Ecological Speciation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Demonstration of Facilitation Between Microalgae to Face Environmental Stress Emna Krichen, Alain Rapaport, Emilie Le Floc’H, Eric Fouilland
Demonstration of facilitation between microalgae to face environmental stress Emna Krichen, Alain Rapaport, Emilie Le Floc’H, Eric Fouilland To cite this version: Emna Krichen, Alain Rapaport, Emilie Le Floc’H, Eric Fouilland. Demonstration of facilitation between microalgae to face environmental stress. Scientific Reports, Nature Publishing Group, 2019, 9 (16076), pp.1-12. 10.1038/s41598-019-52450-9. hal-02315867 HAL Id: hal-02315867 https://hal.archives-ouvertes.fr/hal-02315867 Submitted on 14 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Demonstration of facilitation between microalgae to face environmental stress Emna Krichen1,2, Alain Rapaport2, Emilie Le Floc’h1, and Eric Fouilland1,* 1UMR MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD, Sete,` France 2UMR MISTEA, Univ. Montpellier, INRA, SupAgro, Montpellier, France *[email protected] ABSTRACT Positive interactions such as facilitation play an important role during the biological colonization and species succession in harsh or changing environments. However, the direct evidence of such ecological interaction in microbial communities remains rare. Using common freshwater microalgae isolated from a High Rate Algal Pond HRAP treating wastewaters, we investigated with both experimental and modeling approaches the direct facilitation between two algal strains during the colonization phase. -
Novel Trophic Niches Drive Variable Progress Towards Ecological Speciation Within an Adaptive Radiation of Pupfishes
Molecular Ecology (2014) 23, 1846–1862 doi: 10.1111/mec.12658 Novel trophic niches drive variable progress towards ecological speciation within an adaptive radiation of pupfishes CHRISTOPHER H. MARTIN*† and LAURA C. FEINSTEIN†‡ *Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA, †Department of Evolution & Ecology, University of California, Davis, CA 94616, USA, ‡California Council on Science and Technology, 1130 K Street, Sacramento, CA 95814, USA Abstract Adaptive radiation is recognized by a rapid burst of phenotypic, ecological and species diversification. However, it is unknown whether different species within an adaptive radiation evolve reproductive isolation at different rates. We compared patterns of genetic differentiation between nascent species within an adaptive radiation of Cyprin- odon pupfishes using genotyping by sequencing. Similar to classic adaptive radiations, this clade exhibits rapid morphological diversification rates and two species are novel trophic specialists, a scale-eater and hard-shelled prey specialist (durophage), yet the radiation is <10 000 years old. Both specialists and an abundant generalist species all coexist in the benthic zone of lakes on San Salvador Island, Bahamas. Based on 13 912 single-nucleotide polymorphisms (SNPs), we found consistent differences in genetic differentiation between each specialist species and the generalist across seven lakes. The scale-eater showed the greatest genetic differentiation and clustered by species across lakes, whereas durophage populations often clustered with sympatric generalist populations, consistent with parallel speciation across lakes. However, we found strong evidence of admixture between durophage populations in different lakes, sup- porting a single origin of this species and genome-wide introgression with sympatric generalist populations. -
Diversification Under Sexual Selection: the Relative Roles of Mate Preference Strength and the Degree of Divergence in Mate Preferences Rafael L
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 2013 Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences Rafael L. Rodríguez University of Wisconsin–Milwaukee, [email protected] Janette W. Boughman Michigan State University, [email protected] David A. Gray California State University Northridge, [email protected] Eileen A. Hebets University of Nebraska-Lincoln, [email protected] Gerlinde Höbel University of Wisconsin–Milwaukee, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/bioscihebets Part of the Animal Sciences Commons, Behavior and Ethology Commons, Biology Commons, Entomology Commons, and the Genetics and Genomics Commons Rodríguez, Rafael L.; Boughman, Janette W.; Gray, David A.; Hebets, Eileen A.; Höbel, Gerlinde; and Symes, Laurel B., "Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences" (2013). Eileen Hebets Publications. 71. http://digitalcommons.unl.edu/bioscihebets/71 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Rafael L. Rodríguez, Janette W. Boughman, David A. Gray, Eileen A. Hebets, Gerlinde Höbel, and Laurel B. Symes This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/bioscihebets/71 Ecology Letters, (2013) 16: 964–974 doi: 10.1111/ele.12142 IDEA AND PERSPECTIVE Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences Abstract Rafael L. -
