Z. Kristallogr. NCS 2016; 231(2): 457–460

Open Access

Qifan Chen, Fang Huang, Wenjing Quan, Yanhua Lu, Fang Zhang* and Fei Liu* The crystal structure of hexaqua(µ2-3-(3-(pyridin- 4-yl)-1,2,4-oxadiazol-5-yl)propanoato-1κ2O,O′; 2κO′)(3-(3-(pyridin-4-yl)-1,2,4-oxadiazol-5-yl) propanoato-κO)(3-(3-(pyridin-4-yl)-1,2,4-oxadia- zol-5-yl)propanoato-κ2O,O′)digadolinium(III) octahydrate, C60H76Gd2N18O32

DOI 10.1515/ncrs-2015-0136 Received December 30, 2015; accepted March 1, 2016; available online March 19, 2016

Abstract

C60H76N18O32Gd2, monoclinic, P21/c (no. 14), a = 10.560(5) Å, b = 31.243(5) Å, c = 12.383(4) Å, β = 116.51(3)°, V = 3 2 3656(2) Å , Z = 2, Rgt(F) = 0.0470, wRref(F ) = 0.1013, T = 293(2) K.

CCDC no.: 1456749

Table 1: Data collection and handling.

Crystal: Black, strip, size 0.13×0.21×0.30 mm Wavelength: Mo Kα radiation (0.71069 Å) µ: 19.00 cm−1 Diractometer, scan mode: multiwire, φ and ω scans 2θmax: 50°

N(hkl)measured, N(hkl)unique: 12131, 6453 Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 5554 N(param) : 484 *Corresponding authors: Fang Zhang, The College of Chemical rened Programs: SHELX [8] Engineering, Eastern University; No. 325, Wenhua Road, Yuanbao , City, Liaoning Province, P. R. 118003, People’s Republic of , e-mail: [email protected]; Fei Liu, and College of Chemical Engineering & Materials, Eastern Table 2: Fractional atomic coordinates and isotropic or equivalent Liaoning University, No. 325, Wenhua Road, Yuanbao District, isotropic displacement parameters (Å2). Dandong City, Liaoning Province, P. R. 118003, People’s Republic of China, e-mail: [email protected] Atom Site x y z Uiso Qifan Chen and Fang Huang: College of Chemical Engineering, Eastern Liaoning University, No. 325, Wenhua Road, Yuanbao H(2A) 4e −0.0726 −0.1288 −0.0580 0.043 District, Dandong City, Liaoning Province, P. R. 118003, People’s H(2B) 4e 0.0460 −0.0944 −0.0286 0.043 Republic of China H(3A) 4e −0.1596 −0.0839 −0.2588 0.052 Wenjing Quan: FengCheng Environmental Monitoring Station, H(3B) 4e 0.0034 −0.0890 −0.2158 0.052 Dandong City, Liaoning Province, P. R. 118100, People’s Republic H(7) 4e −0.1144 −0.2586 −0.1270 0.040 of China H(8) 4e −0.1369 −0.3315 −0.1183 0.045 Yanhua Lu: Liaoning Provincial Key Laboratory of Functional Textile H(9) 4e −0.1987 −0.2716 −0.4737 0.041 Materials, EasternLiaoning University, Dandong, Liaoning, China H(10) 4e −0.2140 −0.3436 −0.4541 0.044

© 2016 Qifan Chen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. 458 Ë Chen et al.: C60H76Gd2N18O32

