Tic Antarctic Basin: See Atlantic- the 1971 Edition

Total Page:16

File Type:pdf, Size:1020Kb

Tic Antarctic Basin: See Atlantic- the 1971 Edition antarc tic [1 OFTHE IIUNITED I] STATES December 1982 National Science Foundation Volume XVII—Number 4 dramatically demonstrated in Antarctica. 25th anniversary of the International The participating nations established sta- Geophysical Year tions in all areas of the continent and sci- entific personnel and ::nformation were The International Geophysical Year ated by the International Council of Sci- exchanged openly through such programs (1957-58) brought together from 67 coun- entific Unions to plan the global science as Antarctic Weather Central. In 1981 at tries approximately 25,000 scientists, work- program, called the Antarctic "a region of the Eleventh Antarctic Treaty Consulta- ing at 2,500 stations around the world. almost unparalleled interest in the fields tive Meeting representatives recognized the From their investigations of the Earths of geophysics and geography" and pointed importance of the IGY to current antarc- environment the world gained a large, coor- out how little was known about the con- tic research programs as they commemo- dinated data base on geomagnetism, the tinent. When the antarctic portion of the rated the 20th anniversary of the Treatys ionosphere, aurora, and cosmic rays. The IGY began, 12 nations were participating, entry into force. They cited the IGY as first 24-hour watches of solar flares, sun- and 55 stations were established around the model for the Treatys foundation of spots, and other solar phenomena were the continent and on subantarctic islands. continued, peaceful cooperation and free- conducted. Coordinated programs in seis- Nine major scientific programs were plan- dom of scientific investigation. mology, gravity, geodesy, and oceanogra- ned for Antarctica: the aurora, cosmic rays, phy improved understanding of the Earth geomagnetism, glaciology, gravity, iono- spheric physics, meteorology, seismology, and oceans, and the voluntary sharing of Albert Crary, deputy chief scientist of and an international weather center (Ant- data through the World Data Center sys- the U.S. IGY program and later chief sci- arctic Weather Central.) Along with these tem was initiated. entist of the U.S. Antarctic Research Pro- programs there was oceanography, bio- gram, wrote the following article in rec- The International Geophysical Year logy, and medical sciences. (IGY) also opened the way for research in ognition of the 25th anniversary of the two remote regions—space and the Ant- IGY. Dr. Crary focuses on planning for arctic. In 1954 the Comité Special de The success of cooperative efforts by the IGY and on how the IGY laid the foun- lAnnée Géophysique Internationale, cre- the worlds scientists during the IGY was dation for todays antarctic research. carried out Operation l-lighjump, the largest International Geophysical Year: Its array of ships, aircraft, and men ever assembled in Antarctica. Some 4,700 men evolution and U.S. participation supported by 13 ships and 25 aircraft con- ducted scientific investigations, trained and tested equipment under polar conditions, The idea for the Third International covery Plan, poured in huge sums of money and studied the feasibility of establishing Polar Year (TIPY), later to become the to help rebuild these war-ravaged nations. an airbase on ice. Approximately 60 per- International Geophysical Year (IGY), was In the far north a new military geography cent of the antarctic coastline, including introduced in 1950, 5 years after the end evolved, pitting Alaska, Canada, and previously unseen areas, was photographed. of World War II. In those postwar years, Greenland against the USSR across the A second U.S. Navy expedition in 1947-48, the cold-war struggle between the commu- Arctic Ocean. The western group hastened Operation Windmill, named by the press nists and democracies at times erupted in to increase its polar proficiency with such for its extensive use of helicopters to reach hitter fighting along the boundaries of the arctic expeditions as "Nanook" and "Muk- isolated areas, provided additional ground- two camps. Stalin, the leader of the Union luk," routine U. S. Air Force polar flights control for Highjump photography. of Soviet Socialist Republics (USSR), was from Alaskan bases, the installation of anxious to have communist-controlled weather stations in northern Canada, and Early planning buffer states along his western boundaries the construction of Greenland bases. In 1948 the U.S. State Department made and tightened his grip on the eastern Euro- During this period U. S. attention also a formal appeal to Argentina, Australia, pean nations. In western Europe the United turned toward the south. In the austral Chile, France, Great Britain, New Zealand, States leaders, through the European Re- summer of 1946-1947, the U.S. Navy and Norway (the seven nations with ant- arctic claims) to initiate discussions of the research was Lloyd Berkner. The idea of attention to the convening of the first sovereignty problem. At the same time the TIPY was introduced by