2020/016 Dated 28 February 2020 in the Language and Format in Which They Were Received

Total Page:16

File Type:pdf, Size:1020Kb

2020/016 Dated 28 February 2020 in the Language and Format in Which They Were Received AC31 Doc. 25 Annex 2 Compilation of responses from Parties to Notification to the Parties No. 2020/016 dated 28 February 2020 in the language and format in which they were received Contents Cambodia ………………………………………………………………………………………………………………………………………....…1 Canada ………………………………………………………………………………………………………………………………..………..……..3 Colombia …………………………………………………………………………………………………………………………………….………..5 Costa Rica …………………………………………………………………………………………………………………………..………..………15 Croatia ……………………………………………………………………………………………………………………………..………..……….35 European Union ………………………………………………………………………………………………………..……………..………….36 Indonesia ………………………………………………………………………………………………………………………………………..…..43 Israel ……………………………………………………………………………………………………………………………………………..…….51 Italy ……………………………………………………………………………………………………………………………………………………..55 Japan ……………………………………………………………………………………………………………………………………………….….60 Mexico ………………………………………………………………………………………………………………………………………………..66 Monaco ……………………………………………………………………………………………………………………………………………….69 Netherlands …………………………………………………………………………………………………………………………………………73 New Zealand ………………………………………………………………………………………………………………………………………..77 Oceania Parties …………………………………………………………………………………………………………………………………….79 Peru ……………………………………………………………………………………………………………………………………………………..83 Senegal ………………………………………………………………………………………………………………………………………………..89 Thailand ……………………………………………………………………………………………………………………………………………….91 United States of America ……………………………………………………………………………………………………………………146 Cambodia AC31 Doc. 25 Annex 2 Canada Canadian Response to CITES Notification 2020/016 New Information on Shark and Ray Conservation and Management Activities in Canada Fisheries Management Activities There are no directed fisheries for pelagic sharks in Canada. Non-targeted, retained harvest of some pelagic sharks is licensed in the tuna and swordfish longline fisheries and in groundfish fisheries in Atlantic Ocean waters. The harvesting of pelagic sharks in Pacific waters is prohibited. Canada regularly reviews management of all fisheries and works to identify ways to strengthen our domestic management of sharks. Recent management measures have been implemented in Canada. - Canada has implemented a new prohibition on retention of Shortfin Mako in Canada beginning in 2020. This new management measure has been included in licence conditions for the 2020 pelagic longline fisheries. All licence holders are now prohibited from retaining Shortfin Mako on board fishing vessels. - Amendments to Canada’s Fisheries Act legislation came into force in August 2019. The amendments provide protections for sharks by prohibiting the import and export of shark fins not naturally attached into and out of Canada. The new legislation also prohibits the practice of shark finning. - Canada has implemented a mandatory fins-attached management measure for all pelagic sharks retained as bycatch. This measure was fully implemented for all fisheries in March 2018. Under this new measure, all harvesters are required to land pelagic sharks with the fins at least partially attached to the carcass. - There have been changes to a large number of fisheries’ license conditions to minimize risk to White Sharks. This was done to ensure fisheries were compliant with the listing of White Shark under the domestic Canadian Species at Risk Act. Research and Monitoring Activities Canada continues to undertake scientific research and monitoring activities, and produces science advice related to the conservation and management of sharks. Recent research and monitoring activities have been implemented in Canada. - A new analysis of post-release mortality of Porbeagle and Shortfin Mako sharks was completed through the International Commission for the Conservation of Atlantic Tunas (ICCAT) Scientific Committee on Research and Statistics. The post-release mortality analysis included an analysis of recovery times which suggests that in-water tagging is less physiologically harmful than tagging on a vessel. - Fisheries and Oceans Canada is taking a lead role in the upcoming ICCAT assessment for Porbeagle in 2020 by developing an Incidental Catch Model to evaluate current stock status. Canada is collaborating with the U.S.A. National Oceanic and Atmospheric Administration to update Porbeagle age parameters which will contribute to the upcoming stock assessment. - A research project to evaluate historical removals of White shark in the North Atlantic has been completed. Ongoing collaborative research with partners to investigate the distribution and habitat use of White Shark in Canada is