Table 2 (continued) The crystal structure is shown in the gure. Tables 1–3 contain details of the measurement method and a list of the atoms Atom Site x y z U iso including atomic coordinates and displacement parameters. H(12A) 4e −0.6261 −0.1356 −0.0068 0.050 H(12B) 4e −0.4662 −0.1223 0.0434 0.050 Source of material H(13A) 4e −0.4526 −0.1097 0.2332 0.055 3-(3-Pyridin-4-yl-[1, 2, 4]oxadiazol-5-yl)-propionic acid (HL) is H(13B) 4e −0.6147 −0.1187 0.1846 0.055 H(17) 4e −0.4899 −0.2781 0.0336 0.052 easily available by a literature known synthesis [1]. A solution H(18) 4e −0.4786 −0.3493 −0.0024 0.057 of ammonia (0.5 M ) was added dropwise to a methanol H(19) 4e −0.4531 −0.3088 0.3593 0.047 (15 mL) solution of HL (3 mmol), resulting in a clear solution. H(20) 4e −0.4447 −0.3795 0.3142 0.053 A methanol (15 mL) solution of zinc acetate (1.5 mmol) was e − H(22A) 4 0.3375 0.0607 0.3615 0.048 added and allowed to stir for 3 h, resulting in a suspension. H(22B) 4e −0.2300 0.0324 0.4668 0.048 A methanol (15 mL) solution of gadolinium chloride (1 mmol) H(23A) 4e −0.1874 0.1011 0.5337 0.052 H(23B) 4e −0.0582 0.0872 0.5121 0.052 was added into the resulting suspension and allowed to stir H(27) 4e −0.2322 0.2422 0.1277 0.057 for 8 h. The suspension was ltered and diethyl ether was H(28) 4e −0.2117 0.3149 0.1238 0.064 allowed to diuse slowly into the solution of the ltrate. Black H(29) 4e −0.1320 0.3246 0.4586 0.065 crystals were obtained in about 3 weeks. H(30) 4e −0.1409 0.2518 0.4769 0.054 e − H(302) 4 0.0246 0.0109 0.2255 0.040 Experimental details H(301) 4e 0.0233 0.0021 0.1412 0.040 H(101) 4e −0.1481 −0.0823 0.2479 0.045 H atoms bound to C atoms were placed in calculated positions H(102) 4e −0.2337 −0.0542 0.2702 0.045 with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). H H(501) 4e −0.5208 −0.0172 −0.2244 0.047 atom of the hydroxy group were located in the dierence − − − H(502) 4e 0.3846 0.0287 0.1979 0.047 Fourier map and were rened with restraint as O—H = 0.82 Å, H(789) 4e −0.1991 −0.0839 0.4438 0.069 and H atoms of water molecule were initially found in the H(876) 4e −0.1226 −0.0491 0.5075 0.069 H(567) 4e −0.3817 −0.0319 −0.4036 0.070 dierence Fourier map and were rened with restraint as H(456) 4e −0.3510 −0.0520 −0.4878 0.070 O—H = 0.83 Å. H(992) 4e −0.3998 0.0426 −0.2905 0.075 H(991) 4e −0.3757 0.0391 −0.3903 0.075 Discussion e − H(999) 4 0.1118 0.1046 0.7813 0.078 Lanthanide-based carboxylate complexes have been found to H(998) 4e −0.094 0.0624 0.7600 0.078 exhibit anticancer and, unusual coordination characteristics,

Table 3: Fractional coordinates and atomic displacement parameters (Å2).

