――Special Issue ――

Total Page:16

File Type:pdf, Size:1020Kb

――Special Issue ―― TROPICS Vol. 13 (3) Issued March 31, 2004 ―― Special issue*)―― Dependency of local people on the forests of Gunung Halimun National Park, West Java, Indonesia Kazuhiro HARADA Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan Present address: Institute for Global Environmental Strategies (IGES), Forest Conservation Project, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115, Japan Tel. +81-46-855-3833; Fax: +81-855-3809 e-mail: [email protected] ABSTRACT This study analyzes the role of Gunung Halimun National Park in the livelihoods of three communities living in and around or near the park, and the impact of the national park on the local people already living in or using resources from the area before it was designated as a national park. Local people practiced agriculture in the park area and collected forest products even within the park itself. Additionally, local people used a variety of plants, including trees, shrubs, herbs and vines, for food, construction, everyday implements, medicine, fuel and so on. Local people in the three villages frequently used domesticated plants, from swidden cultivation or gardens, as food. The use of fuelwood differed among the three villages. The people in the villages adjacent to the park and within an enclave inside the park had alternative places to gather fuelwood. They planted trees that were useful for fuelwood in gardens or took branches of clove or tea trees from neighboring plantation areas. However, as the amount of fuelwood from these resources did not meet their daily needs, they also gathered fuelwood from the national park forest. On the other hand, the fact that one village was located (illegally) within the park did not promote strong incentives for its people to manage domesticated plants for fuelwood; instead they depended largely on the park’s forest. It is concluded that the existence of the national park scarcely changed the relationship between local people and the surrounding environment, but that the presence of local people had fewer negative effects than other disturbing influences like illegal logging or conversion. Rather, the current lack of adequate monitoring has made it possible for customary use of resources and the ideology of nature conservation to coexist. The unclear relationships between the park management and local people may be effective for the ad hoc park management, but may not necessarily ensure biological conservation for the future. Integrated management of the protected areas can be achieved only when institutional arrangements are constructed, in which benefits from protected areas are distributed equally among related stakeholders, leading to effective collaborative management. Key words: co-management, ethnobotany, conservation, Gunung Halimun National Park, West Java, Indonesia INTRODUCTION Forest conservation in state or otherwise-controlled protected areas is still the dominant conservation strategy in all over the world. Protected areas provide a range of benefits, such as eco-tourism, education and research opportunities, watershed protection, and biodiversity conservartion (Dixon et al., 1990; 1991). Nevertheless, in many tropical countries, national parks rarely succeed in achieving all these objectives when a policy of coercive exclusion disregards the right of local inhabitants to use and enjoy natural resources. The objective of protection is to benefit non-local stakeholders, while direct local benefits are ignored. Local inhabitants’ most important benefits from national parks are usually the consumption of natural products. However, this consumption is normally not permitted in a protected area. The prospect or the option of sharing in the global benefits of protected areas is likely to be of little consolation to local residents, particularly to those who, as a result of the establishment of the protected area, have been denied access to natural products that they once harvested freely (Wells, 1992). Local people should benefit from nature conservation through active participation in attaining its objectives, and this should still enable them to live well above the poverty line (Hough, 1988). Gunung Halimun National Park (GHNP), South of Bogor, Indonesia, was established in 1992. As with so many national parks in Indonesia, the park was first designed on a map. As a result, customary rights of local people inside and outside of the park were ignored, and their access to the park’s resources became legally restricted. The exact boundaries of the park are still ambiguous in the field. Several studies exist on the different environments of Gunung Halimun National Park (Adimihardja, 1989; 1992; Harada, in press; Suhaeri, 1994; University of East Anglia et al., 1995). However, the uses of natural plants by local people and the relationships between local people and their environments have hardly been reported. This is a shortcoming, as it is essential to record