underway. - A population abundance estimate of Basking Shark in Atlantic Canadian waters from aerial survey data is underway. This abundance estimate will be compared to data from 2008 to evaluate recent trends in Basking Shark abundance. - A research project is underway to examine Greenland Shark bycatch in Canadian waters, with a focus on the inshore. This work will support research into bycatch mitigation for Greenland Shark in Canadian fisheries. - A framework review of modeling approaches and a stock assessment of Northwest Atlantic Spiny Dogfish was completed in 2018 and 2019. - A comprehensive field guide on all Canadian Pacific chondrichthyans was published through the British Columbia Royal Museum, offering improved identification guides of sharks, skates, rays and ratfish. - An analysis is underway examining the misidentification of Bluntnose Sixgill sharks as Pacific Sleeper Sharks in the groundfish longline fisheries. This work will improve the relative index of abundance used for both species, with direct implications for assessing the status of these species under domestic species at risk legislation. - Fisheries and Oceans Canada collaborated in the recent stock assessment for Blue Shark in the North Pacific conducted by the International Scientific Committee on Tuna and Tuna-like Species in the North Pacific (ISC) shark working group. Status and recommendation will be made to the ISC Plenary in July 2020. Shortfin Mako Appendix II Listing Shortfin Mako was listed on Appendix II in 2019. Canada has recently implemented a new prohibition on retention of Shortfin Mako for pelagic longline fisheries in 2020. All licence holders are now prohibited from retaining Shortfin Mako on board fishing vessels. Colombia SOLICITUD DE INFORMACIÓN NUEVA SOBRE ACTIVIDADES DE CONSERVACIÓN Y GESTIÓN DE TIBURONES Y RAYAS, INCLUYENDO EL TÍTULO DE LA LEGISLACIÓN INFORME DE COLOMBIA En su 18a reunión (CoP18, Ginebra, 2019), la Conferencia de las Partes adoptó las Decisiones 18.218 a 18.225 sobre Tiburones y rayas (Elasmobranchii spp.). En la Decisión 18.220 se encarga a la Secretaría que haga lo siguiente: a) emitir una Notificación a las Partes, invitándolas a: i) proporcionar resúmenes concisos de la nueva información sobre sus actividades de conservación y gestión de tiburones y rayas, en particular: A. la elaboración de dictámenes de extracción no perjudicial; Colombia cuenta con un ejercicio de elaboración de Dictámenes de Extracción no Perjudicial (DENP’s) para el Tiburón martillo “Sphyrna lewini” realizado en el año 2017 a partir de información de volúmenes de captura de la especie por la escasa información biológica que se tiene. Asimismo, se ha participado en varios Talleres regionales de construcción de DENP´s; donde se resalta como recomendación, la necesidad de tener asistencia técnica de CITES para proveer de metodologías de elaboración de DENP’s cuando se tenga poca información biológica de las especies. B. la realización de dictámenes de adquisición legal; Colombia no cuenta con Dictámenes de adquisición legal C. la identificación de los productos de tiburones incluidos en los Apéndices de la CITES en el comercio; y Se han desarrollado talleres para mejorar la toma de información de Tiburones y cursos de capacitación sobre la identificación de los mismos. Donde: se ha participado en los distintos espacios convocados para tratar temas de implementación de los acuerdos CITES y se está trabajando en la construcción de medidas para el cumplimiento de las mismas. Calle 37 No. 8 - 40 Conmutador (571) 3323400 www.minambiente.gov.co Se ha trabajado conjuntamente con la Dirección de Impuestos y Aduanas Nacionales - DIAN y la Autoridad Nacional de Acuicultura y Pesca – AUNAP para la elaboración de Propuesta de Desdoblamiento de Códigos arancelarios para las especies incluidas en los apéndices. Se han liderado talleres de capacitación con entes de control en puerto (Aduanas, Policía, Autoridad Pesquera, Autoridad ambiental, etc.) en metodologías de identificación de Tiburones a través de sus aletas; como también socialización de la normatividad nacional y procedimientos de control. D. registrar las existencias de partes y derivados de tiburón comerciales y/o preconvención de especies de elasmobranquios incluidos en el Apéndice II de la CITES y controlar la entrada de esas existencias en el comercio; y Se cuenta con los registros de información de comercio internacional de productos y subproductos de Tiburones hasta el año 2015, que fue producto de un ejercicio de desdoblamiento de Códigos arancelarios realizado en el país mediante trabajo conjunto (Convenio de Asociación 288 de 2015) entre el Ministerio de Ambiente y Desarrollo Sostenible con la Asociación de Corporaciones Autónomas Regionales (ASOCARS); la información se presenta generalizada a Tiburones, teniendo en cuenta los registros de estadísticas de comercio de la Dirección de Aduanas Nacionales, Información de FAO y datos de Bloom Foundation; los valores de captura para tiburones