Berkner, a tall, CSAGI meeting in June 1953 in Brussels. State Department asked the National Acad- pipe-smoking scientist who had been a emy of Sciences (NAS) to examine the pos- radio technician in the first Byrd Antarc- With help from Wallace Atwood of NAS sibilities of a coordinated program of ant- tic Expedition (1928-1930). After the Byrd and an ad hoc American Geophysical Union arctic research. Neither of these efforts Expedition he joined the Carnegie Institu- committee, Berkner lost no time in getting came to fruition. In 1950 when the USSR tion of Washington (CIW) where much the U.S. National Committee for the ICY learned of these sovereignty discussions, of the new and exciting work on the iono- (USNC) organized. The original 20 mem- the Soviet government made it clear that sphere was being done. From 1941 to 1946 bers included 15 from Federal agencies and no territorial settlements should be made Berkner served in the Navy, particularly the CIW and reflected the broad nature of without USSR participation. in the development of radar, and later was the programs. Joseph Kaplan, University appointed to head a committee that was of California auroral physicist and Air Force Among those serving on the 1948 NAS evaluating the relative importance of consultant, was appointed chairman. Dur- committee considering coordinated antarctic weapon systems for the national military ing two meetings in March and May 1953, establishment. As a special assistant at the the USNC put together a U.S. ICY pro- State Department in 1949, he directed work gram focused on upper atmosphere phys- in the military assistance program for the ics and meteorology. The antarctic program included a coastal station and two in the * The Academy did, however, publish Antarctic North Atlantic Security Pact nations. Later he surveyed the State Departments respon- interior, one of the latter at the geographic Research: Elements of a Coordinated Program South Pole. in May 1949. sibilities in international science. For the CSAGI meeting in Brussels 22 Although Berkner later referred to his members and observers (including three idea of TIPY as a spur-of-the-moment from the U.S.) from 12 nations were pres- thought, it should not have been totally ent. It is safe to say that never again was unexpected. Regardless of the origin of such a small delegation present for such the idea, Berkner introduced it and steered it an important meeting. After Chapman was through its early years. elected President, 11 discipline groups were formed and a combined program put to- Berkners proposal for TIPY was ap- gether from the 26 various national and proved by the Commission on the Iono- union programs. Despite the necessary sphere at its July 1950 meeting. In August it overlap of personnel in these groups, this was endorsed by the General Assembly of program, with one revision by the partic- the Union Radio Scientifique Internatio- ipating nations, easily could have served nale (URSI) and in September by the Execu- as the final IGY plan. tive Committee of the International Astro- nomical Union. The third union sponsor National Science Foundation and the IGY Editor: Winifred Reuning of the Commission on the Ionosphere, the The financing of the U.S. IGY program International Union of Geodesy and Geo- was debated in the USNC meetings, but Antarctic Journal of the United States, physics (IUGG), endorsed TIPY at its Gen- of all possibilities only a single congres- established in 1966, reports on U.S. eral Assembly in September 1951. The next sional budget seemed satisfactory. By the activities in Antarctica and related activi- month at the meeting of the Executive ties elsewhere, and on trends in the end of 1953 the National Science Founda- Board of the International Council of Sci- U.S. Antarctic Research Program. It is tion (NSF), a small independent agency entific Unions (ICSU) the three union pres- published quarterly (March, June, Sep- created by a 1950 Act of Congress (the idents confirmed their endorsements of tember, and December) with a fifth an- same year TIPY was proposed), appeared nual review issue by the Division TIPY. ICSU then authorized its Bureau to to be the logical choice. The NSF budget of Polar Programs, National Science form a special committee. In September for fiscal 1954 was about $8 million prin- Foundation, Washington, D.C. 20550. 1952 the ICSUs executive board approved cipally for support of research and science Telephone: 202/357-7817. the Bureaus membership nominations, wel- education at universities. NSF Director comed the International Geographical Subscription rates are $11.00 per five Alan Waterman, an astute science admin- issues, domestic, and $13.75 per five Union and the World Meteorological Orga- istrator, had followed the ICY plans closely. nization to the program, and agreed with issues, foreign; single copies are $2.25 In all probability, the letter from NAS to ($2.85 foreign) except for the annual the English geophysicist Sidney Chapmans NSF in November, asking NSF to consider review issue, which is $7.00 ($8.75 suggestion that the project be worldwide funding the IGY program, had his prior foreign).
