(12) STANDARD PATENT (11) Application No. AU 2015338968 C1 (19) AUSTRALIAN PATENT OFFICE

Total Page:16

File Type:pdf, Size:1020Kb

(12) STANDARD PATENT (11) Application No. AU 2015338968 C1 (19) AUSTRALIAN PATENT OFFICE (12) STANDARD PATENT (11) Application No. AU 2015338968 C1 (19) AUSTRALIAN PATENT OFFICE (54) Title Delivery of negatively charged proteins using cationic lipids (51) International Patent Classification(s) C07K 14/435 (2006.01) A61K 9/00 (2006.01) (21) Application No: 2015338968 (22) Date of Filing: 2015.10.30 (87) WIPO No: W016/070129 (30) Priority Data (31) Number (32) Date (33) Country 14/529,010 2014.10.30 US (43) Publication Date: 2016.05.06 (44) Accepted Journal Date: 2020.10.22 (44) Amended Journal Date: 2021.02.04 (71) Applicant(s) President and Fellows of Harvard College (72) Inventor(s) Liu, David R.;Thompson, David B.;Zuris, John Anthony (74) Agent / Attorney Pizzeys Patent and Trade Mark Attorneys Pty Ltd, Level 15 241 Adelaide Street, BRISBANE, QLD, 4000, AU (56) Related Art ZELPHATI 0 ET AL, "Intracellular Delivery of Proteins with a New Lipid-Mediated Delivery System", JOURNAL OF BIOLOGICAL CHEMISTRY,(2001-09-14), vol. 276, no.37,pages35103-35110 ELTOUKHY A. A. ET AL, "Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles", BIOMATERIALS, (2014-05-13), vol. 35, no. 24, pages 6454- 6461 WO 2013142578 Al WO 2016/057061 A2 US 20120129759 Al Thompson. D.B. et al. (2012) Engineering and Identifying Supercharged Proteins for Macromolecule Delivery into Mammalian Cells. Methods in Enzymology, Volume 503, 2012 Chapter 12. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2016/070129 Al 6 May 2016 (06.05.2016) W IPO IPO T (51) International Patent Classification: (74) Agent: BAKER, C., Hunter; Wolf, Greenfield & Sacks, A61K 9/00 (2006.01) C07K 14/435 (2006.01) P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2015/058479 kind of national protection available): AE, AG, AL, AM, (22) InternationalFilingDate: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22 Intrntina Fi Date:0.201) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 3 October2015(30.10.2015) DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 14/529,010 30 October 2014 (30.10.2014) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: PRESIDENT AND FELLOWS OF HAR VARD COLLEGE [US/US]; 17 Quincy Street, Cam- (84) Designated States (unless otherwise indicated, for every bridge, MA 02138 (US). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (72) Inventors: LIU, David, R.; 3 Whitman Circle, Lexington, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, MA 02420 (US). THOMPSON, David, B.; 50 Follen TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Street, #11, Cambridge, MA 02138 (US). ZURIS, John, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Anthony; 60 Wadsworth St., Apt. 22B, Cambridge, MA LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 02142 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). [Continued on nextpage] (54) Title: DELIVERY OF NEGATIVELY CHARGED PROTEINS USING CATIONIC LIPIDS (57) Abstract: Compositions, methods, strategies, kits, and systems for the delivery of negatively charged proteins, protein complexes, and fusion pro teins, using cationic polymers or lipids are provided. Delivery of proteins into cells can be effected in vivo, ex vivo, or in vitro. Proteins that can be de Cationiclipids Net negatively livered using the compositions, methods, strategies, kits, and systems C charged protein provided herein include, without limitation, enzymes, transcription factors, Treatmentof genome editing proteins, Cas9 proteins, TALEs, TALENs, nucleases, binding mammalian cells with proteins (e.g., ligands, receptors, antibodies, antibody fragments; nucleic