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Shark and Ray Products in the Processing Centres Of
    S H O R T R E P O R T ALIFA BINTHA HAQUE BINTHA ALIFA 6 TRAFFIC Bulletin Vol. 30 No. 1 (2018) TRAFFIC Bulletin 30(1) 1 May 2018 FINAL.indd 8 5/1/2018 5:04:26 PM S H O R T R E P O R T OBSERVATIONS OF SHARK AND RAY Introduction PRODUCTS IN THE PROCESSING early 30% of all shark and ray species are now designated as Threatened or Near Threatened with extinction CENTRES OF BANGLADESH, according to the IUCN Red List of Threatened Species. This is a partial TRADEB IN CITES SPECIES AND understanding of the threat status as 47% of shark species have not CONSERVATION NEEDS yet been assessed owing to data deficiency (Camhi et al., 2009;N Bräutigam et al., 2015; Dulvy et al., 2014). Many species are vulnerable due to demand for their products Alifa Bintha Haque, and are particularly prone to unsustainable fishing practices Aparna Riti Biswas and (Schindler et al., 2002; Clarke et al., 2007; Dulvy et al., Gulshan Ara Latifa 2008; Graham et al., 2010; Morgan and Carlson, 2010). Sharks are exploited primarily for their fins, meat, cartilage, liver oil and skin (Clarke, 2004), whereas rays are targeted for their meat, skin, gill rakers and livers. Most shark catch takes place in response to demand for the animals’ fins, which command high prices (Jabado et al., 2015). Shark fin soup is a delicacy in many Asian countries—predominantly China—and in many other countries (Clarke et al., 2007). Apart from the fins being served in high-end restaurants, there is a demand for other products in different markets and by different consumer groups, and certain body parts are also used medicinally (Clarke et al., 2007).
    [Show full text]
  • Species Bathytoshia Brevicaudata (Hutton, 1875)
    FAMILY Dasyatidae Jordan & Gilbert, 1879 - stingrays SUBFAMILY Dasyatinae Jordan & Gilbert, 1879 - stingrays [=Trygonini, Dasybatidae, Dasybatidae G, Brachiopteridae] GENUS Bathytoshia Whitley, 1933 - stingrays Species Bathytoshia brevicaudata (Hutton, 1875) - shorttail stingray, smooth stingray Species Bathytoshia centroura (Mitchill, 1815) - roughtail stingray Species Bathytoshia lata (Garman, 1880) - brown stingray Species Bathytoshia multispinosa (Tokarev, in Linbergh & Legheza, 1959) - Japanese bathytoshia ray GENUS Dasyatis Rafinesque, 1810 - stingrays Species Dasyatis chrysonota (Smith, 1828) - blue stingray Species Dasyatis hastata (DeKay, 1842) - roughtail stingray Species Dasyatis hypostigma Santos & Carvalho, 2004 - groovebelly stingray Species Dasyatis marmorata (Steindachner, 1892) - marbled stingray Species Dasyatis pastinaca (Linnaeus, 1758) - common stingray Species Dasyatis tortonesei Capapé, 1975 - Tortonese's stingray GENUS Hemitrygon Muller & Henle, 1838 - stingrays Species Hemitrygon akajei (Muller & Henle, 1841) - red stingray Species Hemitrygon bennettii (Muller & Henle, 1841) - Bennett's stingray Species Hemitrygon fluviorum (Ogilby, 1908) - estuary stingray Species Hemitrygon izuensis (Nishida & Nakaya, 1988) - Izu stingray Species Hemitrygon laevigata (Chu, 1960) - Yantai stingray Species Hemitrygon laosensis (Roberts & Karnasuta, 1987) - Mekong freshwater stingray Species Hemitrygon longicauda (Last & White, 2013) - Merauke stingray Species Hemitrygon navarrae (Steindachner, 1892) - blackish stingray Species
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • (Cestoda) from the Mangrove Whipray, Urogymnus Granulatus (Myliobatiformes: Dasyatidae), from the Solomon Islands and Northern Australia
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2017, 64: 004 doi: 10.14411/fp.2017.004 http://folia.paru.cas.cz Research Article A new genus with two new species of lecanicephalidean tapeworms (Cestoda) from the mangrove whipray, Urogymnus granulatus (Myliobatiformes: Dasyatidae), from the Solomon Islands and northern Australia Kaylee S. Herzog and Kirsten Jensen Department of Ecology and Evolutionary Biology, and the Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA Abstract: A new lecanicephalidean genus is erected for cestodes previously recognised as “New Genus 12” (Polypocephalidae) in a phylogenetic analysis of the interrelationship of members of this order. Examination of the cestode fauna of the mangrove whipray, Urogymnus granulatus (Macleay) (Myliobatiformes: Dasyatidae) from the Solomon Islands and northern Australia revealed the existence of specimens representing two new species, consistent in morphology with “New Genus 12.” Corollapex gen. n. is unique among the 24 valid