Recommended publications
  • Friedrich-Alexander Universität Erlangen-Nürnberg
    Petrologische und Geochemische Untersuchungen an ultramafischen und mafischen Gesteinen der Shackleton Range, Ost-Antarktis Zeugen des Zusammenschlusses Gondwanas und letzte Relikte eines einstigen Ozeans? Der Naturwissenschaftlichen Fakultät/ Dem Fachbereich Geographie und Geowissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. Nat. vorgelegt von Tanja Romer aus Illertissen i Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät/ vom Fachbereich Geographie und Geowissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 01.06.2017 Vorsitzende/r des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter/in: Prof. Dr. Esther Schmädicke Prof. Dr. Reiner Klemd ii Zusammenfassung Im östlichen Teil der Antarktis liegt die Shackleton Range. Es handelt sich hierbei um ein Kollisionsorogen, das nach heutigen Erkenntnissen der panafrikanischen Orogenese zugeordnet wird. Hinweise darauf finden sich im nördlichen Bereich (z.B. Haskard Highlands) der Shackleton Range. Hier treten granatführende, ultramafische Gesteine als Linsen, eingeschlossen in hochgradig metamorphen Gneisen auf. Die Linsen setzen sich hauptsächlich aus granat- und/oder spinell-führenden Pyroxeniten und untergeordnet auch Peridotiten zusammen. Die nähere Umgebung der Linsen wird vor allem durch Amphibolite dominiert. Die Pyroxenite enthalten teilweise eine Verwachsung von Granat und Olivin und sind damit ein eindeutiger Indikator für eine eklogitfazielle Metamorphose in diesem Bereich. Weiterhin zeugen sie als ultramafische Gesteine von einer möglichen Suturzone. In dieser Forschungsarbeit konnte mittels Mikrosondenanalytik an Granat, Ortho- und Klinopyroxen, Spinell, Olivin und Amphibol für die ultramafischen Gesteine ein Teil des im Uhrzeigersinn verlaufenden P-T-Pfads rekonstruiert werden. Thermobarometrische Berechnungen ergaben maximale Metamorphosetemperaturen von 800 bis 850 °C. Die maximal erreichten Drücke dürften zwischen 20 bis 23 kbar gelegen haben.
    [Show full text]
  • Protecting the Crown: a Century of Resource Management in Glacier National Park
    Protecting the Crown A Century of Resource Management in Glacier National Park Rocky Mountains Cooperative Ecosystem Studies Unit (RM-CESU) RM-CESU Cooperative Agreement H2380040001 (WASO) RM-CESU Task Agreement J1434080053 Theodore Catton, Principal Investigator University of Montana Department of History Missoula, Montana 59812 Diane Krahe, Researcher University of Montana Department of History Missoula, Montana 59812 Deirdre K. Shaw NPS Key Official and Curator Glacier National Park West Glacier, Montana 59936 June 2011 Table of Contents List of Maps and Photographs v Introduction: Protecting the Crown 1 Chapter 1: A Homeland and a Frontier 5 Chapter 2: A Reservoir of Nature 23 Chapter 3: A Complete Sanctuary 57 Chapter 4: A Vignette of Primitive America 103 Chapter 5: A Sustainable Ecosystem 179 Conclusion: Preserving Different Natures 245 Bibliography 249 Index 261 List of Maps and Photographs MAPS Glacier National Park 22 Threats to Glacier National Park 168 PHOTOGRAPHS Cover - hikers going to Grinnell Glacier, 1930s, HPC 001581 Introduction – Three buses on Going-to-the-Sun Road, 1937, GNPA 11829 1 1.1 Two Cultural Legacies – McDonald family, GNPA 64 5 1.2 Indian Use and Occupancy – unidentified couple by lake, GNPA 24 7 1.3 Scientific Exploration – George B. Grinnell, Web 12 1.4 New Forms of Resource Use – group with stringer of fish, GNPA 551 14 2.1 A Foundation in Law – ranger at check station, GNPA 2874 23 2.2 An Emphasis on Law Enforcement – two park employees on hotel porch, 1915 HPC 001037 25 2.3 Stocking the Park – men with dead mountain lions, GNPA 9199 31 2.4 Balancing Preservation and Use – road-building contractors, 1924, GNPA 304 40 2.5 Forest Protection – Half Moon Fire, 1929, GNPA 11818 45 2.6 Properties on Lake McDonald – cabin in Apgar, Web 54 3.1 A Background of Construction – gas shovel, GTSR, 1937, GNPA 11647 57 3.2 Wildlife Studies in the 1930s – George M.
