Newly Discovered Document Debunks Soviet Space Conspiracy Theories on the Death of Soyuz-1 Cosmonaut Vladimir Komarov

Total Page:16

File Type:pdf, Size:1020Kb

Newly Discovered Document Debunks Soviet Space Conspiracy Theories on the Death of Soyuz-1 Cosmonaut Vladimir Komarov Reporters/Media seeking additional information should contact Scott Sacknoff via email at [email protected] or by phone at (202) 596-1812. Newly Discovered Document Debunks Soviet Space Conspiracy Theories on the Death of Soyuz-1 Cosmonaut Vladimir Komarov FOR IMMEDIATE RELEASE 27 February 2020 [Washington DC] -- The forthcoming issue of Quest: The History of Spaceflight Quarterly (Volume 27 #1) features new research from noted Soviet space expert Asif Siddiqi, PhD, that debunks the various conspiracy theories surrounding the death of Soyuz-1 cosmonaut Vladimir Komarov, the first fatality of a spacefarer during a space mission. In late 2018, an official Soyuz-1 Onboard Journal was discovered by Quest publisher Scott Sacknoff in a Heritage Auctions catalog. The 16-page document was recently translated and analyzed by Dr. Siddiqi, who recognized that it was a previously unknown official copy that contained information not previously available to researchers or the public, including details from the final hours of the Soyuz-1 flight. Signed by the shift directors of the Soviet equivalent of “mission control,” an inscription dated 5 May 1967 indicates that this document is a “true copy” and also was signed by Vladimir Nikolaevick Pravetskii (1921-1980), who was responsible for biomedical support of the Soviet cosmonauts at that time. “In the history of Soviet space exploration, there are a few high points that have attracted the attention of conspiracy theorists,” said Dr. Siddiqi. “One of them is the flight of Yuri Gagarin in 1961. A simple Google search will lead one to a slew of websites chronicling in great detail all of the supposed cosmonauts who died getting to space before Gagarin, not to mention the nefarious plots to kill Gagarin in the late 1960s. And then, of course, there is the tragic flight of Vladimir Komarov in 1967, a veritable font of all manner of wild speculations.” According to Christopher Gainor, PhD, the editor of Quest, “At the time, the immediate futures of both the United States and the Soviet space programs were shrouded in mystery. NASA was still trying to understand the causes of the fire that killed the crew of Apollo 1 on the launch pad, and no one seemed to know how well Apollo would recover from this catastrophe. The Soviet Union’s human space program had not been heard from for 25 months, but rumors were flying that something big was in the offing as the 50th anniversary of Russia’s October Revolution approached.” In April 1967, the Soviets launched Komarov on the very first mission of the Soyuz spacecraft. A day later, the cosmonaut died after his space capsule plummeted to Earth and crashed in Soviet Central Asia. As soon as Komarov’s death was announced, conjecture and rumors quickly filled the vacuum created by the lack of hard information. The most ubiquitous include: that he was “crying in rage” as his spaceship plummeted to Earth, angry at the engineers and designers who built a faulty capsule; that he directly talked to Chairman of the Council of Ministers Aleksei Kosygin, who broke into tears telling Komarov (over video!) that he was a hero; or that Komarov’s wife and children tearfully said their goodbyes before his demise. American intelligence agencies supposedly picked up all of these harried transmissions from tracking stations in Turkey. None of this, of course, was ever confirmed. “Now with the official journal from the mission, the true and complete story can finally be told,” said Scott Sacknoff. * * * Dr. Asif Siddiqi is historian at Fordham University specializing in the history of science and technology. His book Challenge to Apollo: The Soviet Union and the Space Race, 1945-1974 is considered the best English-language history of the Soviet space program. He also edited the series, Rockets and People, a four-volume English- translation of the memoirs of Boris Chertok, a leading space designer under Sergei Korolev. His honors include the American Historical Association’s Fellowship in Aerospace History, the Eugene M. Emme Astronautical Literature Award, and a Guggenheim Fellowship. Published since 1992, Quest is the only peer-reviewed publication focused exclusively on the history of spaceflight. It is currently edited by Dr. Christopher Gainor. Quest is a publication of SPACE 3.0, a 501c3 charitable foundation launched in 2019, the 50th anniversary of the first moonwalk. Its mission is to build an endowment that can provide grants for space history preservation efforts and empower entrepreneurs and visionaries. Information about Quest can be found at: www.spacehistory101.com Information about The SPACE 3.0 Foundation: www.spacecommerce.org * * * Reporters/Media seeking additional information should contact Scott Sacknoff via email at [email protected] or by phone at (202) 596-1812. .