Utilizing Novel Grasslands for the Conservation and Restoration Of
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Utilizing novel grasslands for the conservation and restoration of butterflies nda other pollinators in agricultural ecosystems John Thomas Delaney Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Delaney, John Thomas, "Utilizing novel grasslands for the conservation and restoration of butterflies and other pollinators in agricultural ecosystems" (2014). Graduate Theses and Dissertations. 14097. https://lib.dr.iastate.edu/etd/14097 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Utilizing novel grasslands for the conservation and restoration of butterflies and other pollinators in agricultural ecosystems by John Thomas Delaney A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee: Diane M. Debinski, Major Professor David M. Engle Mary A. Harris Amy L. Toth Brian J. Wilsey Iowa State University Ames, Iowa 2014 Copyright © John Thomas Delaney, 2014. All rights reserved. ii Dedication I dedicate this dissertation to all of my family, friends, and mentors who have helped me along in this journey. -
Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja
Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja To cite this version: Roger Butlin, Carole Smadja. Coupling, Reinforcement, and Speciation. American Naturalist, Uni- versity of Chicago Press, 2018, 191 (2), pp.155-172. 10.1086/695136. hal-01945350 HAL Id: hal-01945350 https://hal.archives-ouvertes.fr/hal-01945350 Submitted on 5 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License vol. 191, no. 2 the american naturalist february 2018 Synthesis Coupling, Reinforcement, and Speciation Roger K. Butlin1,2,* and Carole M. Smadja1,3 1. Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa; 2. Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom; and Department of Marine Sciences, University of Gothenburg, Tjärnö SE-45296 Strömstad, Sweden; 3. Institut des Sciences de l’Evolution, Unité Mixte de Recherche 5554 (Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement–École pratique des hautes études), Université de Montpellier, 34095 Montpellier, France Submitted March 15, 2017; Accepted August 28, 2017; Electronically published December 15, 2017 abstract: During the process of speciation, populations may di- Introduction verge for traits and at their underlying loci that contribute barriers Understanding how reproductive isolation evolves is key fl to gene ow. -
Disruptive Sexual Selection Against Hybrids Contributes to Speciation Between Heliconius Cydno and Heliconius Melpomene Russell E
doi 10.1098/rspb.2001.1753 Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene Russell E. Naisbit1*, Chris D. Jiggins1,2 and James Mallet1,2 1The Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK 2SmithsonianTropical Research Institute, Apartado 2072, Balboa, Panama Understanding the fate of hybrids in wild populations is fundamental to understanding speciation. Here we provide evidence for disruptive sexual selection against hybrids between Heliconius cydno and Heliconius melpomene. The two species are sympatric across most of Central and Andean South America, and coexist despite a low level of hybridization. No-choice mating experiments show strong assortative mating between the species. Hybrids mate readily with one another, but both sexes show a reduction in mating success of over 50% with the parental species. Mating preference is associated with a shift in the adult colour pattern, which is involved in predator defence through MÏllerian mimicry, but also strongly a¡ects male courtship probability. The hybrids, which lie outside the curve of protection a¡orded by mimetic resemblance to the parental species, are also largely outside the curves of parental mating prefer- ence. Disruptive sexual selection against F1 hybrids therefore forms an additional post-mating barrier to gene £ow, blurring the distinction between pre-mating and post-mating isolation, and helping to main- tain the distinctness of these hybridizing species. Keywords: Lepidoptera; Nymphalidae; hybridization; mate choice; post-mating isolation; pre-mating isolation Rather less experimental work has investigated mate 1. INTRODUCTION choice during speciation and the possibility of the third Studies of recently diverged species are increasingly type of selection against hybrids: disruptive sexual select- producing examples of sympatric species that hybridize in ion. -
Testing Island Biogeography Theory with an Eco-Evolutionary