human activities relating to plants where conflicts between conservation and local economic interests *) Edited by Ken-ichi ABE with two referees 162 Kazuhiro HARADA persist. The present study intends to amend this shortcoming and report on the species used as foods and fuelwoods in the daily lives of people living in and around Gunung Halimun National Park. STUDY SITE Until the late nineteenth century, forests in Java were abundant not only on hillsides but also on the plains (Oki, 1988). With increased human expansion, people cleared forests and planted dry rice and other crops under a swidden agricultural system (Elson, 1994). When these lands became exhausted after two or three years, people were forced to abandan their crude hamlets in search of other cultivation sites, where the whole process of settlement and reclamation was repeated. When, in the nineteenth century, the population of Java grew rapidly, land reclamation increased (ibid). The Dutch colonial forced- cultivation system expanded from 1830 onwards and also caused large-scale deforestation (Oki, 1988). This rapid deforestation inevitably caused a decline of shifting cultivation, and replaced it with more intensive agriculture on permanent farmland (Oki, 1993). Inspite of this course of events, abundant forests still exist in the area of Gunung Halimun National Park, West Java. GHNP encompasses three districts: Bogor and Sukabumi in West Java and Lebak in Banten (Fig. 1). The park ranges in altitude from approximately 500m to 2000m above sea level and includes colline, montane, and submontane main vegetation zones (Indonesia Ministry of Forestry, 1997). Until now, 500 plant species, 53 mammals and 203 bird species have been identified, including rare animals such as the Javanese gibbon (Hylobates moloch), and the Javanese hawk eagle (Spizaetus Bartelsi). In terms of human inhabitants, it is estimated that approximately 160,000 Sundanese live within the three districts, in 46 villages in 13 subdistricts (BCP-JICA, 1999). Many Sundanese live in and around GHNP. Villages in and around the park can be classified into three categories that have implications for their legal status and access to land and resources. Villages may be located in areas adjacent to the park (adjacent); villages may occupy areas that are inside the park geographically, but outside the park administratively (enclaves); and villages may be located on land that is part of the Fig. 1. Map of Study Sites in and around Gunung Halimun National Park park (encroachments). Villages in this last category are illegal according to state law. The area adjacent to the park belongs legally to the State Forestry Corporation (Perum Perhutani) and to tea plantation companies. Three villages were selected for this study. The village of Ciptarasa is located within the surrounding areas to the south of the park (category: adjacent). Ciptarasa is located in Sukabumi district, Cisolok sub-district, Sirnarasa village. The altitude Dependency of Local People on the Forests of Gunung Halimun National Park, West Java, Indonesia 163 above sea level of this village is approximately 690 m. It takes about four hours by car from Bogor to Ciptarasa. Public transportation to the nearest town can be easily used from the neighboring village, located one-hour from Ciptarasa. People sometimes go to the town for shopping. The total population of Ciptarasa is 311 individuals, comprising 82 households. Leuwijamang is located within an enclave in the northen part of the park (category: enclave). Leuwijamang is located in Bogor district, Cigedug sub-district, Cisarua village. The altitude above sea level of this village is approximately 650 m. The distance of Leuwijamang from Bogor is a two-hour drive and a one-hour walk. It takes one hour on foot and one hour by public transportation to reach the nearest town adjacent to the highway. Access to the town is not so covenient. The total population of Leuwijamang is 181 residents, comprising 49 households. Cibedug is located illegally within the western boundaries of the park (category: illegal). Cibedug is located in Lebak district, Bayah sub-district, Citorek village. The inhabitants settled in this area before the park was designated. The altitude above sea level of this village is approximately 800 m. It takes about seven hours by car and two hours on foot from Bogor to Cibedug. Because the village is isolated and very far from the nearest town, people seldom visit the town. The total population of Cibedug is 275 residents, comprising 65 households. METHODS
Recommended publications
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Euphorbiaceae