Recommended publications
  • The First In-Flight Space Fatality
    Quiz #001 Difficulty: Medium The First In-Flight Space Fatality 1. Which mission had the first in-flight 8. Which pilot was the mission backup? space fatality? A) Vladimir Titov S A) Soyuz-1 B) Yuri Gagarin B) Space Shuttle Challenger C) Sergei Gonchar C) Apollo13 P 9. Where was Col. Komarov buried? A 2. How old was Colonel Vladimir A) On a hill overlooking Moscow Komarov at the time of this mission? B) In a wall at the Kremlin C A) 30 C) At an undisclosed location B) 35 E C) 40 Answers: 3. Why did the mission fail? 1. (A) The mission took place April 23-24, A) The oxygen tank exploded 1967, and killed the pilot and only crew H B) The parachute did not open member, Colonel Vladimir Komarov. C) The heat shield was damaged 2. (C) I 3. (B) The main parachute did not release 4. What was the pilot doing minutes and the manually-deployed reserve chute S tangled with the main’s drogue. The before the crash? Soyuz-1 descent module hit the ground at T A) Screaming at mission control around 40 meters per second (89mph). B) Saying good-bye to his wife 4. (C) C) Preparing for landing 5. (A) It was the first crewed flight of the O Soyuz launch 7K-OK spacecraft and Soyuz 5. What was the purpose of the flight? rocket. The Soyuz-2 mission was aborted R before launch, after the 13th orbit of A) Dock with another vehicle and Soyuz-1. Y exchange crew in flight 6.
    [Show full text]
  • North American Air Defense Command (NORAD), Weekly Intelligence Review (WIR), April 28, 1967
    . ' DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL, E.O. l3526, SECTION 5.3(b)(3) ISCAP APPEAL NO. 2009-068, document no. 174 DECLASSIFICATION DATE: February 25,2015 ~ ,li, _ Ul (') • > ~ ~AND UBRARY · -- ~ ~ a. j ·_ REC'D. MAY 1 1561 fJd J I . ~ > n Q 3 4 '· . FOR OFFtCillt USE ONtV I · APR 2 9 \SG1 NOR AD a~· "-.} Issue No. 17/67, 28 April 1967 .I The WIR ·in Brigf ~----------------------~ r---~----~~L-----~------~---. f . !I + Portion identified as non­ ' 'I responsive to the appeal 5 Portion identified as non­ responsive to the appeal • 5 6 HECC£ C OSMOS l '>5 D E-OR LllTF.D J\lr.nost ~ . ncrly 8 <J\·qr~ a fte r launch. -D .Ff'lCULTlES WI TH SOY U7. 1 CAtS£ ABO RT OF S~HEDULEDSPECTAC~LAR M~irl Oll:iSloo prob;l.hly wa~ t{? tt·:t t~t~ f t::r COiirnonae.t. s . l.A1JJ'lCH WiNDOW F OC{ V ENUS OPENS IN MAY : So·.,.. let ru ,~ kct :. ( ~ u r breaking thl"'ough SOV l2T L:\IJ .'ICH( f~S i DE OJ\'I A B L ~; 3 <: lal,td cove:· (Sovit!t 1>r <t,.;r ) (OFFICJ.A L fv\ a.t ., Winci )•,y h i'l>;a.H.:J(l d ~a.rl!& r tb hi ye4r , for U'SF; ONfJY I (i r Ht time >in~.:~> !960, NOTE: P11g c!< l tl , 2'0 1 ZI , 2·• and Z5 9f rhio int~ u~ :1 :: c b,lAl'ik. _....... - - . - . - ... ~ ' .. ~ ' . ! •..,,'. ~ I .WIR to be Smaller Tempprarily -, ..... ~ _ "'J ~ Budgetary res\rictions on printing forces thew IR to pare doWh its size for the rest Qf the fiscal I year, which ends 3d June 1961.