Atom Site x y z U11 U22 U33 U12 U13 U23

C(1) 4e −0.1408(5) −0.0686(2) −0.0531(4) 0.032(3) 0.026(3) 0.020(2) −0.001(2) 0.007(2) −0.003(2) C(2) 4e −0.0531(6) −0.1006(2) −0.0795(5) 0.045(3) 0.029(3) 0.038(3) 0.004(3) 0.023(3) 0.000(3) C(3) 4e −0.0779(7) −0.1015(2) −0.2108(5) 0.068(4) 0.030(3) 0.047(3) 0.000(3) 0.038(3) −0.006(3) C(4) 4e −0.1016(5) −0.1453(2) −0.2629(4) 0.032(3) 0.031(3) 0.031(3) 0.002(2) 0.016(2) 0.000(3) C(5) 4e −0.1338(5) −0.2099(2) −0.3102(4) 0.022(2) 0.029(3) 0.030(3) −0.002(2) 0.011(2) −0.004(2) C(6) 4e −0.1509(5) −0.2567(2) −0.3011(4) 0.025(2) 0.028(3) 0.031(3) 0.000(2) 0.012(2) −0.004(2) C(7) 4e −0.1345(5) −0.2753(2) −0.1949(5) 0.033(3) 0.038(3) 0.028(3) −0.002(3) 0.012(2) −0.010(3) C(8) 4e −0.1485(6) −0.3193(2) −0.1906(5) 0.041(3) 0.034(3) 0.033(3) −0.005(3) 0.013(2) 0.003(3) C(9) 4e −0.1838(5) −0.2831(2) −0.3997(5) 0.044(3) 0.032(3) 0.026(3) −0.002(3) 0.016(2) −0.002(3) C(10) 4e −0.1942(6) −0.3262(2) −0.3875(5) 0.046(3) 0.031(3) 0.034(3) −0.006(3) 0.019(3) −0.011(3) C(11) 4e −0.5969(5) −0.0703(2) 0.0213(4) 0.028(3) 0.022(3) 0.034(3) −0.002(2) 0.012(2) 0.003(2) C(12) 4e −0.5530(6) −0.1171(2) 0.0502(5) 0.051(3) 0.033(3) 0.039(3) 0.003(3) 0.018(3) 0.001(3) C(13) 4e −0.5305(7) −0.1269(2) 0.1769(5) 0.061(4) 0.032(3) 0.046(3) 0.001(3) 0.026(3) 0.001(3) C(14) 4e −0.4995(6) −0.1731(2) 0.2110(5) 0.040(3) 0.033(3) 0.042(3) 0.004(3) 0.020(3) 0.002(3) C(15) 4e −0.4762(5) −0.2392(2) 0.2287(5) 0.029(3) 0.033(3) 0.037(3) 0.006(3) 0.015(2) 0.012(3) C(16) 4e −0.4725(5) −0.2852(2) 0.2008(5) 0.025(3) 0.038(3) 0.035(3) −0.001(3) 0.010(2) 0.008(3) C(17) 4e −0.4801(6) −0.2981(2) 0.0924(5) 0.050(4) 0.044(4) 0.036(3) 0.001(3) 0.018(3) 0.010(3) C(18) 4e −0.4731(7) −0.3411(2) 0.0717(5) 0.059(4) 0.047(4) 0.039(3) −0.001(3) 0.025(3) −0.003(3) C(19) 4e −0.4586(6) −0.3165(2) 0.2847(5) 0.046(3) 0.036(3) 0.034(3) 0.004(3) 0.017(3) 0.004(3) C(20) 4e −0.4530(6) −0.3590(2) 0.2571(5) 0.047(3) 0.041(4) 0.044(3) 0.003(3) 0.019(3) 0.013(3) Chen et al.: C60H76Gd2N18O32 Ë 459

Table 3 (continued)

