Metabolic Characterisation of the Nutritional Versatile Marine Bacterium Phaeobacter Inhibens DSM 17395 Via Gas Chromatography – Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Characterisation of the Nutritional Versatile Marine Bacterium Phaeobacter Inhibens DSM 17395 Via Gas Chromatography – Mass Spectrometry Metabolic characterisation of the nutritional versatile marine bacterium Phaeobacter inhibens DSM 17395 via gas chromatography – mass spectrometry Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Michael Hensler aus Lüdenscheid 1. Referent: Professor Dr. Dietmar Schomburg 2. Referent: Professor Dr. Ralf Rabus 3. Referent: Professor Dr. Dieter Jahn eingereicht am: 24.11.2014 mündliche Prüfung (Disputation) am: 05.03.2015 Druckjahr 2015 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Zech, H., Hensler, M., Koßmehl, S., Drüppel, K., Wöhlbrand, L., Trautwein, K. Hulsch, R., Maschmann, U., Colby, T., Schmidt, J., Reinhardt, R., Schmidt-Hohagen, K., Schomburg, D., Rabus, R. (2013). Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients. PROTEOMICS 13, 2851-2868. Zech, H., Hensler, M., Koßmehl, S., Drüppel, K., Wöhlbrand, L., Trautwein, K., Colby, T., Schmidt, J., Reinhardt, R., Schmidt-Hohagen, K., Schomburg, D., Rabus, R. (2013). Dynamics of amino acid utilization in Phaeobacter inhibens DSM 17395. PROTEOMICS 13, 2869-2885. Drüppel, K., Hensler, M., Trautwein, K., Koßmehl, S., Wöhlbrand, L. Schmidt-Hohagen, K., Ulbrich, M., Bergen, N., Meier-Kolthoff, J.P., Göker, M., Klenk, H.P., Schomburg, D., Rabus, R. (2014). Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade). Environ. Microbiol. 16, 218-238. Wiegmann, K., Hensler M., Wöhlbrand, L., Ulbrich, M., Schomburg, D., Rabus, R. (2014). Carbohydrate Catabolism in Phaeobacter inhibens DSM 17395, Member of the Marine Roseobacter Clade. Appl. Environ. Microbiol. 80, 4725-4737. Tagungsbeiträge (Vorträge) Hensler, M., Bill, N., Rex, R. (2011). Metabolome analysis and modelling of the metabolisms of Dinoroseobacter shibae and Phaeobacter gallaeciensis. 3. Statusseminar des SFB TRR 51, 12. – 13.05.2011, Delmenhorst. Hensler, M. (2013). Adaptation of Phaeobacter inhibens DSM 17395 to nutrient conditions in marine environments. International Symposium of SFB TRR 51, 24. – 26.06.2013, Delmenhorst. Wiegmann, K., Hensler, M. (2014). Carbohydrate catabolism in Phaeobacter inhibens DSM 17395 – Proteomic and Metabolomic analyses. 8. Statusseminar des SFB TRR 51, 08. – 09.05.2014, Oldenburg. Posterbeiträge Hensler, M., Zech, H., Koßmehl, S., Drüppel, K., Wöhlbrand, L., Trautwein, K., Schmidt- Hohagen, K., Rabus, R., Schomburg, D. (2013). Dynamics of amino acid utilization by Phaeobacter gallaeciensis DSM 17395. Internationale Konferenz der VAAM, 10. – 13.03.2013, Bremen. Hensler, M., Zech, H., Drüppel, K., Koßmehl, S., Wöhlbrand, L., Trautwein, K., Schmidt- Hohagen, K., Rabus, R., Schomburg, D. (2013). Metabolic and proteomic adaptations of Phaeobacter inhibens DSM 17395 to nutrient conditions in marine environment. Metabolomics 2013 – 9th Annual Conference of the Metabolomics Society, 01. – 04.07.2013, Glasgow, United Kingdom. Hensler, M., Wiegmann, K., Zech, H., Koßmehl, S., Rabus, R., Schomburg, D. (2014). The metabolism of the marine all-rounder Phaeobacter inhibens DSM 17395. Trends in Metabolomics – Analytics and Applications. 03. – 05.06.2014, Frankfurt am Main. TABLE OF CONTENTS I Table of Contents List of figures.....................................................................................................................VI List of tables...................................................................................................................VIII Abbreviations.....................................................................................................................IX Summary............................................................................................................................XI Zusammenfassung...........................................................................................................XII 1 Introduction.......................................................................................................................1 1.1 Marine environment as habitat (for bacteria)..............................................................1 1.1.1 Characteristics of seawater..................................................................................1 1.1.2 Dissolved organic matter.....................................................................................3 1.1.3 Seasonal and regional variations of dissolved organic matter.............................5 1.2 The Roseobacter clade and Phaeobacter inhibens......................................................6 1.2.1 The Roseobacter clade.........................................................................................6 1.2.2 The genus Phaeobacter and the strain P. inhibens DSM 17395..........................8 1.3 Systems biology.........................................................................................................10 1.4 Metabolomic analyses................................................................................................11 1.4.1 Introduction to Metabolomics............................................................................11 1.4.2 Sample preparation techniques for bacterial metabolomics..............................12 1.4.3 Gas chromatography – mass spectrometry........................................................13 1.4.4 Liquid chromatography – mass spectrometry....................................................14 1.5 