bioRxiv preprint doi: https://doi.org/10.1101/100289; this version posted January 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Original Article 2 Effects of time and isolation on plant diversity: testing island biogeography 3 theory with an eco-evolutionary model 4 Authors: Juliano Sarmento Cabral1,2,3*, Robert J. Whittaker4,5, Kerstin Wiegand6, Holger Kreft2 5 1 Ecosystem Modeling, Center of Computation and Theoretical Biology, University of Würzburg, 6 Campus Hubland-Nord, Building 32, D- 97074, Würzburg, Germany. 7 2 Department of Biodiversity, Macroecology & Biogeography, University of Göttingen, 8 Büsgenweg 1, D-37077, Göttingen, Germany. 9 3 Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv), Deutscher 10 Platz 5e, D-04103 Leipzig, Germany. 11 4 Conservation Biogeography and Macroecology Group, School of Geography and the 12 Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK. 13 5 Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, 14 University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark. 15 6 Ecosystem Modelling, Büsgen-Institute, University of Göttingen, Büsgenweg 4, D-37077, 16 Göttingen, Germany. 17 *Corresponding author: Ecosystem Modeling, Center for Computation and Theoretical Biology, 18 University of Würzburg, am Hubland-Nord 32, D- 97074, Würzburg, Germany. E-mail: 19 [email protected] 20 bioRxiv preprint doi: https://doi.org/10.1101/100289; this version posted January 13, 2017. -
The Taxonomy of the Side Species Group of Spilochalcis (Hymenoptera: Chalcididae) in America North of Mexico with Biological Notes on a Representative Species
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1984 The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species. Gary James Couch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Couch, Gary James, "The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species." (1984). Masters Theses 1911 - February 2014. 3045. Retrieved from https://scholarworks.umass.edu/theses/3045 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984 Department of Entomology THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Approved as to style and content by: Dr. T/M. Peter's, Chairperson of Committee CJZl- Dr. C-M. Yin, Membe D#. J.S. El kin ton, Member ii Dedication To: My mother who taught me that dreams are only worth the time and effort you devote to attaining them and my father for the values to base them on. -
Invasive Toads Shift Predatorprey Densities in Animal Communities By
Ecology, 96(9), 2015, pp. 2544–2554 Ó 2015 by the Ecological Society of America Invasive toads shift predator–prey densities in animal communities by removing top predators 1,2,6,7 2 3 4 5 J. SEAN DOODY, REBEKAH SOANES, CHRISTINA M. CASTELLANO, DAVID RHIND, BRIAN GREEN, 4 6 COLIN R. MCHENRY, AND SIMON CLULOW 1Department of Ecology and Evolutionary Biology, 569 Dabney Hall, University of Tennessee, Knoxville, Tennessee 37996-1610 USA 2Department of Biological Sciences, Monash University, Clayton, Victoria 3800 Australia 3Utah’s Hogle Zoo, 2600 Sunnyside Avenue, Salt Lake City, Utah 84108 USA 4Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800 Australia 5Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601 Australia 6School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308 Australia Abstract. Although invasive species can have substantial impacts on animal communities, cases of invasive species facilitating native species by removing their predators have rarely been demonstrated across vertebrate trophic linkages. The predictable spread of the invasive cane toad (Rhinella marina), however, offered a unique opportunity to quantify cascading effects. In northern Australia, three species of predatory monitor lizards suffered severe population declines due to toad-induced lethal toxic ingestion (yellow-spotted monitor [Varanus panoptes], Mertens’ water monitor [V. mertensi], Mitchell’s water monitor [V. mitchelli]). We, thus, predicted subsequent increases in the abundance and recruitment of prey species due to the reduction of those predators. Toad-induced population-level declines in the water monitor species approached 50% over a five-year period spanning the toad invasion, apparently causing fledging success of the Crimson Finch (Neochmia phaeton) to increase from 55% to 81%. -
Ecological Speciation in Phytophagous Insects