Atom Site x y z U11 U22 U33 U12 U13 U23

C(21) 4e −0.1855(5) 0.0342(2) 0.3213(4) 0.032(3) 0.027(3) 0.028(3) 0.001(2) 0.012(2) 0.000(2) C(22) 4e −0.2381(6) 0.0537(2) 0.4071(5) 0.059(4) 0.036(3) 0.034(3) −0.006(3) 0.030(3) −0.006(3) C(23) 4e −0.1585(7) 0.0937(2) 0.4719(5) 0.060(4) 0.040(4) 0.028(3) 0.003(3) 0.018(3) −0.009(3) C(24) 4e −0.1798(5) 0.1314(2) 0.3940(4) 0.035(3) 0.042(4) 0.026(3) −0.006(3) 0.013(2) −0.006(3) C(25) 4e −0.1917(5) 0.1913(2) 0.3156(5) 0.023(3) 0.042(3) 0.032(3) −0.002(3) 0.011(2) 0.000(3) C(26) 4e −0.1873(5) 0.2381(2) 0.3042(5) 0.026(3) 0.042(4) 0.037(3) 0.000(3) 0.012(2) 0.001(3) C(27) 4e −0.2098(6) 0.2581(2) 0.1973(5) 0.044(3) 0.055(4) 0.043(3) 0.009(3) 0.020(3) 0.011(3) C(28) 4e −0.1983(7) 0.3020(2) 0.1958(6) 0.049(4) 0.055(5) 0.054(4) 0.009(4) 0.021(3) 0.024(4) C(29) 4e −0.1506(7) 0.3077(2) 0.3913(6) 0.051(4) 0.038(4) 0.064(4) −0.009(3) 0.017(3) −0.012(4) C(30) 4e −0.1570(6) 0.2638(2) 0.4032(5) 0.042(3) 0.044(4) 0.044(3) −0.001(3) 0.016(3) 0.000(3) Gd(1) 4e −0.28684(2) −0.016319(8) 0.04809(2) 0.0268(2) 0.0236(2) 0.0223(1) −0.0006(1) 0.0096(1) −0.0012(1) N(1) 4e −0.1774(5) −0.3449(2) −0.2840(4) 0.047(3) 0.031(3) 0.037(3) −0.003(2) 0.019(2) −0.002(2) N(2) 4e −0.1411(5) −0.1924(2) −0.4073(4) 0.052(3) 0.025(3) 0.035(2) −0.007(2) 0.020(2) −0.008(2) N(3) 4e −0.1085(5) −0.1818(1) −0.2162(4) 0.045(3) 0.025(3) 0.034(2) 0.001(2) 0.021(2) −0.003(2) N(4) 4e −0.4589(5) −0.3721(2) 0.1517(5) 0.054(3) 0.039(3) 0.053(3) 0.003(3) 0.023(3) −0.001(3) N(5) 4e −0.4449(6) −0.2269(2) 0.3375(4) 0.067(3) 0.034(3) 0.044(3) 0.005(3) 0.027(3) 0.006(3) N(6) 4e −0.5111(5) −0.2066(2) 0.1449(4) 0.042(3) 0.040(3) 0.038(3) 0.000(2) 0.015(2) 0.011(2) N(7) 4e −0.1691(5) 0.3272(2) 0.2909(6) 0.046(3) 0.042(3) 0.079(4) 0.003(3) 0.022(3) 0.013(3) N(8) 4e −0.1705(5) 0.1716(2) 0.4220(4) 0.039(3) 0.035(3) 0.027(2) −0.003(2) 0.012(2) −0.008(2) N(9) 4e −0.2149(5) 0.1657(2) 0.2264(4) 0.055(3) 0.039(3) 0.032(2) −0.007(3) 0.017(2) −0.004(2) O(1) 4e −0.1420(4) −0.0299(1) −0.0809(3) 0.037(2) 0.017(2) 0.036(2) −0.001(2) 0.019(2) 0.000(2) O(2) 4e −0.2097(4) −0.0819(1) 0.0018(3) 0.053(2) 0.026(2) 0.038(2) 0.003(2) 0.029(2) 0.003(2) O(3) 4e −0.0379(4) −0.0040(1) 0.1646(3) 0.034(2) 0.040(2) 0.029(2) −0.007(2) 0.017(2) −0.009(2) O(4) 4e −0.2207(4) −0.0667(1) 0.2151(3) 0.055(2) 0.030(2) 0.029(2) 0.011(2) 0.020(2) 0.003(2) O(5) 4e −0.4385(1) −0.02093(4) −0.1671(1) 0.031(2) 0.057(3) 0.026(2) 0.006(2) 0.010(2) −0.004(2) O(6) 4e −0.5112(1) −0.04443(4) 0.0145(1) 0.031(2) 0.034(2) 0.035(2) −0.005(2) 0.011(2) 0.003(2) O(7) 4e −0.2791(1) 0.01915(4) 0.2226(1) 0.031(2) 0.033(2) 0.025(2) 0.002(2) 0.010(2) −0.004(2) O(8) 4e −0.0594(1) 0.03412(4) 0.3498(1) 0.041(2) 0.047(3) 0.031(2) −0.008(2) 0.014(2) −0.013(2) O(9) 4e −0.2053(1) 0.12488(4) 0.2785(1) 0.055(2) 0.039(2) 0.029(2) −0.004(2) 0.019(2) −0.007(2) O(10) 4e −0.4595(1) −0.18208(4) 0.3273(1) 0.079(3) 0.036(2) 0.042(2) 0.005(2) 0.029(2) 0.005(2) O(11) 4e −0.1187(1) −0.14828(4) −0.3787(1) 0.056(2) 0.031(2) 0.034(2) −0.003(2) 0.023(2) −0.002(2) O(12) 4e −0.2818(1) 0.05944(4) −0.0027(1) 0.034(2) 0.029(2) 0.046(2) −0.002(2) 0.020(2) 0.007(2) O(2W) 4e −0.2001(4) −0.0566(2) 0.4462(3) 0.062(3) 0.070(3) 0.031(2) −0.004(3) 0.011(2) −0.004(2) O(4W) 4e −0.3993(4) −0.0540(2) −0.4486(4) 0.065(3) 0.057(3) 0.058(3) 0.000(3) 0.031(2) 0.000(3) O(3W) 4e −0.3806(5) 0.0251(2) −0.3334(4) 0.079(3) 0.058(3) 0.047(3) −0.003(3) 0.026(2) 0.009(2) O(1W) 4e −0.1557(5) 0.0817(2) 0.7480(4) 0.059(3) 0.048(3) 0.075(3) −0.001(2) 0.018(2) −0.002(3) optical, and magnetic properties [2–4], they are known to be depending on the nature of the O-atoms, vary from 2.367(4) precursors for oxides [5] and possess fungicidal properties to 2.6978(16) Å. The dimeric structural unit further connected [6]. Lanthanide nitrates have been previously involved in the by intermolecular hydrogen bonds. complexe formation, while little attention has been paid to the use of lanthanide chloride [7]. In the asymmetric unit of Acknowledgements: This work is nancially supported by title complex, there are four lattice water molecules, three the Natural Science Foundation of Liaoning Province (No. ligands adopt monodentate mode, chelating mode, chelating 2013020090) and Program of Liaoning Provincial Key Labo- bidentate mode, respectively. Two neighboring GdIII ions form ratory of Functional Textile Materials Liaoning Province Key a dimeric unit with the Gd-Gd distance of 4.236(2) Å bridged Laboratory of Functional Textile Materials. The authors thank by two oxygen atoms of carboxylates (chelating bidentate the responsible editor for supplying the gure. mode). Two GdIII ions are eighteen-coordinated by six oxygen References atoms from six water molecules and twelve O-atoms from III six carboxylates. Each Gd ion exhibiting a tricapped trig- 1. Zhang, F.; Liu, F.; Chen, Q. F.; Dong, M. D.: 3-[3-(Pyridin-3-yl)- onal prism geometry (see Figure; H-atoms and lattice water 1,2,4-oxadiazol-5-yl]propanoic acid. Acta Cryst. E67 (2011) molecules are removed for clarity). The Gd-O bond lengths, o193. 460 Ë Chen et al.: C60H76Gd2N18O32

