Friedrich-Alexander Universität Erlangen-Nürnberg

Total Page:16

File Type:pdf, Size:1020Kb

Friedrich-Alexander Universität Erlangen-Nürnberg Petrologische und Geochemische Untersuchungen an ultramafischen und mafischen Gesteinen der Shackleton Range, Ost-Antarktis Zeugen des Zusammenschlusses Gondwanas und letzte Relikte eines einstigen Ozeans? Der Naturwissenschaftlichen Fakultät/ Dem Fachbereich Geographie und Geowissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. Nat. vorgelegt von Tanja Romer aus Illertissen i Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät/ vom Fachbereich Geographie und Geowissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 01.06.2017 Vorsitzende/r des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter/in: Prof. Dr. Esther Schmädicke Prof. Dr. Reiner Klemd ii Zusammenfassung Im östlichen Teil der Antarktis liegt die Shackleton Range. Es handelt sich hierbei um ein Kollisionsorogen, das nach heutigen Erkenntnissen der panafrikanischen Orogenese zugeordnet wird. Hinweise darauf finden sich im nördlichen Bereich (z.B. Haskard Highlands) der Shackleton Range. Hier treten granatführende, ultramafische Gesteine als Linsen, eingeschlossen in hochgradig metamorphen Gneisen auf. Die Linsen setzen sich hauptsächlich aus granat- und/oder spinell-führenden Pyroxeniten und untergeordnet auch Peridotiten zusammen. Die nähere Umgebung der Linsen wird vor allem durch Amphibolite dominiert. Die Pyroxenite enthalten teilweise eine Verwachsung von Granat und Olivin und sind damit ein eindeutiger Indikator für eine eklogitfazielle Metamorphose in diesem Bereich. Weiterhin zeugen sie als ultramafische Gesteine von einer möglichen Suturzone. In dieser Forschungsarbeit konnte mittels Mikrosondenanalytik an Granat, Ortho- und Klinopyroxen, Spinell, Olivin und Amphibol für die ultramafischen Gesteine ein Teil des im Uhrzeigersinn verlaufenden P-T-Pfads rekonstruiert werden. Thermobarometrische Berechnungen ergaben maximale Metamorphosetemperaturen von 800 bis 850 °C. Die maximal erreichten Drücke dürften zwischen 20 bis 23 kbar gelegen haben. Die darauf folgende Druckentlastung konnte durch einen kelyphitischen Saum um Granat, bestehend aus Spinell, Ortho- und Klinopyroxen auf etwa 2 kbar eingegrenzt werden. Diese Berechnung beruht auf dem geringeren Cr-Gehalt des kelyphitischen Spinell im Vergleich zu dem granularen Spinell der Matrix. Die Ergebnisse lassen sich sehr gut mit einer Metamorphose im eklogitfaziellen Bereich korrelieren. Weiterhin deutet der metamorphe Gradient von 11 bis 12 °C/km auf eine ehemalige Subduktionszone hin. Einige der Proben konnten datiert werden. Hierbei ergab die Sm-Nd-Datierung der pyroxenitischen und amphibolitischen Proben ein Eduktalter von 918 ± 460 Ma, basierend auf den Nd-Isotopenhäufigkeiten und den Gesamtgesteinsdaten. Das Sm- Nd-Metamorphosealter der untersuchten Granate liegt zwischen 510 bis 530 Ma. Die Datierung mit der Ar-Ar-Methode an Amphibolen aus Pyroxeniten sowie Amphiboliten ergab dazu vergleichbare Metamorphosealter von etwa 500 bis 520 Ma. Diese Ereignisse können somit eindeutig der panafrikanischen Orogenese zugeordnet werden. Die bestimmten Protolithalter lassen darauf schließen, dass die Gesteine während des Neoproterozoikums oder späten Mesoproterozoikums entstanden sind. Diese Daten stimmen mit Altern von Pyroxeniten und mafischen Gneisen aus dem nördlichen Teil der Shackleton Range, z.B. Northern Haskard Highlands, Bernhardi Heights und Lord Nunatak überein (Talarico et al., 1999b; Will et al., 2010). Ferner sind in der Lanterman Range, im Transantarktischen Gebirge, Gesteine mit einem vergleichbaren Eduktalter (750 - 700 Ma) vorhanden (Di iii Vincenzo et al., 1997). Auf Grundlage der geochemischen Analysen dieser Forschungsarbeit werden die Proben in vier Gruppen, Pyroxenite, Amphibolite mit MgO-Gehalt ≥ 14 Gew.