    [Show full text]
  • 168 2Nd Issue 2015
    ISSN 0019–1043 Ice News Bulletin of the International Glaciological Society Number 168 2nd Issue 2015 Contents 2 From the Editor 25 Annals of Glaciology 56(70) 5 Recent work 25 Annals of Glaciology 57(71) 5 Chile 26 Annals of Glaciology 57(72) 5 National projects 27 Report from the New Zealand Branch 9 Northern Chile Annual Workshop, July 2015 11 Central Chile 29 Report from the Kathmandu Symposium, 13 Lake district (37–41° S) March 2015 14 Patagonia and Tierra del Fuego (41–56° S) 43 News 20 Antarctica International Glaciological Society seeks a 22 Abbreviations new Chief Editor and three new Associate 23 International Glaciological Society Chief Editors 23 Journal of Glaciology 45 Glaciological diary 25 Annals of Glaciology 56(69) 48 New members Cover picture: Khumbu Glacier, Nepal. Photograph by Morgan Gibson. EXCLUSION CLAUSE. While care is taken to provide accurate accounts and information in this Newsletter, neither the editor nor the International Glaciological Society undertakes any liability for omissions or errors. 1 From the Editor Dear IGS member It is now confirmed. The International Glacio­ be moving from using the EJ Press system to logical Society and Cambridge University a ScholarOne system (which is the one CUP Press (CUP) have joined in a partnership in uses). For a transition period, both online which CUP will take over the production and submission/review systems will run in parallel. publication of our two journals, the Journal Submissions will be two­tiered – of Glaciology and the Annals of Glaciology. ‘Papers’ and ‘Letters’. There will no longer This coincides with our journals becoming be a distinction made between ‘General’ fully Gold Open Access on 1 January 2016.
    [Show full text]
  • The Antarctic Treaty Cm 8841
    The Antarctic Treaty Measures adopted at the Thirty-sixth Consultative Meeting held at Brussels, 20 – 29 May 2013 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty March 2014 Cm 8841 © Crown copyright 2014 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.2. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/2/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commo nwealth Office, King Charles Street, London, SW1A 2AH Print ISBN 9781474101134 Web ISBN 9781474101141 Printed in the UK by the Williams Lea Group on behalf of the Controller of Her Majesty’s Stationery Office ID P002631486 03/14 Printed on paper containing 30% recycled fibre content minimum MEASURES ADOPTED AT THE THIRTY-SIXTH ANTARCTIC TREATY CONSULTATIVE MEETING Brussels, Belgium, 20-29 May 2013 The Measures1 adopted at the Thirty-sixth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents.
    [Show full text]
  • 1 Transcript of a Recording of Jeremy Light, Interviewed at Peterhouse
    Transcript of a recording of Jeremy Light, interviewed at Peterhouse College on 15 September 2007 by Chris Eldon Lee. Jeremy Light, BAS Archive AD6/24/1/29, transcribed by Barry Heywood, 8 November 2015. Light: Jeremy Light. I was born 30th January 1943 in Salcombe, South Devon. [00:00:22] Lee: What were you doing before you came to BAS or Fids? Light: I was a student at Aberdeen University, studying Zoology at first, then Honours in Botany. [00:00:38] Lee: What drew you into going to the Antarctic? Light: Two things. There was an old Fid called Ian McLeod [G.K.McLeod - Transcriber?] who went down to the Antarctic many times. I remember him saying that it was the only way he could escape from women. And then I was very lucky to be able to go to an evening slide show given by Dr Macklin who was on Shackleton’s last voyage. No! not the last voyage – the famous boat voyage one. And that was really inspiring to me. [00:01:19] Lee: You didn’t want to get away from women particularly? Light: No! No I didn’t want to get away from my woman. [Lee laughs] We have known each other from practically birth. [00:01:34] Lee: So how did you go about fulfilling your wish, your dream? Light: Well, when I had finished my honours, I applied to BAS, but in fact, I had started on an honours project…I did some work on the high corrie lochans in the Cairngorms and found aquatic mosses there…quite a find…and so it seemed tailor-made for me when there was a job to study lakes on Signy Island.