Objectives..................................................................................................................15 2 Material and methods.....................................................................................................16 2.1 Equipment and instruments.......................................................................................16 2.2 Consumables..............................................................................................................17 2.3 Chemicals..................................................................................................................18 II TABLE OF CONTENTS 2.4 Organism....................................................................................................................18 2.5 Media and supplements.............................................................................................19 2.5.1 Salt water medium (minimal medium)..............................................................19 2.5.2 Bacto Marine Broth (complex medium)............................................................21 2.5.3 Biolog-inoculum solutions.................................................................................21 2.5.4 Solutions for GC-MS analysis...........................................................................21 2.6 Software.....................................................................................................................22 2.7 Databases...................................................................................................................23 2.8 Microbial techniques.................................................................................................24 2.8.1 Biolog phenotypic microarray analysis.............................................................24 2.8.2 Isotope labelling.................................................................................................24 2.8.3 Study of coenzyme A derivatives linked with tryptophan degradation.............25 2.8.4 Cultivation conditions for main experiments.....................................................25 2.9 Proteomic analyses....................................................................................................26 2.10 Analysis of coenzyme A derivatives........................................................................26 2.10.1 Extraction of coenzyme A derivatives.............................................................26 2.10.2 Liquid chromatography – mass spectrometry analysis....................................27 2.10.3 Data processing and peak identification..........................................................28 2.11 Sample preparation for GC-MS analysis.................................................................29 2.11.1 Extraction of intracellular metabolites.............................................................29 2.11.2 Preparation of culture supernatants..................................................................30 2.11.3 Derivatisation reaction.....................................................................................30 2.12 Gas chromatography – mass spectrometry analysis................................................30 2.12.1 Leco Pegasus 4 d GC × GC TOF MS..............................................................31 2.12.2 Jeol JMS-T100GC Accu TOF MS...................................................................31 2.12.3 DSQ II GC-MS................................................................................................32 2.13 Setup of main experiments......................................................................................32 2.13.1 Adaptation to growth with complex medium...................................................33 2.13.2 Dynamics of
Recommended publications
  • The German North Sea Ports' Absorption Into Imperial Germany, 1866–1914
    From Unification to Integration: The German North Sea Ports' absorption into Imperial Germany, 1866–1914 Henning Kuhlmann Submitted for the award of Master of Philosophy in History Cardiff University 2016 Summary This thesis concentrates on the economic integration of three principal German North Sea ports – Emden, Bremen and Hamburg – into the Bismarckian nation- state. Prior to the outbreak of the First World War, Emden, Hamburg and Bremen handled a major share of the German Empire’s total overseas trade. However, at the time of the foundation of the Kaiserreich, the cities’ roles within the Empire and the new German nation-state were not yet fully defined. Initially, Hamburg and Bremen insisted upon their traditional role as independent city-states and remained outside the Empire’s customs union. Emden, meanwhile, had welcomed outright annexation by Prussia in 1866. After centuries of economic stagnation, the city had great difficulties competing with Hamburg and Bremen and was hoping for Prussian support. This thesis examines how it was possible to integrate these port cities on an economic and on an underlying level of civic mentalities and local identities. Existing studies have often overlooked the importance that Bismarck attributed to the cultural or indeed the ideological re-alignment of Hamburg and Bremen. Therefore, this study will look at the way the people of Hamburg and Bremen traditionally defined their (liberal) identity and the way this changed during the 1870s and 1880s. It will also investigate the role of the acquisition of colonies during the process of Hamburg and Bremen’s accession. In Hamburg in particular, the agreement to join the customs union had a significant impact on the merchants’ stance on colonialism.
