new subgenus Microcte- nochira with Coptocycla jousselini BOHEMAN, 1855 as type species. HINCKS (1950) noticed that the name Ctenochira CHAPUIS was preoccupied by Ctenochira FOERSTER, 1855 and he proposed a new name Euctenochira for cassidine genus. He overlooked that the name Microctenochira has priority and recently Euctenochira has usually been treated as subgenus of Microctenochira (SEENO and WILCOX 1982, RILEY 1986). In my world catalogue of Cassidinae I noted (BOROWIEC 1999) Euctenochira under synonyms of Microctenochira but without formal synonymization. In my opinion division of the genus into two subgenera is untimely and some species have characters crossed between both proposed subgenera. The genus Microctenochira is well characterized by structure of claws, appendiculate on fore legs and pectinate on mid and hind legs. SPAETH (1926) published a perfect key to the genus, but eight species were described after the date of publication of the key (SPAETH 1932; Świętojańska and BOROWIEC 1995, 1999; BOROWIEC 2002).
    [Show full text]
  • Chrysomelidae, Coleoptera)
    THE DONACIINAE, CRIOCERINAE, CLYTRINAE, - ~ CHLAMISINAE, EUMOLPINAE, AND CHRYSOMELINAE OF OKLAHOMA (CHRYSOMELIDAE, COLEOPTERA) by JAMES HENRY SHADDY \\ Bachelor of Science Oklahoma State University Stillwater, Oklahoma Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1964 I OKLAHOMA lfAT&: UNNE.RSITf . LIBRARY JAN 8 lSGS THE DONACIINAE, CRIOCERINAE, CLYTRINAE, CHLAMISINAE, EUMOLPINAE, AND CHRYSOMELINAE OF OKLAHOMA (CHRYSOMELIDAE, COLEOPTERA) Thesis Approved: 570350 ii TABLE OF CONTENTS Page INTRODUCTION ..... 1 REVIEW OF THE LITERATURE 3 SYSTEMATICS ... 4 LITERATURE CITED 45 ILLUSTRATIONS 47 INDEX • • • . 49 iii INTRODUCTION The leaf beetles form a conspicuous segment of the coleopterous fauna of Oklahoma. Because no taxonomic paper on the Chrysomelidae existed for the state, the present work with the subfamilies Donaciinae, Criocerinae, Clytrinae, Chlamisinae, Eumolpinae, and Chrysomelinae of the eleven subfamilies found in Oklahoma was inaugurated. The chrysomelids are a large family of small or medium-sized beetles. They are generally host specific and sometimes cause extensive damage to field crops and horticultural plants. However, the Donaciinae, Clytrinae, and Chlamisinae are of little economic interest. The economically important species belong to the Criocerinae, Eumolpinae, and·Chrysomelinae. The larvae and adults of these feed on the foliage of plants, except the larvae of Eumolpinae which are primarily rootfeeders. Included in this work are 29 genera contain- ing 59 species of which 54 species are known to occur in the state and five. species are likely to occur here. I wish to thank my major advisor, Dr. William A. Drew, for his encouragement, guidance and assistance, and the other committee members, Drs.
    [Show full text]
  • Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230
    Curriculum Vitae Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230 Research Associate The Smithsonian Tropical Research Institute Box 2072, Balboa, Ancon Republic of Panamá Education Ph. D., State University of New York at Stony Brook (1977) M.A., State University of New York at Stony Brook (1975) B.A., Hiram College, Hiram, Ohio (1972) Honors, Awards and Grants National Science Foundation DEB 0108213 (2001-2005) $533,895 Andrew W. Mellon Foundation Grant for Exploratory Research (1996) $3000 Chapman Memorial Fund Grant, American Museum of Natural History (1977) $1000 Invited Participant. Organization for Tropical Studies Field Ecology Course. Costa Rica (1976) Graduate Council Fellow. S.U.N.Y. at Stony Brook (1972-1974) Magna Cum Laude, Dept. Honors in Art and Biology. Hiram College (1972) Phi Beta Kappa Professional experience 1999-present Research Associate Professor. Department of Ecology and Evolution. Stony Brook University. 1997-present Research Associate. The Smithsonian Tropical Research Institute, Panamá. 1996-1998 Research Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. 1992-1996 Adjunct Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. Publications Vencl FV & Srygley RB (2013) Proximate effects of maternal oviposition preferences on defense efficacy and larval survival in a diet-specialized tortoise beetle: who knows best - mothers or their progeny? Ecol. Entomol DOI: 10.1111/een.12052 Vencl FV & Srygley RB (2013) Enemy targeting, trade-offs, and the evolutionary assembly of a tortoise beetle defense arsenal. Evo. Ecol.
    [Show full text]
  • The Taxonomy of the Side Species Group of Spilochalcis (Hymenoptera: Chalcididae) in America North of Mexico with Biological Notes on a Representative Species
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1984 The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species. Gary James Couch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Couch, Gary James, "The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species." (1984). Masters Theses 1911 - February 2014. 3045. Retrieved from https://scholarworks.umass.edu/theses/3045 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984 Department of Entomology THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Approved as to style and content by: Dr. T/M. Peter's, Chairperson of Committee CJZl- Dr. C-M. Yin, Membe D#. J.S. El kin ton, Member ii Dedication To: My mother who taught me that dreams are only worth the time and effort you devote to attaining them and my father for the values to base them on.