    [Show full text]
  • Navigating Troubled Waters a History of Commercial Fishing in Glacier Bay, Alaska
    National Park Service U.S. Department of the Interior Glacier Bay National Park and Preserve Navigating Troubled Waters A History of Commercial Fishing in Glacier Bay, Alaska Author: James Mackovjak National Park Service U.S. Department of the Interior Glacier Bay National Park and Preserve “If people want both to preserve the sea and extract the full benefit from it, they must now moderate their demands and structure them. They must put aside ideas of the sea’s immensity and power, and instead take stewardship of the ocean, with all the privileges and responsibilities that implies.” —The Economist, 1998 Navigating Troubled Waters: Part 1: A History of Commercial Fishing in Glacier Bay, Alaska Part 2: Hoonah’s “Million Dollar Fleet” U.S. Department of the Interior National Park Service Glacier Bay National Park and Preserve Gustavus, Alaska Author: James Mackovjak 2010 Front cover: Duke Rothwell’s Dungeness crab vessel Adeline in Bartlett Cove, ca. 1970 (courtesy Charles V. Yanda) Back cover: Detail, Bartlett Cove waters, ca. 1970 (courtesy Charles V. Yanda) Dedication This book is dedicated to Bob Howe, who was superintendent of Glacier Bay National Monument from 1966 until 1975 and a great friend of the author. Bob’s enthusiasm for Glacier Bay and Alaska were an inspiration to all who had the good fortune to know him. Part 1: A History of Commercial Fishing in Glacier Bay, Alaska Table of Contents List of Tables vi Preface vii Foreword ix Author’s Note xi Stylistic Notes and Other Details xii Chapter 1: Early Fishing and Fish Processing in Glacier Bay 1 Physical Setting 1 Native Fishing 1 The Coming of Industrial Fishing: Sockeye Salmon Attract Salters and Cannerymen to Glacier Bay 4 Unnamed Saltery at Bartlett Cove 4 Bartlett Bay Packing Co.
    [Show full text]
  • Rothera Modernisation ‐ Phase 1
    Rothera Modernisation ‐ Phase 1 Initial Environmental Evaluation BAS Antarctic Infrastructure Modernisation Programme BAS Environment Office September 2019 0 This page has been intentionally left blank. 1 Contents Non‐Technical Summary ....................................................................................................................... 10 1 INTRODUCTION ............................................................................................................................. 16 1.1 Background to AIMP ............................................................................................................. 16 1.2 Overview of proposed development .................................................................................... 16 1.3 Purpose and scope of document .......................................................................................... 17 2 APPROACH TO ENVIRONMENTAL IMPACT ASSESSMENT ............................................................. 18 2.1 Statutory requirements ........................................................................................................ 18 2.2 EIA methodology ................................................................................................................... 18 2.3 BREEAM ................................................................................................................................. 19 2.4 Sustainability Plan ................................................................................................................. 20