lecanicephalidean genera in its possession of an apical organ in the form of an external retractable central disk surrounded by eight concave muscular, membrane-bound pads and an internal heterogeneous glandular component. The two new spe- cies described herein, Corollapex cairae sp. n. (type species) and Corollapex tingoi sp. n., differ from one another in overall size and number of mature and immature proglottids, and are noted to demonstrate a differential distribution between mature and juvenile host individuals. Additional species diversity in the new genus, beyond C. cairae sp. n., C. tingoi sp. n., and “New Genus 12 n. sp. 1” of Jensen et al. (2016) is suggested. Corollapex gen. n. appears to be restricted to dasyatid hosts in the Indo-West Pacific region.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • (Chondrichthyes : Rajidae), Okamejei Mengae from the South China Sea
    Korean J. Ichthyol. 19(1), 57~65, 2007 A New Species of Skate (Chondrichthyes : Rajidae), Okamejei mengae from the South China Sea Choong-Hoon Jeong*, Tetsuji Nakabo1 and Han-Ling Wu2 Research Center for Coastal Environments of Yellow Sea, Inha University, Incheon 402-751, Republic of Korea 1The Kyoto University Museum, c/o Division of Applied Biosciences, Kyoto University, Kyoto 606-8501, Japan 2Laboratory of Fishes, Shanghai Fisheries University, 334 Jun Gong Rd., Shanghai, 200090, People’s of Republic of China A new species of the rajid genus Okamejei is described from a single specimen (295 mm TL) from off Shantou, Gwangdong in the South China Sea. The new species differs from all other congeners in the following combination of characters: snout pointed, dorsal head length 6.7 times interorbital width, tail moderately wide and long, its length 48.5% TL, interdorsal distance less than length of first dorsal fin base, postdorsal tail short as 5.8% TL, small evenly distributed dark brownish spots, without ocelli on dorsal surface of disc, pores of ampullae of Lorenzini on ventral surface distributed from snout tip to distal end of metapterygium, scapulocoracoid high, its height about 1.4 times rear corner height, trunk vertebrae 23, predorsal tail vertebrae 50 and pectoral fin radials 96. Key words : New species, Okamejei mengae, Rajidae, South China Sea, Chondri- chthyes size and condition of the anterior margin of the Introduction neurocranial fontanelle. Okamejei was later ele- vated to generic rank by McEachran and Dunn The family Rajidae is cosmopolitan, encompass- (1998). To date, genus Okamejei comprised nine ing about thirty genera and more than 230 nomi- species, three distributed in the Indian Ocean nal species, as well as about 50 undescribed spe- (Stehmann, 1976; Fricke and Al-Hassan, 1995) cies (McEachran and Miyake, 1990a, b; McEach- and six in the western North Pacific (reviewed by ran and Dunn, 1998).
    [Show full text]
  • Chondrichthyes: Dasyatidae)
    1 Ichthyological Exploration of Freshwaters/IEF-1089/pp. 1-6 Published 16 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:DFACCD8F-33A9-414C-A2EC-A6DA8FDE6BEF DOI: http://doi.org/10.23788/IEF-1089 Contemporary distribution records of the giant freshwater stingray Urogymnus polylepis in Borneo (Chondrichthyes: Dasyatidae) Yuanita Windusari*, Muhammad Iqbal**, Laila Hanum*, Hilda Zulkifli* and Indra Yustian* Stingrays (Dasyatidae) are found in marine (con- species entering, or occurring in freshwater. For tinental, insular shelves and uppermost slopes, example, Fluvitrygon oxyrhynchus and F. signifer one oceanic species), brackish and freshwater, and were only known from five or fewer major riverine are distributed across tropical to warm temperate systems (Compagno, 2016a-b; Last et al., 2016a), waters of the Atlantic, Indian and Pacific oceans though recent surveys yielded a single record of (Nelson et al., 2016). Only a small proportion of F. oxyrhynchus and ten records of F. signifier in the dasyatid rays occur in freshwater, and include Musi drainage, South Sumatra, indicating that obligate freshwater species (those found only in both species are more widely distributed than freshwater) and euryhaline species (those that previously expected (Iqbal et al., 2017, 2018). move between freshwater and saltwater) (Last et Particularly, the dasyatid fauna of Borneo al., 2016a). Recently, a total of 89 species of Dasy- includes the giant freshwater stingray Urogymnus atidae has been confirmed worldwide (Last et al., polylepis. The occurrence of U. polylepis in Borneo 2016a), including 14 species which are known to has been reported from Sabah and Sarawak in enter or live permanently in freshwater habitats of Malaysia and the Mahakam basin in Kaliman- Southeast Asia [Brevitrygon imbricata, Fluvitrygon tan of Indonesia (Monkolprasit & Roberts, 1990; kittipongi, F.