    [Show full text]
  • Zusammenleben Und Integration in Der Pluralen Stadtgesellschaft
    Nummer 41 Juni 2020 Zusammenleben und Integration in der pluralen Stadtgesellschaft Eine Untersuchung in der Stadt Delmenhorst STADT erk Bernd Hallenberg und Christian Höcke hw w v Seit mehreren Jahren geht der vhw – Bun- Der Kontext – Zur Entwicklung von desverband für Wohnen und Stadtentwick- Zuwanderung, sozioökonomischer lung e. V. der Frage nach, wie sozialer Lage und regionaler Verflechtung Zusammenhalt unter den Bedingungen in Delmenhorst gestiegener gesellschaftlicher Vielfalt be- wahrt bzw. gestärkt werden kann und wie Die erste Phase der Zusammenarbeit bestand die Integration neu zugewanderter Men- aus einer breit angelegten Kontext- und schen erfolgreich zu gestalten und umzuset- Milieuanalyse, die dem Stadtrat im Herbst zen ist. 2018 vorgestellt wurde. Nachfolgend werden In Kooperation mit der Stadt Delmenhorst einige wichtige Ergebnisse aktualisiert zusam- 2 wurde dazu ein breit angelegtes, zweistufi- mengefasst. ges Projekt1 durchgeführt. Im Mittelpunkt Delmenhorst, mit knapp 80.000 Bewohnerin- standen die Ermittlung der Sichtweisen und nen und Bewohnern am südlichen Rand Einschätzungen der unterschiedlichen Be- Bremens gelegen, zählt zu jener Gruppe von völkerungs- und Akteursgruppen zum Städten, in denen die hohe Zuwanderung der Stand und zur Entwicklung des Zusammen- letzten Dekade auf eine schwierige sozio-öko- lebens und der Integration in der Bremer nomische Lage in einem andauernden Struk- Nachbarstadt. Ergänzt wurde dies durch turwandel getroffen ist. Vielfach verbinden eine vorgelagerte Wanderungs-, Struktur- sich in diesen Städten ein teilweise entspann- raum- und Milieuanalyse. ter Wohnungsmarkt mit einem strukturell Das vorliegende Papier fasst, nach einem geschwächten und weniger dynamischen Abriss der Kontextbedingungen, die wich- Arbeitsmarkt. Daraus können temporäre Sog- tigsten Ergebnisse der Gruppengespräche effekte entstehen, wie sich etwa im Kontext und Einzelbefragungen im Projekt zusam- der hohen Fluchtzuwanderung in manche die- men.