acid cationic lipid:anionic binding proteins, etc.), structural proteins, and therapeutic proteins (e.g., tu protein complexes mor suppressor proteins, therapeutic enzymes, growth factors, growth factor receptors, transcription factors, proteases, etc.), as well as variants and fu sions of such proteins. Extracel/ularspace Cytoplasm \Liposorne endocytosis Endosomal escape Endosorne FIG27B W O 2016/070129 A1||AlII|II||IlllllI|||||I|I|||II|IIV|I|I ||I|||I||||I||||||||||I| Published: - with internationalsearch report (Art. 21(3)) WO 2016/070129 PCT/US2015/058479 DELIVERY OF NEGATIVELY CHARGED PROTEINS USING CATIONIC LIPIDS RELATED APPLICATION [0001] This application is claims priority to U.S. patent application, U.S.S.N. 14/529,010, filed October 30, 2014, which is a continuation-in-part of and claims priority under 35 U.S.C. § 120 to U.S. patent application, U.S.S.N. 14/462,189, filed August 18, 2014, to U.S. patent application, U.S.S.N. 14/462,163, filed August 18, 2014, and to International Application, PCT/US2014/05424735, filed September 5, 2014, which claims priority under U.S.C. § 365(c) to U.S. patent application, U.S.S.N. 14/462,189, filed August 18, 2014, and to U.S. patent application, U.S.S.N. 14/462,163, filed August 18, 2014, and also claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application, U.S.S.N. 61/874,746, filed September 6, 2013, the entire contents of each of which are incorporated herein by reference. BACKGROUND OF THE INVENTION [0002] Macromolecular delivery into mammalian cells is an attractive approach for cell manipulation, as it would allow modulation of gene expression and modification of the genome, which, in turn, would open new avenues for research and enable the therapeutic targeting of molecules currently viewed as "undruggable" by small molecules. In particular, recombinant nucleases targeting genes or alleles associated with disease have great potential as therapeutic agents. The current methods of macromolecular delivery include viral delivery of nucleic acid molecules, receptor-mediated delivery of nucleic acids or proteins, and the use of protein fusions with cell-penetrating peptides such as TAT, Arg9, or Penetratin for the delivery of proteins. Each of these delivery systems offers benefits for particular applications; in most cases, however, questions regarding efficacy, cytotoxicity, and ease of preparation remain. Easily prepared reagents capable of effectively delivering macromolecules (e.g., functional effector proteins) to a variety of cell lines without significant cytotoxicity or other adverse side effect remain of considerable concern. [0003] Most proteins do not spontaneously enter mammalian cells and are thus naturally limited in their use as research tools and their potential as therapeutic agents. Techniques for the delivery of proteins into mammalian cells have been developed recently to address intracellular targets. These techniques include the use of lipid-based reagents (Zelphati et al., J. Biol. Chem. WO 2016/070129 PCT/US2015/058479 276, 35103-35110, 2001), nanoparticles (Hasadsri et al., J. Biol. Chem., 2009), vault ribonucleoprotein particles (Lai et al., A CS Nano 3, 691-699, 2009); genetic or chemical fusion to receptor ligands (Gabel et al., J. Cell Biol. 103, 1817-1827, 1986; Rizk et al., Proc. Natl. Acad. Sci. U.S.A. 106, 11011-11015, 2009); and fusion to cell-penetrating peptides (Wadia et al., Curr. Protein Pept. Sci. 4, 97-104, 2003; Zhou et al., Cell Stem Cell 4, 381-384, 2009). Perhaps the most common method for protein delivery is genetic fusion to protein transduction domains (PTDs) including the HIV-1 transactivator of transcription (Tat) peptide and polyarginine peptides. These cationic PTDs promote association with negatively charged cell-surface structures and subsequent endocytosis of exogenous proteins. Both Tat and polyarginine have been used to deliver a variety of macromolecules into cells both in vitro and in vivo (Wadia et al., Curr. Protein Pept. Sci. 4, 97-104, 2003; Zhou et al., Cell Stem Cell 4, 381-384, 2009; Myou et al., J. Immunol. 