%, Amphibolite mit MgO-Gehalt ≤ 12 Gew.% und Harzburgite, unterteilt. Bei den Mg-reichen Amphiboliten handelt es sich mutmaßlich um amphibolitfaziell rekristallisierte Pyroxenite. Die Herkunft der Harzburgite lässt sich nicht eindeutig klären. Sie entstammen entweder dem Mantel oder stellen sehr frühe Kumulate da, höchstwahrscheinlich ist beides vorhanden. So zeigt eine der Proben Signaturen von Mantelderivaten (z.B. Verteilung der Seltenen Erden), während die restlichen Proben typische Merkmale von Olivin-Kumulaten besitzen. Generell lässt die Elementverteilung von Haupt- und Spurenelementen (z.B. Zr- und Nb-Gehalte), sowie die verschiedenen Verhältnisse der Elemente zueinander (z.B. Th/Nb-, La/Sm- und Zr/Nb-Verhältnis) darauf schließen, dass die Magmenquelle fast aller Proben im Bereich einer ozeanischen Insel lag. Die Abreicherung von mobilen Elementen wie z.B. Sr und Ba legt nahe, dass die primäre Magmenquelle der untersuchten Gesteine durch sekundäre Prozesse verändert wurde. Im Weiteren sprechen z.B. Harker-Diagramme, Ce-Yb-Verhältnisse und normierte Spurenelementverteilungsmuster für eine starke Differenzierung der Magmensuite. In einigen Fällen deuten die Th-, La- und Nb-Gehalte auf eine Interaktion mit krustalem Material hin. Insgesamt zeigen die Ergebnisse dieser Forschungsarbeit, dass die hier untersuchten Proben vor etwa 918 ± 460 Ma im Bereich einer ozeanischen Insel entstanden sind und im Rahmen der panafrikanischen Orogenese eine Hochdruck-Metamorphose erfuhren. Die ultramafischen Gesteine sind somit höchst wahrscheinlich erste Zeugen einer eklogitfaziellen Metamorphose im Raum der östlichen Antarktis, welche die Kollision von Ost- und Westgondwana widerspiegeln. Die Subduktion mit anschließender Kontinent-Kontinent-Kollision lässt sich auf einen Zeitraum von 530 bis etwa 510 Ma fixieren. Diese Forschungsarbeit und schon vorangegangene Untersuchungen aus dieser Region lassen mutmaßen, dass sich die daraus entstandene Suturzone über die Herbert Mountains, wo neoproterozoische Ophiolithe gefunden wurden, weiter zu den Lord Nunataks zieht. Es ist anzunehmen, dass es sich bei dieser Zone um die Kuunga Sutur handelt. Diese Sutur markiert die letzte Kontinent- Kontinent-Kollision im Bereich der östlichen Antarktis und dürfte somit vom kompletten Zusammenschluss Gondwanas zeugen. iv Abstract The Shackleton Range is located in the eastern part of Antarctica. It is, according to the recent studies, a collisional orogen, which can be most likely associated with Pan-African orogeny. Indications are found in the northern area (Haskard Highlands) of the Shackleton Range. Here come garnet leading ultramafic rocks as lenses enclosed in highly metamorphic gneisses. The lenses consist mainly of garnet- and/or spinel-leading pyroxenites and subordinate peridotites. The surrounding area of the lenses is dominated by amphibolites. The pyroxenites contain partially an intergrowth of garnet and olivine and are therefore a clear indicator of an eclogite facies metamorphism in this area. Furthermore the ultramafic rocks are tracers of an existing suture zone. A part of the clockwise P-T–path of the ultramafic rocks could be reconstructed in this research project by using microprobe analysis of garnet, ortho- and clinopyroxene, spinel, olivine and amphibole. Thermobarometric calculations showed maximum metamorphic temperatures of 800 to 850 °C. The maximum achieved pressure is, after the calculations, between 20 to 23 kbar. The following decompression could be limited, by a kelyphitic rim of spinel, ortho- and clinopyroxen around garnet, to 2 kbar. This calculation is based on the lower concentration of chrom in the kelyphitic spinel in comparison with the spinel of the matrix. The results match well with an eclogite facies metamorphism. Furthermore, the metamorphic gradient of 11 - 12 °C/km indicates a former zone of