    University of Padova Department of Land, Environment Agriculture and Forestry MSc in Mediterranean Forestry and Natural Resources Management The use of barcoding sequences for the construction of phylogenetic relationships in the Euphorbiaceae Supervisor: Alessandro Vannozzi Co-supervisor: Prof. Dr. Oliver Gailing Submitted by: Bikash Kharel Matriculation No. 1177536 ACADEMIC YEAR 2017/2018 Acknowledgments This dissertation has come to this positive end through the collective efforts of several people and organizations: from rural peasants to highly academic personnel and institutions around the world. Without their mental, physical and financial support this research would not have been possible. I would like to express my gratitude to all of them who were involved directly or indirectly in this endeavor. To all of them, I express my deep appreciation. Firstly, I am thankful to Prof. Dr. Oliver Gailing for providing me the opportunity to conduct my thesis on this topic. I greatly appreciate my supervisor Alessandro Vannozzi for providing the vision regarding Forest Genetics and DNA barcoding. My cordial thanks and heartfelt gratitude goes to him whose encouragements, suggestions and comments made this research possible to shape in this form. I am also thankful to Prof. Dr. Konstantin V. Krutovsky for his guidance in each and every step of this research especially helping me with the CodonCode software and reviewing the thesis. I also want to thank Erasmus Mundus Programme for providing me with a scholarship for pursuing Master’s degree in Mediterranean Forestry and Natural Resources Management (MEDFOR) course. Besides this, I would like to thank all my professors who broadened my knowledge during the period of my study in University of Lisbon and University of Padova.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Mussaendas for South Florida Landscapes
    MUSSAENDAS FOR SOUTH FLORIDA LANDSCAPES John McLaughlin* and Joe Garofalo* Mussaendas are increasingly popular for the surrounding calyx has five lobes, with one lobe showy color they provide during much of the year conspicuously enlarged, leaf-like and usually in South Florida landscapes. They are members brightly colored. In some descriptions this of the Rubiaceae (madder or coffee family) and enlarged sepal is termed a calycophyll. In many are native to the Old World tropics, from West of the cultivars all five sepals are enlarged, and Africa through the Indian sub-continent, range in color from white to various shades of Southeast Asia and into southern China. There pink to carmine red. are more than 200 known species, of which about ten are found in cultivation, with three of these There are a few other related plants in the being widely used for landscaping. Rubiaceae that also possess single, enlarged, brightly colored sepals. These include the so- called wild poinsettia, Warszewiczia coccinea, DESCRIPTION. national flower of Trinidad; and Pogonopus The mussaendas used in landscapes are open, speciosus (Chorcha de gallo)(see Figure 1). somewhat scrambling shrubs, and range from 2-3 These are both from the New World tropics and ft to 10-15 ft in height, depending upon the both are used as ornamentals, though far less species. In the wild, some can climb 30 ft into frequently than the mussaendas. surrounding trees, though in cultivation they rarely reach that size. The fruit is a small (to 3/4”), fleshy, somewhat elongated berry containing many seeds. These Leaves are opposite, bright to dark green, and are rarely seen under South Florida conditions.
    [Show full text]
  • MELASTOMATACEAE 野牡丹科 Ye Mu Dan Ke Chen Jie (陈介 Chen Cheih)1; Susanne S
    MELASTOMATACEAE 野牡丹科 ye mu dan ke Chen Jie (陈介 Chen Cheih)1; Susanne S. Renner2 Herbs, shrubs, or trees (to 20 m tall), erect, climbing, or rarely epiphytic. Stipules lacking. Leaves simple, commonly opposite and decussate with one of a pair slightly smaller than other, rarely verticillate or alternate by abortion of one of a pair, usually 1–4(or 5) secondary veins on each side of midvein, originating at or near base and anastomosing apically, tertiary veins numerous, parallel, and connecting secondary veins and midvein but in Memecylon secondary veins pinnate and tertiary veins reticulate. Inflorescences cymose, umbellate, corymbose, in paniculate clusters, or a cincinnus, rarely flowers single, fascicled, or born on a spike; bracts sometimes conspicuous and persistent. Flowers bisexual, actinomorphic but androecium often slightly zygomorphic, usually (3 or)4- or 5(or 6)-merous, perianth biseriate, perigynous; bracteoles opposite, usually caducous. Hypanthium funnel-shaped, campanulate, cyathiform, or urceolate. Calyx lobes (3–)5(or 6), valvate (rarely connate, but not in Chinese species). Petals (3–)5(or 6), equal to number of sepals, distinct, imbricate. Stamens usually twice as many as petals and in 2 whorls, rarely as many as petals by loss of 1 whorl, isomorphic or dimorphic; filaments distinct, often geniculate, inflexed in bud; anthers typically 2-celled, introrse, basifixed, dehiscent by 1 or 2 apical pores or by short longitudinal slits (Astronia, Memecylon); connective often variously appendaged. Pistil and style 1; stigma minute, capitate or truncate. Ovary commonly inferior or semi-inferior, locules usually (3 or)4 or 5(or 6) with numerous anatropous ovules, rarely 1-loculed and ovules ca.