    [Show full text]
  • I!Ij 1)11 U.S
    u... I C) C) co 1 USGS 0.. science for a changing world co :::2: Prepared in cooperation with the Scott Polar Research Institute, University of Cambridge, United Kingdom Coastal-change and glaciological map of the (I) ::E Bakutis Coast area, Antarctica: 1972-2002 ;::+' ::::r ::J c:r OJ ::J By Charles Swithinbank, RichardS. Williams, Jr. , Jane G. Ferrigno, OJ"" ::J 0.. Kevin M. Foley, and Christine E. Rosanova a :;:,­..... CD ~ (I) I ("') a Geologic Investigations Series Map I- 2600- F (2d ed.) OJ ~ OJ '!; :;:,­ OJ ::J <0 co OJ ::J a_ <0 OJ n c; · a <0 n OJ 3 OJ "'C S, ..... :;:,­ CD a:r OJ ""a. (I) ("') a OJ .....(I) OJ <n OJ n OJ co .....,...... ~ C) .....,0 ~ b 0 C) b C) C) T....., Landsat Multispectral Scanner (MSS) image of Ma rtin and Bea r Peninsulas and Dotson Ice Shelf, Bakutis Coast, CT> C) An tarctica. Path 6, Row 11 3, acquired 30 December 1972. ? "T1 'N 0.. co 0.. 2003 ISBN 0-607-94827-2 U.S. Department of the Interior 0 Printed on rec ycl ed paper U.S. Geological Survey 9 11~ !1~~~,11~1!1! I!IJ 1)11 U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-2600-F (2d ed.) U.S. GEOLOGICAL SURVEY COASTAL-CHANGE AND GLACIOLOGICAL MAP OF THE BAKUTIS COAST AREA, ANTARCTICA: 1972-2002 . By Charles Swithinbank, 1 RichardS. Williams, Jr.,2 Jane G. Ferrigno,3 Kevin M. Foley, 3 and Christine E. Rosanova4 INTRODUCTION areas Landsat 7 Enhanced Thematic Mapper Plus (ETM+)), RADARSAT images, and other data where available, to compare Background changes over a 20- to 25- or 30-year time interval (or longer Changes in the area and volume of polar ice sheets are intri­ where data were available, as in the Antarctic Peninsula).
    [Show full text]
  • Structure and Sedimentology of George VI Ice Shelf, Antarctic Peninsula: Implications for Ice-Sheet Dynamics and Landform Developmentmichael J
    XXX10.1144/jgs2014-134M. J. Hambrey et al.Ice-shelf dynamics, sediments and landforms 2015 research-articleResearch article10.1144/jgs2014-134Structure and sedimentology of George VI Ice Shelf, Antarctic Peninsula: implications for ice-sheet dynamics and landform developmentMichael J. Hambrey, Bethan J. Davies, Neil F. Glasser, Tom O. Holt, John L. Smellie 2014-134&, Jonathan L. Carrivick Research article Journal of the Geological Society Published online June 26, 2015 doi:10.1144/jgs2014-134 | Vol. 172 | 2015 | pp. 599 –613 Structure and sedimentology of George VI Ice Shelf, Antarctic Peninsula: implications for ice-sheet dynamics and landform development Michael J. Hambrey1*, Bethan J. Davies1, 2, Neil F. Glasser1, Tom O. Holt1, John L. Smellie3 & Jonathan L. Carrivick4 1 Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, UK 2 Centre for Quaternary Research, Department of Geography, Royal Holloway, University of London, Egham TW20 0EX, UK 3 Department of Geology, University of Leicester, Leicester LE1 7RH, UK 4 School of Geography and water@leeds, University of Leeds, Leeds LS2 9JT, UK * Correspondence: [email protected] Abstract: Collapse of Antarctic ice shelves in response to a warming climate is well documented, but its legacy in terms of depositional landforms is little known. This paper uses remote-sensing, structural glaciological and sedimento- logical data to evaluate the evolution of the c. 25000 km2 George VI Ice Shelf, SW Antarctic Peninsula. The ice shelf occu- pies a north–south-trending tectonic rift between Alexander Island and Palmer Land, and is nourished mainly by ice streams from the latter region.