subduction. In addition, some samples were dated. Here, the Sm -Nd dating of pyroxenitic and amphibolitic samples showed a Protolithage of 918 ± 460 Ma, based on the Nd isotopic abundances and the whole rock data. The Sm -Nd metamorphic age of the examined garnet is between 510 - 530 Ma. The dating of amphiboles from pyroxenites and amphibolites with the Ar-Ar method yielded comparable metamorphic ages of 500 - 520 Ma. Thus these events can be attributed to the Pan-African orogeny. The Protolithages suggests that the minerals formed during the Neoproterozoic or late Mesoproterozoic. These data are consistent with ages of mafic gneisses and pyroxenites from the northern part of the Shackleton Range, for example, Northern Haskard Highlands, Bernhardi Heights and Lord Nunatak (Talarico et al., 1999b; Will et al., 2010). Furthermore, rocks of similar age (750 - 700 Ma) are present in the Lanterman Range, in the Transantarctic Mountains (Di Vincenzo et al., 1997). According to the geochemical analyzes of this research study, the samples are divided into four groups, pyroxenites, amphibolites with a concentration of MgO ≥ 14 Gew.%, amphibolites with a MgO concentration of ≤ 12 Gew.% and harzburgites. The former amphibolites are most likely amphibolite facies recrystallized pyroxenites. The origin of the harzburgites can not clearly be reconstructed. They originate either from the mantle or represents very early cumulates, v possibly it exists both. Generally, the element distribution of major and trace elements (e.g. Zr- and Nb-contents) as well as the various ratios of the elements to each other (e.g. Th/Nb- , La/Sm- and Zr/Nb-ratio) suggests that the magma source of most samples is in the range of an oceanic island. The depletion of mobile elements such as Sr and Ba suggests that the primary magma source of the examined rock has been altered by secondary processes. Furthermore,
Recommended publications
  • Petrogenesis of the Metasediments from the Pioneers Escarpment, Shackleton Range, Antarctica
    Polarforschung 63 (2/3): 165-182,1993 (erschienen 1995) Petrogenesis of the Metasediments from the Pioneers Escarpment, Shackleton Range, Antarctica By Norbcrt W. Roland', Martin Olcsch2 and Wolfgang Schubert' Summary: During the GEISHA expedition (Geologische Expedition in die during apre-Ross metarnorphic event or orogeny. The Ross Orogeny at about Shackleton Range 1987/88), the Pioneers Escarpment was visited and sampled 500 Ma probably just led to the weak greensehrst facies overprint that is evi­ extensively for the first time. Most of the rock types eneountered represent dent in the rocks of the Pioneers Group. amphibolite faeies metamorphics, but evidence for granulite facies conditions was found in cores of garnet. These conelitions must have been at least partly Finally, sedimentation resumed in the area of the present Shacklcton Range, or reached during the peak of metamorphism. at least in the eastern part of the Pioneers Escarpment, probably when detritus from erosion of the basement (Read Group and Pioneers Group) was deposi­ For the Pioneers Escarpment a varicolored succession of sedimentary anel bi­ ted, forming sandstones and greywackes of possibly Jurassie age. There is no modal volcanic origin is typical. It comprises: indication that these sediments belong to the former Turnpike Bluff Group. quartzites muscovite quartzite, sericite quartzite, fuchsite quartzite, garnet­ quartz schists etc.; Zusammenfassung: Während GEISHA (Geologische Expedition in die Shack­ pelites: mica schists and plagiocJase 01' plagioclase-microcline gneisses, alu­ leton Range 1987/88) wurde erstmals das Pioneers Escarpment der Shackleton minous schists; Range intensiver beprobt. Es treten Überwiegend Metamorphire der Amphibo­ marls and carbonates: grey meta-limestones, carbonaceous guartzites, but also litfazies auf.