DOI: 10.1111/j.1570-7458.2009.00916.x MINI REVIEW Ecological speciation in phytophagous insects Kei W. Matsubayashi1, Issei Ohshima2 &PatrikNosil3,4* 1Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan, 2Department of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan, 3Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA, and 4Wissenschaftskolleg, Institute for Advanced Study, Berlin, 14193, Germany Accepted: 7 August 2009 Key words: host adaptation, genetics of speciation, natural selection, reproductive isolation, herbivo- rous insects Abstract Divergent natural selection has been shown to promote speciation in a wide range of taxa. For exam- ple, adaptation to different ecological environments, via divergent selection, can result in the evolution of reproductive incompatibility between populations. Phytophagous insects have been at the forefront of these investigations of ‘ecological speciation’ and it is clear that adaptation to differ- ent host plants can promote insect speciation. However, much remains unknown. For example, there is abundant variability in the extent to which divergent selection promotes speciation, the sources of divergent selection, the types of reproductive barriers involved, and the genetic basis of divergent adaptation. We review these factors here. Several findings emerge, including the observation that although numerous different sources of divergent selection and reproductive isolation can be involved in insect speciation, their order of evolution and relative importance are poorly understood. Another finding is that the genetic basis of host preference and performance can involve loci of major effect and opposing dominance, factors which might facilitate speciation in the face of gene flow. In addition, we raise a number of other recent issues relating to phytophagous insect speciation, such as alternatives to ecological speciation, the geography of speciation, and the molecular signatures of spe- ciation. -
Vascular Plant Species with Documented Or Recorded Occurrence in Placer County
A PPENDIX II Vascular Plant Species with Documented or Reported Occurrence in Placer County APPENDIX II. Vascular Plant Species with Documented or Reported Occurrence in Placer County Family Scientific Name Common Name FERN AND FERN ALLIES Azollaceae Mosquito fern family Azolla filiculoides Pacific mosquito fern Dennstaedtiaceae Bracken family Pteridium aquilinum var.pubescens Bracken fern Dryopteridaceae Wood fern family Athyrium alpestre var. americanum Alpine lady fern Athyrium filix-femina var. cyclosorum Lady fern Cystopteris fragilis Fragile fern Polystichum imbricans ssp. curtum Cliff sword fern Polystichum imbricans ssp. imbricans Imbricate sword fern Polystichum kruckebergii Kruckeberg’s hollyfern Polystichum lonchitis Northern hollyfern Polystichum munitum Sword fern Equisetaceae Horsetail family Equisetum arvense Common horsetail Equisetum hyemale ssp. affine Scouring rush Equisetum laevigatum Smooth horsetail Isoetaceae Quillwort family Isoetes bolanderi Bolander’s quillwort Isoetes howellii Howell’s quillwort Isoetes orcuttii Orcutt’s quillwort Lycopodiaceae Club-moss family Lycopodiella inundata Bog club-moss Marsileaceae Marsilea family Marsilea vestita ssp. vestita Water clover Pilularia americana American pillwort Ophioglossaceae Adder’s-tongue family Botrychium multifidum Leathery grapefern Polypodiaceae Polypody family Polypodium hesperium Western polypody Pteridaceae Brake family Adiantum aleuticum Five-finger maidenhair Adiantum jordanii Common maidenhair fern Aspidotis densa Indian’s dream Cheilanthes cooperae Cooper’s -
Plant Communities of the Steens Mountain Subalpine Grassland and Their Relationship to Certain En
AN ABSTRACT OF THE THESIS OF John William Mairs for the degree of Doctor of Philosophy in Geography presented on April 29, 1977 Title: PLANT COMMUNITIES OF THE STEENS MOUNTAIN SUBALPINE GRASSLAND AND THEIR RELATIONSHIP TO CERTAIN EN- VIRONMENTAL ELEMENTS Abstract approved: Redacted for Privacy Robert E. Frenkel Plant communities in a 3.5 km2area along the summit ridge of Steens Mountain, Harney County in southeastern Oregon are identified. The character of winter snow deposi- tion and spring melt in this subalpine zone is a major fac- tor in producing the vegetation pattern.Past domestic grazing, topography, wind pattern, climate, soil depth and soil moisture availability are related to the present vege- tation mosaic. Computer-assisted vegetation ordination of 278 tran- sect-located sample units using SIMORD and tabular plant association analysis of 346 areally-located releves using PHYTO were applied complementarily. Aided by the interpre- tation of true-color aerial photography (1:5000), this analysis revealed and mapped 12 plant communities and one additional combination community named after dominant species. After comparison of four selected similarity indexes commonly used in vegetation ordination analysis, Sorensen's modified similarity index was chosen as best for interpretation of stand groupings in the study data. The general vernal snow cover recession pattern was verified with LANDSAT-1 digital data representations. Plant communities associated with snow deflation, or crest, areas are Erigeron compositus-Astragalus whitneyi,