169, 2670-2676, 2002; Bae et al., Clin. Exp. Immunol. 157, 128-138, 2009; Schwarze et al., Science 285, 1569-1572, 1999). Despite these advances, intracellular targets remain difficult to affect using exogenous proteins, and even modest success can require toxic concentrations of the respective transduction agent due to the low efficiency with which proteins are functionally delivered into cells (Zhou et al., Cell Stem Cell 4, 381-384, 2009; Wang et al., Nat. Biotechnol. 26, 901-908, 2008). Therefore, there remains a need for better delivery systems for getting functional effector proteins into cells to target intracellular biomolecules. SUMMARY OF THE INVENTION [0004] The present disclosure provides systems, compositions, preparations, kits, and related methods for delivering proteins into cells using cationic polymers or cationic lipids. In some embodiments, the proteins to be delivered are negatively charged proteins, also referred to herein as anionic proteins, such as, for example, naturally occurring or engineered negatively charged proteins. In some embodiments, the proteins to be delivered are associated with a negatively charged protein, e.g., via covalent or non-covalent interactions, to form a protein complex. In some such embodiments, the complex comprising the protein to be delivered associated with the negatively charged proteins, e.g., a supernegatively charged protein or a naturally occurring negatively charged protein, has a net negative charge.
Recommended publications
  • Ejercicio Físico En La Patogenia De La Artritis Inducida Por Proteoglicano En Ratón
    UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS DE LA CULTURA FÍSICA SECRETARÍA DE INVESTIGACIÓN Y POSGRADO EJERCICIO FÍSICO EN LA PATOGENIA DE LA ARTRITIS INDUCIDA POR PROTEOGLICANO EN RATÓN TESIS QUE PARA OBTENER EL GRADO DE: DOCTORA EN CIENCIAS DE LA CULTURA FÍSICA PRESENTA: M. EN C. SUSANA AIDEÉ GONZÁLEZ CHÁVEZ DIRECTOR DE TESIS: DR. CÉSAR FRANCISCO PACHECO TENA CHIHUAHUA, CHIH., MÉXICO, SEPTIEMBRE DE 2017 UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS DE LA CULTURA FÍSICA SECRETARÍA DE INVESTIGACIÓN Y POSGRADO El que suscribe, integrante del Núcleo Complementario del Programa de Doctorado Interinstitucional en Ciencias de la Cultura Física de la Facultad de Ciencias de la Cultura Física de la Universidad Autónoma de Chihuahua. CERTIFICA Que el presente trabajo titulado “Ejercicio físico en la patogenia de la artritis inducida por proteoglicano en ratón”, ha sido realizado bajo mi dirección en el Laboratorio de Investigación PABIOM de la Facultad de Medicina y Ciencias Biomédicas de la Universidad Autónoma de Chihuahua, por la M. en C. Susana Aideé González Chávez para optar por el grado de: DOCTORA EN CIENCIAS DE LA CULTURA FÍSICA Esta es una investigación original que ha sido realizada con rigor ético y científico, por lo que autorizo su presentación ante el grupo de sinodales correspondiente. Para los fines que haya lugar, se extiende la presente a los doce días del mes de Septiembre del dos mil diecisiete. Atentamente Dr. César Francisco Pacheco Tena Doctor en Ciencias Médicas Facultad de Medicina y Ciencias Biomédicas, UACH i UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS DE LA CULTURA FÍSICA SECRETARÍA DE INVESTIGACIÓN Y POSGRADO El presente trabajo “Ejercicio físico en la patogenia de la artritis inducida por proteoglicano en ratón” realizado por la M.