    [Show full text]
  • The Stratigraphy of the Ohio Range, Antarctica
    This dissertation has been 65—1200 microfilmed exactly as received LONG, William Ellis, 1930- THE STRATIGRAPHY OF THE OHIO RANGE, ANTARCTICA. The Ohio State University, Ph.D., 1964 G eology University Microfilms, Inc., Ann Arbor, Michigan THE STRATIGRAPHY OF THE OHIO RANGE, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By William Ellis Long, B.S., Rl.S. The Ohio State University 1964 Approved by A (Miser Department of Geology PLEASE NOTE: Figure pages are not original copy* ' They tend tc "curl11. Filled in the best way possible. University Microfilms, Inc. Frontispiece. The Ohio Range, Antarctica as seen from the summit of ITIt. Glossopteris. The cliffs of the northern escarpment include Schulthess Buttress and Darling Ridge. The flat area above the cliffs is the Buckeye Table. ACKNOWLEDGMENTS The preparation of this paper is aided by the supervision and advice of Dr. R. P. Goldthwait and Dr. J. M. Schopf. Dr. 5. B. Treves provided petrographic advice and Dir. G. A. Doumani provided information con­ cerning the invertebrate fossils. Invaluable assistance in the fiBld was provided by Mr. L. L. Lackey, Mr. M. D. Higgins, Mr. J. Ricker, and Mr. C. Skinner. Funds for this study were made available by the Office of Antarctic Programs of the National Science Foundation (NSF grants G-13590 and G-17216). The Ohio State Univer­ sity Research Foundation and Institute of Polar Studies administered the project (OSURF Projects 1132 and 1258). Logistic support in Antarctica was provided by the United States Navy, especially Air Development Squadron VX6.
    [Show full text]
  • The Shackleton Range of East Antarctica
    General Information Project Title: The Shackleton Range of East Antarctica: unravelling a complex geological history via an integrated geochronological, geochemical and geophysical approach Lead Institution: BAS Department / School / Institute Geology & Geophysics CASE Partner Organisations CASP, West Building, Madingley Road, [OPTIONAL] Cambridge, CB3 0UD. Leave blank if not applicable End-user Collaborations [OPTIONAL] Leave blank if not applicable Project Team The first supervisor should be from the lead institution. The Second Supervisor should be from a second IAPETUS2 organisation Supervisor 1 Name Dr Teal Riley Organisation BAS Email [email protected] Biography URL https://WWW.bas.ac.uk/profile/trr/ Supervisor 2 Name Dr Nick Gardiner Organisation University of St Andrews Email [email protected] Biography URL https://WWW.st-andrews.ac.uk/earth- sciences/people/njg7 Supervisor 3 (if applicable) Name Dr Fausto Ferraccioli Organisation BAS Email [email protected] Biography URL https://WWW.bas.ac.uk/profile/ffe/ Supervisor 4 (if applicable) Name Organisation Choose an item. Email Biography URL Supervisor 5 (if applicable) Name Organisation Choose an item. Email Biography URL CASE Partners If applicable, add any CASE Partners here Name [optional] Dr Michael FlowerdeW Organisation CASP Email [email protected] Biography URL https://casp.org.uk/people/michael-floWerdeW End-user Collaborations If applicable, add any End-user Collaborations here Name [optional] Organisation Email Biography URL In Collaboration with Add any non-IAPETUS University collaboration partners here. [OPTIONAL] Leave blank if not applicable Name Organisation Email Biography URL Project Details The information provided here will be used to create the project advertisement online and in pdf format.