    [Show full text]
  • The Conjecture of Causa Mortis in Jenkins' Whipray Pateobatis Jenkinsii
    Jurnal Sain Veteriner, Vol. 38. No. 1. April 2020, Hal. 69-76 DOI: 10.22146/jvs.48850 ISSN 0126-0421 (Print), ISSN 2407-3733 (Online) Tersedia online di https://jurnal.ugm.ac.id/jsv The Conjecture of Causa Mortis In Jenkins’ Whipray Pateobatis jenkinsii (Annandale, 1909): A Case Report Dugaan Penyebab Kematian pada Ikan Pari Cambuk Jenkins Pateobatis jenkinsii (Annandale, 1909): Laporan Kasus Rifky Rizkiantino1*, Ridzki M. F. Binol2 1Medical Microbiology Study Program, IPB Dramaga Campus, Graduate School of IPB University, Bogor, Indonesia 2Jakarta Aquarium, Jakarta, Indonesia *Email : [email protected] Naskah diterima: 18 Agustus 2019, direvisi: 05 September 2019, disetujui: 30 Desember 2019 Abstrak Seekor ikan pari cambuk Jenkins jantan tangkapan liar ditemukan mati dalam tangki karantina dengan gejala klinis sebelum kematian adalah nafsu makan berkurang selama seminggu. Riwayat pengobatan yang diberikan adalah pemberian antibiotika enrofloxacin secara peroral. Periode terapi berlangsung selama sepuluh hari. Pengobatan terakhir adalah pemberian Hepavit® (ekstrak hati) dan injeksi intramuskular (IM) antibiotika enrofloxacin. Satu hari sebelum kematian, sampel darah dikoleksi dan kemudian diperiksa untuk mengetahui gambaran hematokrit dan beberapa parameter kimia darah. Hasil pemeriksaan darah ditemukan penurunan kadar blood urea nitrogen (BUN), alkaline phosphatase (ALP), dan alanine aminotransferase (ALT), peningkatan kadar glukosa, penurunan total protein dan kadar albumin, serta peningkatan kadar globulin. Pemeriksaan patologi anatomi ditemukan lesi pada ekor, di sekitar mata, dan clasper. Lesi hemoragik ditemukan di lapisan mukosa esofagus, lambung, dan kolon spiral. Gumpalan darah ditemukan di bawah lapisan tunika organ testis. Kerusakan organ hati secara makroskopis ditunjukkan dengan perubahan warna yang tidak homogen, pembengkakan organ, kongesti hati, dan konsistensi yang rapuh. Berdasarkan diagnosis morfologik, kausa kematian ikan diduga karena mengalami kondisi infeksi septikemia selama beberapa minggu sebelumnya.