    [Show full text]
  • Tbamitchodral L Alizaion of the 4Aminobutyrate-2-&Oxoglutarate
    5d.em. J. (lWg77) 161,9O.-307 3O1 Printed in Great Britain Tbamitchodral L alizaion of the 4Aminobutyrate-2-&Oxoglutarate Transminase from Ox Brait By INGER SCHOUSDOE,* BIRGIT 1MO* and ARNE SCHOUSBOEt Department ofBDahemistry At andC*, University ofCopenhagen, 2200 Copenhagen M, Denark (Receved 4 June 1976) In order to determine the intramitochondrial location of 4-aminobutyrate transaminase, mitochondria were prepared from ox brain and freed from myelin and syiaptosomes by using conventional demitygradient-centrifugation techniques, and the purity was checked electron-microscopically. Iner and outer mimbrenes and matrix were prepared from the mitochondria by large-amplitude sweling and subsequent density-gradient centrfugationt The fractions were characterized by using both electron microscopy and differnt marker enzymes. From the specific activity of the 4-aminobutyrate transaminase in the submitochondrial fractions it was concluded that this enzyme is associated with the inner mitochondrial membrane. It is generally agreed that the 4-aminobutyrate-2- pyridoxal phosphate were from Sigma Chemical oxoglutarate transaminase (EC2.6.1.19) from brain is Co., St. Louis, MO, U.S.A. Ficoll was from mainly associated with free mitochondria (Salganicoff Pharmacia, Uppsala, Sweden, and crystallized & De Robertis, 1963, 1965; van den Berget al., 1965; bovine serum albumin was from BDH Biochemicals, van Kempen et at., 1965; Balazs et al., 1966; Poole, Dorset, U.K. 4-Amino[1-'4C]butyrate (sp. Waksman et al., 1968; Reijnierse et al., 1975), radioactivity 50mCi/mmol) and [1-14qtyramine (sp. and a preparation of a crude mitochondrial fraction radioactivity 9mCi/mmol) were obtained from was used by Schousboe et al. (1973) and Maitre et al.
    [Show full text]
  • Alternative Acetate Production Pathways in Chlamydomonas Reinhardtii During Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate Productionw
    This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs, but minor changes could be made before the final version is published. Posting this version online reduces the time to publication by several weeks. Alternative Acetate Production Pathways in Chlamydomonas reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate ProductionW Wenqiang Yang,a,1 Claudia Catalanotti,a Sarah D’Adamo,b Tyler M. Wittkopp,a,c Cheryl J. Ingram-Smith,d Luke Mackinder,a Tarryn E. Miller,b Adam L. Heuberger,e Graham Peers,f Kerry S. Smith,d Martin C. Jonikas,a Arthur R. Grossman,a and Matthew C. Posewitzb a Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305 b Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401 c Stanford University, Department of Biology, Stanford, California 94305 d Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina 29634 e Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado 80523 f Colorado State University, Department of Biology, Fort Collins, Colorado 80523 ORCID ID: 0000-0001-5600-4076 (W.Y.) Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria.
    [Show full text]
  • Remodeling Adipose Tissue Through in Silico Modulation of Fat Storage For
    Chénard et al. BMC Systems Biology (2017) 11:60 DOI 10.1186/s12918-017-0438-9 RESEARCHARTICLE Open Access Remodeling adipose tissue through in silico modulation of fat storage for the prevention of type 2 diabetes Thierry Chénard2, Frédéric Guénard3, Marie-Claude Vohl3,4, André Carpentier5, André Tchernof4,6 and Rafael J. Najmanovich1* Abstract Background: Type 2 diabetes is one of the leading non-infectious diseases worldwide and closely relates to excess adipose tissue accumulation as seen in obesity. Specifically, hypertrophic expansion of adipose tissues is related to increased cardiometabolic risk leading to type 2 diabetes. Studying mechanisms underlying adipocyte hypertrophy could lead to the identification of potential targets for the treatment of these conditions. Results: We present iTC1390adip, a highly curated metabolic network of the human adipocyte presenting various improvements over the previously published iAdipocytes1809. iTC1390adip contains 1390 genes, 4519 reactions and 3664 metabolites. We validated the network obtaining 92.6% accuracy by comparing experimental gene essentiality in various cell lines to our predictions of biomass production. Using flux balance analysis under various test conditions, we predict the effect of gene deletion on both lipid droplet and biomass production, resulting in the identification of 27 genes that could reduce adipocyte hypertrophy. We also used expression data from visceral and subcutaneous adipose tissues to compare the effect of single gene deletions between adipocytes from each
    [Show full text]
  • Accreditation of the City of Delmenhorst As “Safe Community” Within the Programme of the WHO Collaborating Centre on Community Safety Promotion