    [Show full text]
  • Clastos Con Calcimicrobios Y Arqueociatos Procedentes De
    Estudios Geológicos julio-diciembre 2019, 75(2), e112 ISSN-L: 0367-0449 https://doi.org/10.3989/egeol.43586.567 Calcimicrobial-archaeocyath-bearing clasts from marine slope deposits of the Cambrian Mount Wegener Formation, Coats Land, Shackleton Range, Antarctica Clastos con calcimicrobios y arqueociatos procedentes de depósitos marinos del talud de la Formación cámbrica del Monte Wegener, Coats Land, Cordillera de Shackleton Antártida M. Rodríguez-Martínez1, A. Perejón1, E. Moreno-Eiris1, S. Menéndez2, W. Buggisch3 1Universidad Complutense de Madrid, Departamento de Geodinámica, Estratigrafía y Paleontología, Madrid, Spain. Email: [email protected], [email protected], [email protected]; ORCID ID: http://orcid.org/0000-0002-4363-5562, http://orcid.org/0000-0002-6552-0416, http://orcid.org/0000-0003-2250-4093 2Museo Geominero, Instituto Geológico y Minero de España (IGME), Ríos Rosas, 23, 28003 Madrid, Spain. Email: [email protected]; ORCID ID: Silvia Menéndez: http://orcid.org/0000-0001-6074-9601 3GeoZentrum Nordbayern. Friedrich-Alexander-University of Erlangen-Nürnberg (FAU). Schlossgarten 5, 91054 Erlangen, Germany. ABSTRACT The carbonate clasts from the Mount Wegener Formation provide sedimentological, diagenetic and palaeonto- logical evidences of the destruction and resedimentation of a hidden/unknown Cambrian carbonate shallow-water record at the Coats Land region of Antarctica. This incomplete mosaic could play a key role in comparisons and biostratigraphic correlations between the Cambrian record of the Transantarctic Mountains, Ellsworth-Whitmore block and Antarctic Peninsula at the Antarctica continent. Moreover, it represents a key record in future palaeobio- geographic reconstructions of South Gondwana based on archaeocyathan assemblages. Keywords: Calcimicrobes; Archaeocyaths; Shackleton Range; Antarctica; Gondwana.
    [Show full text]
  • Emergence of the Shackleton Range from Beneath the Antarctic
    Edinburgh Research Explorer Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion Citation for published version: Sugden, D, Fogwill, CJ, Hein, AS, Stuart, FM, Kerr, AR & Kubik, PW 2014, 'Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion', Geomorphology, pp. 1-22. https://doi.org/10.1016/j.geomorph.2013.12.004 Digital Object Identifier (DOI): 10.1016/j.geomorph.2013.12.004 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Geomorphology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 NOTICE: this is the author's final version of a work that was accepted for publication in Geomorphology. Changes resulting from the publishing process, such as editing, corrections and structural formatting may not be reflected in this document. A definitive version of this document is due to be published in Geomorphology by Elsevier (2014). Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion a b a c a d D.E.