    [Show full text]
  • Rex D. Hall and David J. Shayler
    Rex D. Hall and David J. Shayler Soyuz A Universal Spacecraft ruuiiMicPublishedu 11in1 aaaundiiuiassociationi witwimh ^^ • Springer Praxis Publishing PRHB Chichester, UK "^UF Table of contents Foreword xvii Authors' preface xix Acknowledgements xxi List of illustrations and tables xxiii Prologue xxix ORIGINS 1 Soviet manned spaceflight after Vostok 1 Design requirements 1 Sever and the 1L: the genesis of Soyuz 3 The Vostok 7/1L Soyuz Complex 4 The mission sequence of the early Soyuz Complex 6 The Soyuz 7K complex 7 Soyuz 7K (Soyuz A) design features 8 The American General Electric concept 10 Soyuz 9K and Soyuz 1 IK 11 The Soyuz Complex mission profile 12 Contracts, funding and schedules 13 Soyuz to the Moon 14 A redirection for Soyuz 14 The N1/L3 lunar landing mission profile 15 Exploring the potential of Soyuz 16 Soyuz 7K-P: a piloted anti-satellite interceptor 16 Soyuz 7K-R: a piloted reconnaissance space station 17 Soyuz VI: the military research spacecraft Zvezda 18 Adapting Soyuz for lunar missions 20 Spacecraft design changes 21 Crewing for circumlunar missions 22 The Zond missions 23 The end of the Soviet lunar programme 33 The lunar orbit module (7K-LOK) 33 viii Table of contents A change of direction 35 References 35 MISSION HARDWARE AND SUPPORT 39 Hardware and systems 39 Crew positions 40 The spacecraft 41 The Propulsion Module (PM) 41 The Descent Module (DM) 41 The Orbital Module (OM) 44 Pyrotechnic devices 45 Spacecraft sub-systems 46 Rendezvous, docking and transfer 47 Electrical power 53 Thermal control 54 Life support 54
    [Show full text]
  • THE SOVIET MOON PROGRAM in the 1960S, the United States Was Not the Only Country That Was Trying to Land Someone on the Moon and Bring Him Back to Earth Safely
    AIAA AEROSPACE M ICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee. THE SOVIET MOON PROGRAM In the 1960s, the United States was not the only country that was trying to land someone on the Moon and bring him back to Earth safely. The Union of Soviet Socialist Republics, also called the Soviet Union, also had a manned lunar program. This lesson describes some of it. Next Generation Science Standards (NGSS): ● Discipline: Engineering Design ● Crosscutting Concept: Systems and System Models ● Science & Engineering Practice: Constructing Explanations and Designing Solutions GRADES K-2 K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. Have you ever been busy doing something when somebody challenges you to a race? If you decide to join the race—and it is usually up to you whether you join or not—you have to stop what you’re doing, get up, and start racing. By the time you’ve gotten started, the other person is often halfway to the goal. This is the sort of situation the Soviet Union found itself in when President Kennedy in 1961 announced that the United States would set a goal of landing a man on the Moon and returning him safely to the Earth before the end of the decade.
    [Show full text]
  • Tragic Tangle: Soyuz-1
    National Aeronautics and Space Administration Tragic Tangle: Soyuz-1 Leadership ViTS Meeting June 2010 Bryan O’Connor Chief, Safety and Mission Assurance Wilson B. Harkins Deputy Chief, Safety and Mission Assurance This and previous presentations are archived at: sma.nasa.gov/safety-messages THE MISHAP On April 23,1967, the Soviet Union launched the Soyuz-1 spacecraft to achieve a new and elaborate docking capability. Multiple malfunctions on orbit forced ground crews to abort the mission. In a crippled spacecraft with rapidly draining power reserves, Cosmonaut Colonel Vladimir Komarov heroically maneuvered the craft for re-entry to Earth. Upon re-entry, the vehicle’s drag and backup parachutes entangled. With no means of braking, Soyuz-1 struck the ground at 90 miles per hour, and the USSR’s most experienced cosmonaut was killed. The Space Race Begins •1961-1963: The USSR flies six successful Vostok crewed missions. •1964-1966: No Soviet manned flights •1961-1966: The U.S. flies six crewed Mercury and ten crewed Gemini missions, pioneering techniques for use en route to the moon. Under immense pressure to overtake the Americans, the Soviets planned a 1967 mission involving two Soyuz spacecraft to rendezvous, dock, transfer cosmonauts, and commemorate May Day. Soyuz and Apollo Test Failures •November 1966: Kosmos-133 unmanned Soyuz suffers maneuvering problems upon re-entry and automatically self-destructs over the Pacific. • December 1966: Second unmanned Soyuz’ booster explodes on pad •January 1967: Apollo 204 fire kills three astronauts. • February 1967: Kosmos-140 unmanned Soyuz heat shield experiences 30mm burn-through during entry. •April 1967: Despite failures, as May Day approaches, Design Bureau Cosmonaut Colonel gives order for dual Soyuz mission.