    [Show full text]
  • An Annotated Checklist of the Coleoptera of the Smithsonian Environmental Research Center, Maryland
    B A N I S T E R I A A JOURNAL DEVOTED TO THE NATURAL HISTORY OF VIRGINIA ISSN 1066-0712 Published by the Virginia Natural History Society The Virginia Natural History Society (VNHS) is a nonprofit organization dedicated to the dissemination of scientific information on all aspects of natural history in the Commonwealth of Virginia, including botany, zoology, ecology, archaeology, anthropology, paleontology, geology, geography, and climatology. The society’s periodical Banisteria is a peer-reviewed, open access, online-only journal. Submitted manuscripts are published individually immediately after acceptance. A single volume is compiled at the end of each year and published online. The Editor will consider manuscripts on any aspect of natural history in Virginia or neighboring states if the information concerns a species native to Virginia or if the topic is directly related to regional natural history (as defined above). Biographies and historical accounts of relevance to natural history in Virginia also are suitable for publication in Banisteria. Membership dues and inquiries about back issues should be directed to the Co-Treasurers, and correspondence regarding Banisteria to the Editor. For additional information regarding the VNHS, including other membership categories, annual meetings, field events, pdf copies of papers from past issues of Banisteria, and instructions for prospective authors visit http://virginianaturalhistorysociety.com/ Editorial Staff: Banisteria Editor Todd Fredericksen, Ferrum College 215 Ferrum Mountain Road Ferrum, Virginia 24088 Associate Editors Philip Coulling, Nature Camp Incorporated Clyde Kessler, Virginia Tech Nancy Moncrief, Virginia Museum of Natural History Karen Powers, Radford University Stephen Powers, Roanoke College C. L. Staines, Smithsonian Environmental Research Center Copy Editor Kal Ivanov, Virginia Museum of Natural History Copyright held by the author(s).
    [Show full text]
  • ACTA ENTOMOLOGICA 60(2): 667–707 MUSEI NATIONALIS PRAGAE Doi: 10.37520/Aemnp.2020.048
    2020 ACTA ENTOMOLOGICA 60(2): 667–707 MUSEI NATIONALIS PRAGAE doi: 10.37520/aemnp.2020.048 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Commented catalogue of Cassidinae (Coleoptera: Chrysomelidae) of the state of São Paulo, Brazil, with remarks on the collection of Jaro Mráz in the National Museum in Prague Lukáš SEKERKA Department of Entomology, National Museum, Cirkusová 1740, CZ-193 00, Praha – Horní Počernice, Czech Republic; e-mail: [email protected] Accepted: Abstract. Commented catalogue of Cassidinae species reported from the state of São Paulo, 14th December 2020 Brazil is given. Altogether, 343 species are presently registered from the state representing the Published online: following tribes: Alurnini (5 spp.), Cassidini (84 spp.), Chalepini (85 spp.), Dorynotini (9 spp.), 26th December 2020 Goniocheniini (8 spp.), Hemisphaerotini (2 spp.), Imatidiini (25 spp.), Ischyrosonychini (6 spp.), Mesomphaliini (83 spp.), Omocerini (14 spp.), Sceloenoplini (9 spp.), and Spilophorini (13 spp.). Fifty-two species are recorded for the fi rst time and 19 are removed from the fauna of São Paulo. Each species is provided with a summary of published faunistic records for São Paulo and its general distribution. Dubious or insuffi cient records are critically commented. A list of Cassidi- nae species collected in São Paulo by Jaro Mráz (altogether 145 identifi ed species) is included and supplemented with general information on this material. In addition, two new synonymies are established: Cephaloleia caeruleata Baly, 1875 = C. dilatata Uhmann, 1948, syn. nov.; Stolas lineaticollis (Boheman, 1850) = S. silaceipennis (Boheman, 1862), syn. nov.; and the publication year of the genus Heptatomispa Uhmann, 1940 is corrected to 1932.
    [Show full text]
  • University Morifilms International 300N.Zeeb Road Ann Arbor, Ml 48106 8305402
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Beetles of Eoa Genus Species
    BEETLES OF EOA GENUS SPECIES Acamaeodera tubulus Acanthoscealis obsoletus Acanthoscelides sp. Agonum sp. Agrilus egenus Agrilus politus Alobates pennsylvanica Amara sp. Ampedus nigricans Analeptura lineola Anisostena nigrita Anomoea laticlavia Anthaxia inornata Anthicus sp. Anthocomus ulkei ? Anthonomus suturalis Aphodius stercorosus Apion decoloratum Apion patruele Apion rostrum Arrhenodes minutus Babia quadriguttata Baliosus nervosus Bembidion fugax Berosus ordinatus Bidessonotus inconspicuus Blapstinus moestus Blepherida rhois Brachiacantha felina Brachiacantha quadripunctata Brachypnoea puncticollis Brachys ovatus Bradycellus neglectus Calligrapha bidenticola Calopteron terminale Calosoma scrutator Cantharis bilineatus Cantharis dentiger Cantharis fraxini Cantharis impressus Cantharis rectus Cantharis scitulus Canthon Hudsonias Capraita sexmaculata Capraita subvittata Cassida rubiginosa Cerotoma trifurcata Cercyon praetextatus Ceutorhynchus sp. Chaetocnema irregularis Chaetocnema pulicaria Chaetocnema sp. Charidotella sexpunctata bicolor Charidotella sexpunctata Chauliognathus marginatus Chauliognathus pennsylvanicus Chelymorpha cassidea Chlaenius aestivuus Chrysobotheris harrisi Chrysochus auratus Chrysomela interrupta Chrysomela scripta Cicindela repanda Cicindela punctulata Cicindela duodecimguttata Cicindela splendida Cicindela sexguttata Coccinella septempunctata Coleomegilla maculata lengi Colliuris pennsylvanicus Coloemegilla maculata Copris tullius Crepidodera longula Crepidodera nana Crepidodera violacea Cryptocephalus binominus
    [Show full text]