    [Show full text]
  • Shackleton Range Traverse Lock Back for This Work
    Shackleton Range Traverse lock back for this work. Along with another surveyor, Tony True, he flew via Washington, D.C. and Christ- church to McMurdo Sound, where they awaited fa- SIR VIVIAN FUCHS vorable weather for the flight across the continent. On November 23, their LC-130 landed at Halley Bay, British Antarctic Survey where two geologists, two assistants, and 27 dogs, to- gether with 10,000 lbs of supplies and equipment, The Shackleton Range was discovered by the Com- were loaded and the plane refuelled. monwealth Trans-Antarctic Expedition in February When the aircraft reached the Shackletons, only a 1956. The mountains extend for about 100 miles few peaks were visible through low cloud cover, which along an east-west axis between latitudes 80°S. and made it impossible to locate the Stratton Glacier 81°S. The highest peak is just 6,000 feet. In 1957, where it was intended to land the party. After circling surveyors David Stratton and Kenneth Blaikiock the mountains for an hour, the pilot saw a small gap made a &osed traverse by dog sledge, tied to astro- in the clouds to the south of the range and was able to fixes, through the western part of the range. make a skillful but very bumpy landing on the sastru- In recent years, the British Antarctic Survey has gi-cut surface of the great, 40-mile wide Recovery succeeded in reaching these mountains on the ground Glacier. At this time, the precise position was un- from Halley Bay, although it entailed a round trip of known, but the plane was quickly unloaded and took over 1,000 miles for the tractors and (log teams, which off for McMurclo in thick clouds.
    [Show full text]
  • ARCHIVED-CARN Vol 24, Nov 2007 [PDF-2.77
    Vol 24, November 2007 NEWSLETTER FOR THE Canadian Antarctic Research Network Inside Measuring Crustal Motion in Antarctica: Measuring Crustal Motion GPS, Tectonics, and Glacio-isostatic Adjustment in Antarctica: Thomas James GPS, Tectonics, and Glacio-isostatic Adjustment 1 For five weeks in early 2006, I joined the U.S. National Science Foundation’s (NSF) field team of the Transantarctic Mountain Deformation (TAMDEF) pro- RUGBY ject (www.geology.ohio-state.edu/tamdef/) measuring crustal motion in the (Research on Ultraviolet and Global warming effects Transantarctic Mountains near McMurdo Station (Fig. 1). My initial involvement on Biological pump Yields) 8 in this was as a modeller of the crustal motions expected from past and present changes in the Antarctic ice sheet. By observing and modelling these motions, Canadians in Antarctic known as glacio-isostatic adjustment (GIA), we learn about the structure and Place-Names: properties of the Earth beneath the TAMDEF region, and may possibly discern Supplement 13 new features of the ice-sheet history. In turn, well-constrained GIA models allow better interpretation of remote-sensing data to determine the mass balance of Protocol for Canada–Argentina ice sheets and the contribution that ice sheets make to sea-level change. Collaboration 16 The Transantarctic Mountains are adjacent to the West Antarctic Rift Sys- tem, a broad zone which has experienced significant extension in the past. When Canadian Involvement TAMDEF started, an issue in global tectonics was whether West Antarctica and in Antarctic Tourism Research: East Antarctica were moving relative to one another, or whether the continent an update on some moves as a relatively rigid block.
    [Show full text]
  • Diabase Sheets of the Taylor Glacier Region Victoria Land, Antarctica
    Diabase Sheets of the Taylor Glacier Region Victoria Land, Antarctica GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-B Work done in cooperation with the National Science Foundation Diabase Sheets of the Taylor Glacier Region Victoria Land, Antarctica By WARREN HAMILTON With sections on PETROGRAPHY By WARREN HAMILTON, PHILIP T. HAYES, and RONALD CALVERT And sections on CHEMISTRY By WARREN HAMILTON, VERTIE C. SMITH, PAUL S. D. ELMORE, PAUL R. BARNETT, and NANCY CONKLIN CONTRIBUTIONS TO THE GEOLOGY OF ANTARCTICA GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-B Work done in cooperation with the National Science Foundation UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract______________________________ Bl Petrology of basement sill Continued Introduction. _________________________ 2 Major oxides, by Warren Hamilton, Vertie C. Smith, Location________________________ 2 and Paul S. D. Elmore________________ B37 Present work______________________ 2 Bulk composition_______________________________ 41 Acknowledgments. _______________ 4 Minor elements, by Warren Hamilton, Paul R. Other studies...___________________ 4 Barnett, Vertie C. Smith, and Nancy M. Conklin. 42 Regional setting.__________________ 4 Density-_-___-__---_---_______________________ 45 Geography.._ _________________ 5 Differentiation. ________________________________ 46 Geology. __ ______ _ 6 Petrology of other diabase sheets.____________________ 49 Beacon Sandstone. ________ 7 Petrography, by Warren Hamilton and Philip T. Basement rocks__________ 7 Hayes----_-_-----_---_-__________-___--____- 49 Form of diabase sheets.________________ 7 Chemistry, by Warren Hamilton, Vertie C. Smith, Sheets in Beacon Sandstone. _.____-_ 7 and Paul S.