    [Show full text]
  • Fl. China 19: 231–242. 2011. 56. MUSSAENDA Linnaeus, Sp. Pl. 1
    Fl. China 19: 231–242. 2011. 56. MUSSAENDA Linnaeus, Sp. Pl. 1: 177. 1753. 玉叶金花属 yu ye jin hua shu Chen Tao (陈涛); Charlotte M. Taylor Belilla Adanson. Trees, shrubs, or clambering or twining lianas, rarely dioecious, unarmed. Raphides absent. Leaves opposite or occasionally in whorls of 3, with or usually without domatia; stipules persistent or caducous, interpetiolar, entire or 2-lobed. Inflorescences terminal and sometimes also in axils of uppermost leaves, cymose, paniculate, or thyrsiform, several to many flowered, sessile to pedunculate, bracteate. Flowers sessile to pedicellate, bisexual and usually distylous or rarely unisexual. Calyx limb 5-lobed nearly to base, fre- quently some or all flowers of an inflorescence with 1(–5) white to colored, petaloid, persistent or deciduous, membranous, stipitate calycophyll(s) with 3–7 longitudinal veins. Corolla yellow, red, orange, white, or rarely blue (Mussaenda multinervis), salverform with tube usually slender then abruptly inflated around anthers, or rarely constricted at throat (M. hirsuta), inside variously pubescent but usually densely yellow clavate villous in throat; lobes 5, valvate-reduplicate in bud, often long acuminate. Stamens 5, inserted in middle to upper part of corolla tube, included; filaments short or reduced; anthers basifixed. Ovary 2-celled, ovules numerous in each cell, inserted on oblong, fleshy, peltate, axile placentas; stigmas 2-lobed, lobes linear, included or exserted. Fruit purple to black, baccate or perhaps rarely capsular (M. decipiens), fleshy, globose to ellipsoid, often conspicuously lenticellate, with calyx limb per- sistent or caducous often leaving a conspicuous scar; seeds numerous, small, angled to flattened; testa foveolate-striate; endosperm abundant, fleshy.
    [Show full text]
  • (Lamiaceae and Verbenaceae) Using Two DNA Barcode Markers
    J Biosci (2020)45:96 Ó Indian Academy of Sciences DOI: 10.1007/s12038-020-00061-2 (0123456789().,-volV)(0123456789().,-volV) Re-evaluation of the phylogenetic relationships and species delimitation of two closely related families (Lamiaceae and Verbenaceae) using two DNA barcode markers 1 2 3 OOOYEBANJI *, E C CHUKWUMA ,KABOLARINWA , 4 5 6 OIADEJOBI ,SBADEYEMI and A O AYOOLA 1Department of Botany, University of Lagos, Akoka, Yaba, Lagos, Nigeria 2Forest Herbarium Ibadan (FHI), Forestry Research Institute of Nigeria, Ibadan, Nigeria 3Department of Education Science (Biology Unit), Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria 4Landmark University, Omu-Aran, Kwara State, Nigeria 5Ethnobotany Unit, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria 6Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Ondo State, Nigeria *Corresponding author (Email, [email protected]) MS received 21 September 2019; accepted 27 May 2020 The families Lamiaceae and Verbenaceae comprise several closely related species that possess high mor- phological synapomorphic traits. Hence, there is a tendency of species misidentification using only the mor- phological characters. Herein, we evaluated the discriminatory power of the universal DNA barcodes (matK and rbcL) for 53 species spanning the two families. Using these markers, we inferred phylogenetic relation- ships and conducted species delimitation analysis using four delimitation methods: Automated Barcode Gap Discovery (ABGD), TaxonDNA, Bayesian Poisson Tree Processes (bPTP) and General Mixed Yule Coalescent (GMYC). The phylogenetic reconstruction based on the matK gene resolved the relationships between the families and further suggested the expansion of the Lamiaceae to include some core Verbanaceae genus, e.g., Gmelina.