    [Show full text]
  • The Last Glaciation of Bear Peninsula, Central Amundsen Sea
    Quaternary Science Reviews 178 (2017) 77e88 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: Constraints on timing and duration revealed by in situ cosmogenic 14Cand10Be dating * Joanne S. Johnson a, , James A. Smith a, Joerg M. Schaefer b, Nicolas E. Young b, Brent M. Goehring c, Claus-Dieter Hillenbrand a, Jennifer L. Lamp b, Robert C. Finkel d, Karsten Gohl e a British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK b Lamont-Doherty Earth Observatory, Columbia University, Route 9W, Palisades, New York NY 10964, USA c Department of Earth & Environmental Sciences, Tulane University, New Orleans, LA 70118, USA d Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, 7000 East Avenue Avenue, Livermore, CA 94550-9234, USA e Alfred Wegener Institute for Polar and Marine Research, Postfach 120161, D-27515 Bremerhaven, Germany article info abstract Article history: Ice streams in the Pine Island-Thwaites region of West Antarctica currently dominate contributions to sea Received 6 April 2017 level rise from the Antarctic ice sheet. Predictions of future ice-mass loss from this area rely on physical Received in revised form models that are validated with geological constraints on past extent, thickness and timing of ice cover. 18 October 2017 However, terrestrial records of ice sheet history from the region remain sparse, resulting in significant Accepted 1 November 2017 model uncertainties. We report glacial-geological evidence for the duration and timing of the last glaciation of Hunt Bluff, in the central Amundsen Sea Embayment.
    [Show full text]
  • Whitehouse Et Al., 2012B) and the Alexander Island Has a Mean Annual Air Temperature of C
    Quaternary Science Reviews 177 (2017) 189e219 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula * Bethan J. Davies a, b, , Michael J. Hambrey b, Neil F. Glasser b, Tom Holt b, Angel Rodes c, John L. Smellie d, Jonathan L. Carrivick e, Simon P.E. Blockley a a Centre for Quaternary Research, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK b Institute of Geography and Earth Sciences, Aberystwyth University, Ceredigion, SY23 3DB, Wales, UK c SUERC, Rankine Avenue, East Kilbride, G75 0QF, Scotland, UK d Department of Geology, University of Leicester, Leicester, LE1 7RH, UK e School of Geography and Water@leeds, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS2 9JT, UK article info abstract Article history: We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf Received 5 June 2017 and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free Received in revised form oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf mo- 1 October 2017 raines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of Accepted 12 October 2017 the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnee valleys, dammed against Keywords: Holocene the ice stream in George VI Sound.
    [Show full text]
  • Clastos Con Calcimicrobios Y Arqueociatos Procedentes De
    Estudios Geológicos julio-diciembre 2019, 75(2), e112 ISSN-L: 0367-0449 https://doi.org/10.3989/egeol.43586.567 Calcimicrobial-archaeocyath-bearing clasts from marine slope deposits of the Cambrian Mount Wegener Formation, Coats Land, Shackleton Range, Antarctica Clastos con calcimicrobios y arqueociatos procedentes de depósitos marinos del talud de la Formación cámbrica del Monte Wegener, Coats Land, Cordillera de Shackleton Antártida M. Rodríguez-Martínez1, A. Perejón1, E. Moreno-Eiris1, S. Menéndez2, W. Buggisch3 1Universidad Complutense de Madrid, Departamento de Geodinámica, Estratigrafía y Paleontología, Madrid, Spain. Email: [email protected], [email protected], [email protected]; ORCID ID: http://orcid.org/0000-0002-4363-5562, http://orcid.org/0000-0002-6552-0416, http://orcid.org/0000-0003-2250-4093 2Museo Geominero, Instituto Geológico y Minero de España (IGME), Ríos Rosas, 23, 28003 Madrid, Spain. Email: [email protected]; ORCID ID: Silvia Menéndez: http://orcid.org/0000-0001-6074-9601 3GeoZentrum Nordbayern. Friedrich-Alexander-University of Erlangen-Nürnberg (FAU). Schlossgarten 5, 91054 Erlangen, Germany. ABSTRACT The carbonate clasts from the Mount Wegener Formation provide sedimentological, diagenetic and palaeonto- logical evidences of the destruction and resedimentation of a hidden/unknown Cambrian carbonate shallow-water record at the Coats Land region of Antarctica. This incomplete mosaic could play a key role in comparisons and biostratigraphic correlations between the Cambrian record of the Transantarctic Mountains, Ellsworth-Whitmore block and Antarctic Peninsula at the Antarctica continent. Moreover, it represents a key record in future palaeobio- geographic reconstructions of South Gondwana based on archaeocyathan assemblages. Keywords: Calcimicrobes; Archaeocyaths; Shackleton Range; Antarctica; Gondwana.
    [Show full text]