    [Show full text]
  • Geological Comparison of the Shackleton Range and The
    and the remainder in support. Logistics was provided by two vse menshe (Fewer and fewer blank spots, 23 February); each of 11-14 and AN-2 airplanes and of the Ml-8 helicopter. Rasstupites, Aysbergi! (Icebergs, Step aside!, 3 March). Pravda, Vesti iz ekspeditsiy (News from expeditions). Geologic work in the Shackleton Range involved mapping and detailed stratigraphic-structural studies of the Clarkson, P.D., 1972. Geology of the Shackleton Range. British Antarctic Survey. Bulletin, 31: 1-15. metamorphic complex and overlying sedimentary rocks, col- lection of a Cambrian trilobite fauna discovered by Soviet Grew, E.S., 1975. With the Soviets in Antarctica, 1972-1974. Ant- arcticJournalof the U.S., X(1): 1-8. geologists near Mount Provender in 1975-1976, and map- ping and studies of glacial deposits and geomorphologic Grew, E.S. 1976. 0 geologicheskikh issledovaniyakh v Sovetskoy ant- arkticheskoy ekspeditsii v 1972-1974 features. Field camps, which were established near Mounts gg. [Geological investigations with the Soviet Antarctic Expedition in 1972 . 1974]. Sovetskoy Provender (901 meters) (figure 5), Skidmore (864 meters), A ntarkticheskoy Ekspeditsii. Informa tsionnyy Byulleten, 93: and Wegener (1416 meters), served as bases for detailed 27-29. work; reconnaissance examination of other parts of the Stephenson, P.J. 1966. Geology 1. Theron Mountains, Shackleton Shackleton Range was carried out using the Ml-8 and the Range and Whichaway Nunataks. Trans-Antarctic Expedition, AN-2. The skimobile "Buran" was deployed with great suc- 1955-1958, Scientific Reports, 8. 79 p. cess in geologic traverses originating from the field camps. The geologists worked in the Shackleton Range from 30 December to the middle of February.
    [Show full text]
  • Canadian Antarctic Research Network
    Vol 20, November 2005 NEWSLETTER FOR THE Canadian Antarctic Research Network Inside Upper Victoria Valley, McMurdo Dry Valleys, Upper Victoria Valley, Antarctica, January and November, 2003 McMurdo Dry Valleys, Antarctica, Joel Barker January and November, 2003 1 As a participant in the Arctic–Antarctic Exchange program with Dr Fitzsimons Canadians in Antarctic from the University of Otago, New Zealand, I have twice been able to conduct Place-Names 3 research on Victoria Upper Glacier (VUG) and smaller cirque glaciers in the McMurdo Dry Valleys. The research was part of a larger-scale investigation of Operation Deep Freeze – organic carbon dynamics in glacier systems. 50 Years 8 Victoria Upper Glacier abuts permanently ice-covered “Lake Upper Victo- ria”, and it is likely that the glacier overran organic matter in lake sediments International Polar Year (IPY) during previous advances. During January and November, 2003, ice was sampled 2007–08 News 9 across the transition between meteorically derived glacier ice and underlying McMurdo Dry Valleys, basal ice at the terminal ice cliff at VUG. Two shallow ice cores were also collect- October–November 2004 12 ed from the glacier surface. The objectives were to compare and contrast organic carbon abundance and characteristics between glacier and basal ice from the Report on the IX SCAR same glacier. Results indicate dissolved organic carbon exists in detectable quan- International Biology Symposium, tities in both types of ice (1.8–46.7 ppm), that the distribution of dissolved held at Curitiba, Brazil, organic carbon is heterogeneous, but that quantities are generally higher in the 25–29 July 2005 15 basal ice of VUG than in the glacier ice.