    [Show full text]
  • Genome-Wide Association Study of Behavioral Disinhibition in a Selected Adolescent Sample Jaime Derringer *, Robin P. Corley
    Genome-wide association study of behavioral disinhibition in a selected adolescent sample Jaime Derringer1*, Robin P. Corley2, Brett C. Haberstick2, Susan E. Young2, Brittany Demmitt2, Daniel P. Howrigan3, Robert M. Kirkpatrick4, William G. Iacono5, Matt McGue5, Matthew Keller2, Sandra Brown6, Susan Tapert6, Christian J. Hopfer7, Michael C. Stallings2, Thomas J. Crowley7, Soo Hyun Rhee2, Ken Krauter2, John K. Hewitt2, Matthew B. McQueen2 1 University of Illinois Urbana-Champaign, 2 University of Colorado Boulder, 3 Massachusetts General Hospital/Harvard Medical School, 4 Virginia Commonwealth University, 5 University of Minnesota, 6 University of California San Diego, 7 University of Colorado Denver * Corresponding Author: Jaime Derringer, [email protected], Department of Psychology, University of Illinois Urbana-Champaign, Champaign IL USA 61820 Behavioral disinhibition GWAS 2 Abstract Behavioral disinhibition (BD) is a quantitative measure designed to capture the heritable variation encompassing risky and impulsive behaviors. As a result, BD represents an ideal target for discovering genetic loci that predispose individuals to a wide range of antisocial behaviors and substance misuse that together represent a large cost to society as a whole. Published genome-wide association studies (GWAS) have examined specific phenotypes that fall under the umbrella of BD (e.g. alcohol dependence, conduct disorder); however no GWAS has specifically examined the overall BD construct. We conducted a GWAS of BD using a sample of 1,901 adolescents over-selected for characteristics that define high BD, such as substance and antisocial behavior problems, finding no individual locus that surpassed genome-wide significance. Although no single SNP was significantly associated with BD, restricted maximum likelihood analysis estimated that 49.3% of the variance in BD within the Caucasian sub-sample was accounted for by the genotyped SNPs (p=0.06).
    [Show full text]
  • The BCR/ABL Oncogene Alters Interaction of the Adapter Proteins CRKL and CRK with Cellular Proteins N Uemura, R Salgia, J-L Li, E Pisick, M Sattler and JD Griffin
    Leukemia (1997) 11, 376–385 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 The BCR/ABL oncogene alters interaction of the adapter proteins CRKL and CRK with cellular proteins N Uemura, R Salgia, J-L Li, E Pisick, M Sattler and JD Griffin Division of Hematologic Malignancies, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA The Philadelphia chromosome translocation generates a chim- alternative splicing of the human CRK proto-oncogene.8,9 eric oncogene, BCR/ABL, which causes chronic myelogenous CRKL has the same overall organization as CRK II, consisting leukemia (CML). In primary leukemic neutrophils from patients of one N-terminal SH2 domain followed by two SH3 domains, with CML, the major tyrosine phosphorylated protein is CRKL, 9 an SH2-SH3-SH3 adapter protein which has an overall hom- and does not contain other known functional motifs. CRK I ology of 60% to CRK, the human homologue of the v-crk onco- lacks the C-terminal SH3 domain of CRK II and CRKL, and gene. In cell lines transformed by BCR/ABL, CRKL was tyrosine overexpression of CRK I, but not CRK II, leads to transform- phosphorylated, while CRK was not. We looked for changes in ation of mammalian fibroblasts.8 v-crk is the oncogene in the CRK- and CRKL-binding proteins in Ba/F3 hematopoietic cell avian retrovirus CT10, and relative to CRK, v-Crk has a lines which were transformed by BCR/ABL. Anti-CRK II or anti- deletion of the C-terminal SH3 domain and the major tyrosine CRKL immunoprecipitates were probed by far Western blotting 221 10 with CRK II- or CRKL-GST fusion proteins to display CRK- and phosphorylation site at tyr .