    [Show full text]
  • Cara Membaca Informasi Daftar Jenis Tumbuhan
    Dilarang mereproduksi atau memperbanyak seluruh atau sebagian dari buku ini dalam bentuk atau cara apa pun tanpa izin tertulis dari penerbit. © Hak cipta dilindungi oleh Undang-Undang No. 28 Tahun 2014 All Rights Reserved Rugayah Siti Sunarti Diah Sulistiarini Arief Hidayat Mulyati Rahayu LIPI Press © 2015 Lembaga Ilmu Pengetahuan Indonesia (LIPI) Pusat Penelitian Biologi Katalog dalam Terbitan (KDT) Daftar Jenis Tumbuhan di Pulau Wawonii, Sulawesi Tenggara/ Rugayah, Siti Sunarti, Diah Sulistiarini, Arief Hidayat, dan Mulyati Rahayu– Jakarta: LIPI Press, 2015. xvii + 363; 14,8 x 21 cm ISBN 978-979-799-845-5 1. Daftar Jenis 2. Tumbuhan 3. Pulau Wawonii 158 Copy editor : Kamariah Tambunan Proofreader : Fadly S. dan Risma Wahyu H. Penata isi : Astuti K. dan Ariadni Desainer Sampul : Dhevi E.I.R. Mahelingga Cetakan Pertama : Desember 2015 Diterbitkan oleh: LIPI Press, anggota Ikapi Jln. Gondangdia Lama 39, Menteng, Jakarta 10350 Telp. (021) 314 0228, 314 6942. Faks. (021) 314 4591 E-mail: [email protected] Website: penerbit.lipi.go.id LIPI Press @lipi_press DAFTAR ISI DAFTAR GAMBAR ............................................................................. vii PENGANTAR PENERBIT .................................................................. xi KATA PENGANTAR ............................................................................ xiii PRAKATA ............................................................................................. xv PENDAHULUAN ...............................................................................
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • West Indian Weed Woman: Indigenous Origins of West Indian Folk Medicine
    WEST INDIAN WEED WOMAN: INDIGENOUS ORIGINS OF WEST INDIAN FOLK MEDICINE WEST INDIAN WEED WOMAN: ORÍGENES INDÍGENAS DE LA MEDICINA POPULAR DE LAS INDIAS OCCIDENTALES WEST INDIAN WEED WOMAN: ORIGINES AUTOCHTONES DE LA MÉDECINE FOLKLORIQUE DES INDES OCCIDENTALES Erneslyn Velasco and Lawrence Waldron Erneslyn Velasco, R.N Elmhurst Hospital Center, United States Lawrence Waldron, Ph.D. Queens College, City University of New York, United States [email protected] In one of many versions of the popular early twentieth century calypso, “West Indian Weed Woman,” the song’s namesake (an unusual street vendor encountered by the singer, Bill Rogers) lists over sixty herbal folk remedies. After carefully transcribing the popular names of the herbs mentioned in the song, the investigators proceeded to locate the botanical names of the species. In the process, they discovered that more than half were endemic to the Caribbean and South America. Further research revealed that all of these endemic herbs have Indigenous medicinal applications, some of which are mentioned in the verses of the Rogers calypso. Thus, the song represents not only an intersection between West Indian folk medicine and popular culture and music, but reveals the extent to which Amerindian pharmacology was retained by an overarching Afro-Caribbean culture during the colonial and early modern period of the region. En una de las muchas versiones del calypso popular de principios del siglo XX, "West Indian Weed Woman", el homónimo de la canción (un vendedor callejero inusual encontrado por el cantante, Bill Rogers) enumera más de sesenta remedios herbales populares. Después de transcribir cuidadosamente los nombres populares de las hierbas mencionadas en la canción, los investigadores procedieron a localizar los nombres botánicos de la especie.
    [Show full text]
  • Mustafa Din, Wardah (2014) a Phytochemical and Pharmacological Study of Acalypha Wilkesiana Var
    Mustafa Din, Wardah (2014) A phytochemical and pharmacological study of acalypha wilkesiana var. macafeana hort. (euphorbiaceae juss.): antioxidant and antibacterial analyses. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/14069/1/THESIS_PhD_WMD.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. For more information, please contact [email protected] A PHYTOCHEMICAL AND PHARMACOLOGICAL STUDY OF Acalypha wilkesiana var.
    [Show full text]