    [Show full text]
  • Uplift and Tilting of the Shackleton Range in East Antarctica Driven by Glacial Erosion and Normal Faulting
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Uplift and tilting of the Shackleton Range in East Antarctica 10.1002/2016JB013841 driven by glacial erosion and normal faulting Key Points: Guy J. G. Paxman1 , Stewart S. R. Jamieson1 , Fausto Ferraccioli2, Michael J. Bentley1 , • Cenozoic glacial erosion and 3 4 5 2 2 associated flexural responses have Rene Forsberg , Neil Ross , Anthony B. Watts , Hugh F. J. Corr , and Tom A. Jordan – driven 40 50% percent of uplift in the 1 2 3 Shackleton Range and Theron Department of Geography, Durham University, Durham, UK, British Antarctic Survey, Cambridge, UK, National Space 4 Mountains Institute, University of Denmark, Kongens Lyngby, Denmark, School of Geography, Politics and Sociology, Newcastle • Mountain block tilting and a further University, Newcastle upon Tyne, UK, 5Department of Earth Sciences, Oxford University, Oxford, UK 40–50% of the total uplift are attributed to normal faulting processes of Jurassic-Cretaceous age Abstract Unravelling the long-term evolution of the subglacial landscape of Antarctica is vital for understanding past ice sheet dynamics and stability, particularly in marine-based sectors of the ice sheet. Supporting Information: Here we model the evolution of the bedrock topography beneath the Recovery catchment, a sector of the • Supporting Information S1 East Antarctic Ice Sheet characterized by fast-flowing ice streams that occupy overdeepened subglacial fl Correspondence to: troughs. We use 3-D exural models to quantify the effect of erosional unloading and mechanical unloading G. J. G. Paxman, associated with motion on border faults in driving isostatic bedrock uplift of the Shackleton Range and [email protected] Theron Mountains, which are flanked by the Recovery, Slessor, and Bailey ice streams.
    [Show full text]
  • Glacial Geology and Petrography of Erratics in the Shackleton Range, Antarctica
    Polarforschung 63 (213): 183-201, 1993 (erschienen 1995) Glacial Geology and Petrography of Erratics in the Shackleton Range, Antarctica By Hans-Christian Höfle! and Werner Buggischt Abstract: Studies wcre made 01' the glacial geology and provenance 01' erratics 1. MORPHOLOGY AND GLACIATIONS OF THE in thc Shackleton Range during the German geologieal expedition GEISHA in SHACKLETON RANGE 1987/88, especially in the southern and northwestern parts 01' the range. Evidence that the entire Shackleton Range was once overrun by ice from a southerly to southeasterly direction was provided by subglacial erosional forrns STEPHENSON (1966) and SKIDMORE & CLARKSON (1973) have (e.g. striations, cresccntic gouges, roches moutonnees) and erratics which published very good descriptions of the physiography and probably orriginatcd in the region 01' the Whichaway Nunataks ancl the glacial morphology of the Shackleton Range; thus only abrief Pensacola Mountains in the southern part 01' the range. This probably happened during the last major expansion 01' the Anarctic polar ice sheer, which, on the introduction to the morphology of the range will be given here. basis 01' evidence from other parts 01' thc continem, oceurred towards the end 01' the Miocene. The Shackleton Range trends E-W at the east edge ofthe Filch­ ner ice shelf. It is 170 km long anelup to 70 km wide. The high­ Till and an area 01' sennered erratics were mapped in the northwestern part 01' the range. These were deposited during aperiod 01' expansion 01' the Slessor est peaks (1800-1950 m) are the Read Mountains at the SE edge Glacier in the Weichselian (Wisconsian) glacial stage earlier.
    [Show full text]