    [Show full text]
  • The Soviet Moon Program
    The Moon Race [July 1969] – down to the wire! JAMES OBERG JULY 17, 2019 SPACE CENTER HOUSTON APOLLO-11 FIFTIETH ANNIVERSARY WWW.JAMESOBERG.COM [email protected] OVERVIEW– JULY 1969 Unexpected last-minute drama was added to Apollo-11 by the appearance of a robot Soviet moon probe that might have returned lunar samples to Earth just before the astronauts got back. We now know that even more dramatic Soviet moon race efforts were ALSO aimed at upstaging Apollo, hoping it would fail. But it was the Soviet program that failed -- and they did their best to keep it secret. These Soviet efforts underscored their desperation to nullify the worldwide significance of Apollo-11 and its profound positive impact, as JFK had anticipated, on international assessments of the relative US/USSR balance of power across the board -- military, commercial, cultural, technological, economic, ideological, and scientific. These were the biggest stakes in the entire Cold War, whose final outcome hung in the balance depending on the outcome of the July 1969 events in space. On July 13, 1969, three days before Apollo-11, the USSR launched a robot probe to upstage it DAY BEFORE APOLLO-11 LANDING – BOTH SPACECRAFT ORBITING MOON IN CRISS-CROSS ORBITS THE SOVIET PROBE GOT TO THE MOON FIRST & WENT INTO ORBIT AROUND IT AS APOLLO BEGAN ITS MISSION https://i.ebayimg.com/images/g/T6UAAOSwDJ9crVLo/s-l1600.jpg https://youtu.be/o16I8S3MMo4 A FEW YEARS LATER, ONCE A NEW MISSION HAD SUCCEEDED, MOSCOW RELEASED DRAWINGS OF THE VEHICLE AND HOW IT OPERATED TO LAND, RETRIEVE SAMPLES, AND RETURN TO EARTH Jodrell Bank radio telescope in Britain told the world about the final phase of the Luna 15 drama, in a news release: "Signals ceased at 4.50 p.m.
    [Show full text]
  • Please Type Your Paper Title Here In
    Estimating the Reliability of a Soyuz Spacecraft Mission Michael G. Lutomskia*, Steven J. Farnham IIb, and Warren C. Grantb aNASA-JSC, Houston, TX – [email protected] bARES Corporation, Houston, TX Abstract: Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA’s next manned rocket and spacecraft development project is currently underway.
    [Show full text]
  • Gill Arbuthnott • Christopher Nielsen All Rights Reserved
    To David, whose bookshelves introduced me to the rest of the universe through Asimov, Bradbury and Clarke, and who bought me that Bowie record. – GA For Rusty (the first dingo in space). – CN BIG PICTURE PRESS First published in the UK in 2019 by Big Picture Press, an imprint of Bonnier Books UK, The Plaza, 535 King’s Road, London, SW10 0SZ www.templarco.co.uk/big-picture-press www.bonnierbooks.co.uk Text copyright © 2019 by Gill Arbuthnott Illustration copyright © 2019 by Christopher Nielsen Design copyright © 2019 by Big Picture Press 1 3 5 7 9 10 8 6 4 2 Gill Arbuthnott • Christopher Nielsen All rights reserved ISBN 978-1-78741-354-2 This book was typeset in Burford Base and Rustic, Futura and Duality The illustrations were created using a combination of traditional and digital techniques. Edited by Katie Haworth Designed by Nathalie Eyraud Production Controller: Nick Read Printed in China ;II 2019: Chinese robotic space probe r e Chang’e-4 makes first ever landing on the 2 a 0 c 1 h 8 e far side of the Moon : s T i h n e t e nturies: e V th c r 16 s – o th t vers e 15 i disco y ile l al l a G a eo g lil the paths r a dict e G pre s r to s p 2 w tile ) a ho ojec s p 6 ) f pr e ce ro o h b 6 6 e s i 6 l 8 : 1 b 6 ( y u 1 r ( y 2012: p TiMeLiNe u The Voyager I probe t i t n n v o n o reaches interstellar space i a t t e r c o w G e h f M t N 7 o f c o 1 a s a w s Is a w r L a i is L S h d n a 15th–16th centuries: Leonardo da Vinci draws designs for flying machines 1986: Russian 2000: International Last Space space station Mir Space Station
    [Show full text]
  • Reagan, Challenger, and the Nation by Kristen
    On A Frigid January Day in Central Florida: Reagan, Challenger, and the Nation By Kristen Soltis Anderson Space Shuttle launches are exhilarating to behold. They are grand spectacles, loud and unapologetic. For those up close, observing from the grounds of Kennedy Space Center in Florida, the rumble of the rocket engines is deafening. Hundreds of miles away, the growing trail of white exhaust topped by a small gleaming dot can be seen brightly, climbing silently into the sky. Whether watching with one’s own eyes or through a television broadcast, any launch of humans into space is a majestic and terrifying thing to behold. There is nothing routine, nothing ordinary about space. Yet on a frigid January day in Central Florida in 1986, the launch of the Space Shuttle Challenger was expected to be just that: routine. So “routine”, according to NBC news coverage, that “the Soviet Union reportedly didn't have its usual spy trawler anchored off the coast”.1 Two dozen previous Space Shuttle missions had taken off from American soil and returned home safely; there was little reason for Americans to think this mission would be any different. Though most Americans were not watching the launch live, one very special group of Americans was: schoolchildren. Despite the otherwise ordinary nature of the launch planned for that day, what did make the Challenger’s tenth mission special was the presence of Christa McAuliffe, a social studies teacher from New Hampshire. President Ronald Reagan had hoped that including a teacher in a shuttle mission would be an uplifting and inspirational reminder to the nation about the importance of education - and of our space program.