    [Show full text]
  • Sustainability of Threatened Species Displayed in Public Aquaria, with a Case Study of Australian 1 Sharks and Rays 2 3 Kathryn
    https://link.springer.com/article/10.1007/s11160-017-9501-2 1 PREPRINT 1 Sustainability of threatened species displayed in public aquaria, with a case study of Australian 2 sharks and rays 3 4 Kathryn A. Buckley • David A. Crook • Richard D. Pillans • Liam Smith • Peter M. Kyne 5 6 7 K.A. Buckley • D.A. Crook • P.M. Kyne 8 Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, 9 Australia 10 R.D. Pillans 11 CSIRO Oceans and Atmosphere, 41 Boggo Road, Dutton Park, QLD 4102, Australia 12 L. Smith 13 BehaviourWorks Australia, Monash Sustainable Development Institute, Building 74, Monash University, 14 Wellington Road, Clayton, VIC 3168, Australia 15 Corresponding author: K.A. Buckley, Research Institute for the Environment and Livelihoods, Charles Darwin 16 University, Darwin, NT 0909, Australia; Telephone: +61 4 2917 4554; Fax: +61 8 8946 7720; e-mail: 17 [email protected] 18 https://www.nespmarine.edu.au/document/sustainability-threatened-species-displayed-public-aquaria-case-study-australian-sharks-and https://link.springer.com/article/10.1007/s11160-017-9501-2 2 PREPRINT 19 Abstract Zoos and public aquaria exhibit numerous threatened species globally, and in the modern context of 20 these institutions as conservation hubs, it is crucial that displays are ecologically sustainable. Elasmobranchs 21 (sharks and rays) are of particular conservation concern and a higher proportion of threatened species are 22 exhibited than any other assessed vertebrate group. Many of these lack sustainable captive populations, so 23 comprehensive assessments of sustainability may be needed to support the management of future harvests and 24 safeguard wild populations.
    [Show full text]
  • Elasmobranch Diversity with Preliminary Description of Four Species from Territorial Waters of Bangladesh
    Bangladesh J. Zool. 46(2): 185-195, 2018 ISSN: 0304-9027 (print) 2408-8455 (online) ELASMOBRANCH DIVERSITY WITH PRELIMINARY DESCRIPTION OF FOUR SPECIES FROM TERRITORIAL WATERS OF BANGLADESH A.B.M. Zafaria, Shamsunnahar, Sanjay Chakraborty, Md. Muzammel Hossain1, Md. Masud Rana and Mohammad Abdul Baki* Department of Zoology, Jagannath University, Dhaka-1100, Bangladesh Abstract: There is a significant lack of data regarding the biodiversity of elasmobranchs in the territorial waters of Bangladesh, since that sharks and rays are not targeted by commercial fishing industry, but rather encountered as a by- catch. This paper updated the diversity of elasmobranchs in the territorial waters of Bangladesh. The study was carried out to identify two coastal areas of Patharghata, Barguna and Cox's Bazar between October, 2015 and September, 2016. Using fish landing station survey techniques, total 20 species of elasmobranch were encountered, including eight species of sharks and 12 species of batoids, under 14 genera, ten families. This is the most expended field based records of elasmobranch fishes of Bangladesh. Key words: Elasmobranch, assessment, diversity, shark, skate, ray INTRODUCTION Elasmobranchs have been evolving independently for at least 450 million years and, by the Carboniferous period, they seem to have developed a life- history pattern similar to that seen today. From a practical point of view the life- history pattern of elasmobranchs make this group of animals extremely susceptible to over fishing (Harold et al. 1990). The marine fisheries sector of Bangladesh plays a significant role in the county’s economic growth through provision of employment in coastal area and providing source of protein for the population but shark fisheries (sharks and rays) are artisanal fisheries in Bangladesh.
    [Show full text]
  • Checklist of Philippine Chondrichthyes
    CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 Checklist of Philippine chondrichthyes. Bibliography. ISBN 1 876996 95 1. 1. Chondrichthyes - Philippines. 2. Sharks - Philippines. 3. Stingrays - Philippines. I. Compagno, Leonard Joseph Victor. II. CSIRO. Marine Laboratories. (Series : Report (CSIRO. Marine Laboratories) ; 243). 597.309599 1 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V.1, Last, P.R.2, Stevens, J.D.2, and Alava, M.N.R.3 1 Shark Research Center, South African Museum, Iziko–Museums of Cape Town, PO Box 61, Cape Town, 8000, South Africa 2 CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania, 7001, Australia 3 Species Conservation Program, WWF-Phils., Teachers Village, Central Diliman, Quezon City 1101, Philippines (former address) ABSTRACT Since the first publication on Philippines fishes in 1706, naturalists and ichthyologists have attempted to define and describe the diversity of this rich and biogeographically important fauna. The emphasis has been on fishes generally but these studies have also contributed greatly to our knowledge of chondrichthyans in the region, as well as across the broader Indo–West Pacific. An annotated checklist of cartilaginous fishes of the Philippines is compiled based on historical information and new data. A Taiwanese deepwater trawl survey off Luzon in 1995 produced specimens of 15 species including 12 new records for the Philippines and a few species new to science.
    [Show full text]