    [Show full text]
  • Liquid-Like Protein Interactions Catalyze Assembly of Endocytic Vesicles
    bioRxiv preprint doi: https://doi.org/10.1101/860684; this version posted December 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. **This manuscript is being posted in tandem with a manuscript by M. Kozak and M. Kaksonen which reports complementary findings in budding yeast. Title Liquid-like protein interactions catalyze assembly of endocytic vesicles Authors Kasey J. Daya, Grace Kagob, Liping Wangc, J Blair Richterc, Carl C. Haydena, Eileen M. Laferc, Jeanne C. Stachowiaka,b,* Affiliations a Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA; b Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA; c Department of Biochemistry and Structural Biology, Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA * To whom correspondence should be addressed: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/860684; this version posted December 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract During clathrin-mediated endocytosis, dozens of proteins assemble into an interconnected network at the plasma membrane. As early initiators of endocytosis, Eps15 and Fcho1 are responsible for locally concentrating downstream components on the membrane surface.
    [Show full text]
  • Missense Variant in LOXHD1 Is Associated with Canine Nonsyndromic Hearing Loss
    Missense Variant in LOXHD1 is Associated With Canine Nonsyndromic Hearing Loss Marjo K Hytönen University of Helsinki: Helsingin Yliopisto Julia E Niskanen University of Helsinki: Helsingin Yliopisto Meharji Arumilli University of Helsinki: Helsingin Yliopisto Casey A Knox Wisdom Health Jonas Donner Genoscoper Laboratories Hannes Lohi ( hannes.lohi@helsinki. ) Helsingin Yliopisto Laaketieteellinen tiedekunta https://orcid.org/0000-0003-1087-5532 Research Article Keywords: dog, hearing, hearing loss, deafness, Rottweiler, stereocilia, PLAT Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-288479/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract Hearing loss is a common sensory decit both in humans and dogs. In canines the genetic basis is largely unknown, as genetic variants have only been identied for a syndromic form of hearing impairment. We observed a congenital or early-onset sensorineural hearing loss in a Rottweiler litter. Assuming an autosomal recessive inheritance, we used a combined approach of homozygosity mapping and genome sequencing to dissect the genetic background of the disorder. We identied a fully segregating missense variant in LOXHD1, a gene that is known to be essential for cochlear hair cell function and associated with nonsyndromic hearing loss in humans and mice. The canine LOXHD1 variant was specic to the Rottweiler breed in our study cohorts of pure-bred dogs. However, it also was present in mixed-breed dogs, of which the majority showed Rottweiler ancestry. Low allele frequencies in these populations, 2.6 % and 0.04 %, respectively, indicate a rare variant.
    [Show full text]
  • RNF11 at the Crossroads of Protein Ubiquitination
    biomolecules Review RNF11 at the Crossroads of Protein Ubiquitination Anna Mattioni, Luisa Castagnoli and Elena Santonico * Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy; [email protected] (A.M.); [email protected] (L.C.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 8 November 2020; Published: 11 November 2020 Abstract: RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis. Keywords: Ring Finger Protein 11; HECT ligases; ubiquitination 1.