    [Show full text]
  • Apollo-Soyuz Test Project
    --.I m ...ir,,.= The document_-contains materials on the Soyuz-Apollo test and consists of two parts, prepared by the USSR and USA sides res- pectively. Both parts outline the purposes and program of the mission, the spacecraft design, the flight plan and information on Joint and unilateral scientific experiments. Brief biographies of the cosmonauts and astronauts, the Joint mission crew members_ are also presented. The document covers technical support activities providing mission control and gives information about the ASTP Soviet and American leaders. As the USSR and USA parts of the document have been prepared independently, there might be duplication in the sections dealing with the Joint activities. The document is intended for press representatives and various mass information means. CONTENTS Page I.0 INTRODUCTION ....................................... 10 1.1 Background ......................................... I0 1,2 Apollo-Soyuz joint test project objectives .......... 13 2.0 COMPATIBILITY PROBLEMS ................... ......... • 15 2.1 Spacecraft compatibility conditions and principal solutions accepted for Apollo-Ssyuz Test Mission .... 15 2.2 Compatibility of ground flight control personnel ... 18 2_3 Methodological compatibility ....................... 20 3.0 SOYUZ SPACECRAFT ................................... 22 3.1 PurPose. Brief data on Soyuz spacecraft flights .... 22 3.2 Soyuz spacecraft description ....................... 25 3.2.1 General description of the Soyuz spacecraft.. 25 Main characteristics ........................
    [Show full text]
  • Dead Cosmonauts >> Misc
    James Oberg's Pioneering Space powered by Uncovering Soviet Disasters >> Aerospace Safety & Accidents James Oberg >> Astronomy >> Blogs Random house, New York, 1988 >> Chinese Space Program Notes labeled "JEO" added to electronic version in 1998 >> Flight to Mars >> Jim's FAQ's >> Military Space Chapter 10: Dead Cosmonauts >> Misc. Articles Page 156-176 >> National Space Policy >> Other Aerospace Research >> Reviews The family of Senior Lieutenant Bondarenko is to be provided with everything necessary, as befits the >> Russian Space Program family of a cosmonaut. --Special Order, signed by Soviet Defense Minister R. D. Malinovskiy, April 16, >> Space Attic NEW 1961, classified Top Secret. NOTE: Prior to 1986 no Soviet book or magazine had ever mentioned the >> Space Folklore existence of a cosmonaut named Valentin Bondarenko. >> Space History >> Space Operations In 1982, a year after the publication of my first book, Red Star in Orbit. I received a wonderful picture >> Space Shuttle Missions from a colleague [JEO: Arthur Clarke, in fact] who had just visited Moscow. The photo showed >> Space Station cosmonaut Aleksey Leonov, hero of the Soviet Union, holding a copy of my book-- and scowling. >> Space Tourism Technical Notes >> Leonov was frowning at a picture of what I called the "Sochi Six," the Russian equivalent of our "original >> Terraforming seven" Mercury astronauts. They were the top of the first class of twenty space pioneers, the best and the boldest of their nation, the ones destined to ride the first manned missions. The picture was taken at the Black Sea resort called Sochi in May 1961, a few weeks after Yuriy Gagarin's history-making flight.
    [Show full text]
  • Please Type Your Paper Title Here In
    https://ntrs.nasa.gov/search.jsp?R=20100014848 2019-08-30T09:15:03+00:00Z Estimating the Reliability of a Soyuz Spacecraft Mission Michael G. Lutomskia*, Steven J. Farnham IIb, and Warren C. Grantb aNASA-JSC, Houston, TX – [email protected] bARES Corporation, Houston, TX Abstract: Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA’s next manned rocket and spacecraft development project is currently underway.
    [Show full text]