    24. January 2011 Accreditation of the city of Delmenhorst as “Safe Community” within the programme of the WHO Collaborating Centre on Community Safety Promotion Impressum Accreditation of the city of Delmenhorst as “Safe Community” of the WHO Collaborating Centre on Community Safety Promotion Editor: The registered association Infantile Health (GiK e.V.), Delmenhorst City of Delmenhorst Editorial staff: Dr. Johann Böhmann, Dr. Birgit Warwas-Pulina, Andreas Kampe, Stella Buick Contact: Dr. Johann Böhmann, head physician of the paediatric clinic of Delmenhorst, Wildeshauser Str. 92, 27753 Delmenhorst Peter Betten, coordinator of the round table “Injury prevention”, city of Delmenhorst, Service 3 Delmenhorst, January 2011 II Preface Road traffic or household injuries, violence against women, children or dissidents cause damage to each individual and to the community, which cannot be accepted. Therefore prevention is very important in the community of Delmenhorst. The city of Delmenhorst has undertaken the task of avoiding injuries caused by accidents and violence by means of systematic precaution as far as possible. A successful prevention is the precondition for a cross-departmental and systematical approach. The prevention must not only include the reaction to the current occurrences, but must also include a comprehensive and systematic long-term, active strategy. With the report on hand “accreditation of the city of Delmenhorst as safe community” the community of Delmenhorst applies for the acceptance to the international network of the “Safe Communities”. The stakeholders in Delmenhorst would like to learn from the experiences of other countries and they want to provide the international community with their knowledge regarding prevention. Patrick de La Lanne Mayor of the city of Delmenhorst III Content 1 Introduction.........................................................................................................
    [Show full text]
  • METABOLIC EVOLUTION in GALDIERIA SULPHURARIA By
    METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA By CHAD M. TERNES Bachelor of Science in Botany Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2015 METABOLIC EVOLUTION IN GALDIERIA SUPHURARIA Dissertation Approved: Dr. Gerald Schoenknecht Dissertation Adviser Dr. David Meinke Dr. Andrew Doust Dr. Patricia Canaan ii Name: CHAD M. TERNES Date of Degree: MAY, 2015 Title of Study: METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA Major Field: PLANT SCIENCE Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. Additionally, it can also grow solely as a heterotroph, which results in the cessation of photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely correlated with G. sulphuraria ’s broad capacity for carbon metabolism, which rivals that of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria revealed several pathways that are uncharacteristic for plants and algae, even red algae. Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer and conservation through ancestry. Although some metabolic pathways as a whole appear to be retained through ancestry, genes encoding individual enzymes within a pathway were substituted by genes that were acquired horizontally from other domains of life. Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary processes.
    [Show full text]
  • Part One Amino Acids As Building Blocks
    Part One Amino Acids as Building Blocks Amino Acids, Peptides and Proteins in Organic Chemistry. Vol.3 – Building Blocks, Catalysis and Coupling Chemistry. Edited by Andrew B. Hughes Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32102-5 j3 1 Amino Acid Biosynthesis Emily J. Parker and Andrew J. Pratt 1.1 Introduction The ribosomal synthesis of proteins utilizes a family of 20 a-amino acids that are universally coded by the translation machinery; in addition, two further a-amino acids, selenocysteine and pyrrolysine, are now believed to be incorporated into proteins via ribosomal synthesis in some organisms. More than 300 other amino acid residues have been identified in proteins, but most are of restricted distribution and produced via post-translational modification of the ubiquitous protein amino acids [1]. The ribosomally encoded a-amino acids described here ultimately derive from a-keto acids by a process corresponding to reductive amination. The most important biosynthetic distinction relates to whether appropriate carbon skeletons are pre-existing in basic metabolism or whether they have to be synthesized de novo and this division underpins the structure of this chapter. There are a small number of a-keto acids ubiquitously found in core metabolism, notably pyruvate (and a related 3-phosphoglycerate derivative from glycolysis), together with two components of the tricarboxylic acid cycle (TCA), oxaloacetate and a-ketoglutarate (a-KG). These building blocks ultimately provide the carbon skeletons for unbranched a-amino acids of three, four, and five carbons, respectively. a-Amino acids with shorter (glycine) or longer (lysine and pyrrolysine) straight chains are made by alternative pathways depending on the available raw materials.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Hereditary Galactokinase Deficiency J
    Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis.
    [Show full text]
  • Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
    Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10).
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]