2. Kido, J.; Okamoto, Y.: Organo lanthanide metalcomplexes (M = Ba, Sr and M′ = Cu, Mn) systems: synthesis, structure, for electroluminescent materials. Chem. Rev. 102 (2002) magnetic properties, and thermal decomposition. Inorg. Chem. 2357–2368. 37 (1998) 3243–3251. 3. Marques, N.; Sella, A.; Takats, J.: Chemistry of the lanthanides 6. Wang, L. N.; Liu, X. R.; Wang, C. X.; Yan, L. Y.; Huang, J.: using pyrazolylborate ligands. Chem. Rev. 102 (2002) Preparation and thermal analysis of C14H10N4O6 and its 2137–2159. complexes with rare earth. Synth. React. Inorg. Met.-Org. Chem. 4. Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; 39 (2009) 619–624. Pecoraro, V. L.: Synthesis, structure, and magnetic properties 7. Liu, F.; Zhang, Q.; Hou, G. F.; Chen, Q. F.; Chen, P.; Li, G. M.: of a large lanthanide-transition metal single-molecule magnet. Synthesis, structures of salen-type 3d-4f heteronuclear metal Angew. Chem. Int. Ed. 43 (2004) 3912–3914. complexes. J. Inorg. Organomet. Polym. 23 (2013) 1097–1103. 5. Muro, I. G.; Mautner, F. A.; Insausti, M.; Lezama, L.; Arriortua, M. I.; 8. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 Rojo, T.: Study of the two-dimensional [MM′(C3H2O4)2(H2O)4] (2008) 112–122.