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • Molecular Characterization of Acute Myeloid Leukemia by Next Generation Sequencing: Identification of Novel Biomarkers and Targets of Personalized Therapies
    Alma Mater Studiorum – Università di Bologna Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Dottorato di Ricerca in Oncologia, Ematologia e Patologia XXX Ciclo Settore Scientifico Disciplinare: MED/15 Settore Concorsuale:06/D3 Molecular characterization of acute myeloid leukemia by Next Generation Sequencing: identification of novel biomarkers and targets of personalized therapies Presentata da: Antonella Padella Coordinatore Prof. Pier-Luigi Lollini Supervisore: Prof. Giovanni Martinelli Esame finale anno 2018 Abstract Acute myeloid leukemia (AML) is a hematopoietic neoplasm that affects myeloid progenitor cells and it is one of the malignancies best studied by next generation sequencing (NGS), showing a highly heterogeneous genetic background. The aim of the study was to characterize the molecular landscape of 2 subgroups of AML patients carrying either chromosomal number alterations (i.e. aneuploidy) or rare fusion genes. We performed whole exome sequencing and we integrated the mutational data with transcriptomic and copy number analysis. We identified the cell cycle, the protein degradation, response to reactive oxygen species, energy metabolism and biosynthetic process as the pathways mostly targeted by alterations in aneuploid AML. Moreover, we identified a 3-gene expression signature including RAD50, PLK1 and CDC20 that characterize this subgroup. Taking advantage of RNA sequencing we aimed at the discovery of novel and rare gene fusions. We detected 9 rare chimeric transcripts, of which partner genes were transcription factors (ZEB2, BCL11B and MAFK) or tumor suppressors (SAV1 and PUF60) rarely translocated across cancer types. Moreover, we detected cryptic events hiding the loss of NF1 and WT1, two recurrently altered genes in AML. Finally, we explored the oncogenic potential of the ZEB2-BCL11B fusion, which revealed no transforming ability in vitro.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Robust Identification of Somatic Mutations in Acute Myeloid Leukemia Using RNA-Seq
    RNAmut: Robust Identification of Somatic Mutations in Acute Myeloid Leukemia Using RNA-seq Muxin Gu1,2, Maximillian Zwiebel1,3, Swee Hoe Ong4, Nick Boughton5, Josep Nomdedeu1,2,6, Faisal Basheer1,2,7, Yasuhito Nannya8, Pedro M. Quiros1,2, Seishi Ogawa8, Mario Cazzola9, Roland Rad3, Adam P. Butler4, MS Vijayabaskar1,2,* and George Vassiliou1,2,7,* 1. Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK 2. Wellcome Trust–MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK 3. German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany 4. Cancer Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridge, UK 5. Core Software Services, Wellcome Sanger Institute, Hinxton, Cambridge, UK 6. Hospital de la Santa Creu I Sant Pau, Barcelona, Spain 7. Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK 8. Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan 9. Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy *Correspondence to: [email protected] and [email protected] Acute myeloid leukemia (AML) is an aggressive malignancy of haematopoietic stem cells driven by a well-defined set of somatic mutations1, 2. Identifying the mutations driving individual cases is important for assigning the patient to a recognized WHO category, establishing prognostic risk and tailoring post-consolidation therapy3. As a result, AML research and diagnostic laboratories apply diverse methodologies to detect important mutations and many are introducing next generation sequencing approaches to study extended panels of genes in order to refine genomic classification and prognostic category1.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Adaptive History of the Chimpanzee Subspecies in the Genomic Era
    Adaptive History of the Chimpanzee Subspecies in the Genomic Era Jessica Nye TESI DOCTORAL UPF 2018 Directors de la Tesi Jaume Bertranpetit i Hafid Laayouni CIÈNCIES EXPERIMENTALS I DE LA SALUT ii Acknowledgements I would like to thank my advisors Dr. Jaume Bertranpetit and Dr. Hafid Laayouni for guiding me during my doctoral research. I would like to thank my family and friends for supporting me during my many years of education. To my fellow lab mates, I am grateful for the theoretical discussions we had over the last four years. This work was supported by FI Agaur grant FI-DGR 2015. iii iv Abstract Chimpanzees are our closest living genetic cousins. The species consists of four subspecies, each with a unique demographic history. In order to better understand their species, a detailed map of signatures of selection will highlight important genetic differences between the four subspecies. Here, we interrogate the genome using 15 tests of selection. We simulate neutral and selective scenarios taking their unique demographic history into account in the model. We combine all these elements using a machine learning approach to highlight regions of interest in each subspecies. We specifically investigate the regions of the genome that have been selected after introgression with bonobo. We investigate the haplotype changes that have occurred since the divergence with humans in a few specially selected genes. From this, we find that the evolutionary history of each of the four subspecies is unique. That subtle differences in their demographic history and environment have greatly shaped their genetic diversity. In general, we observe signatures in selection in phenotypes involving immunity, muscle function, reproduction, and DNA repair.
    [Show full text]