An Artistic Reconstruction of Miocene Tennessee

Total Page:16

File Type:pdf, Size:1020Kb

An Artistic Reconstruction of Miocene Tennessee A Window to the Past: An Artistic Reconstruction of Miocene Tennessee by Samantha Diane Addis A thesis presented to the Honors College of Middle Tennessee State University in partial fulfillment of the requirements for graduation from the University Honors College Spring 2018 A Window to the Past: An Artistic Reconstruction of Miocene Tennessee by Samantha Diane Addis APPROVED: ____________________________ Dr. Melissa K. Lobegeier Associate Professor, Geosciences ____________________________ Dr. Warner Cribb Department Chair, Geosciences ____________________________ Dr. Tammy Melton Professor, Chemistry ____________________________ Dr. John Vile Dean, University Honors College ii Acknowledgements I extend my sincerest gratitude to my faculty advisors, Dr. Melissa Lobegeier and Dr. Tammy Melton, whose guidance and encouragement truly made this project possible. My thanks also go out to the researchers and staff at ETSU and the Gray Fossil Site and Museum, Dr. Chris Liu, Dr. Steven Wallace, Dr. Chris Widga, and April Nye for taking the time to answer my many questions, giving me painting feedback, and providing access to multiple papers and resources that proved invaluable to my project. I would also like to thank the faculty and staff of the MTSU Department of Geosciences for their incredible support throughout this project and my entire undergraduate career these past four years. Finally, my sincerest thanks go out to my friends and family for their reassurance, constructive critiques, and endless kind words. iii Abstract Paleoart is the reconstruction of landscapes and organisms from Earth’s prehistoric past. It is an essential part of educating the public of paleontological discoveries, and can serve to raise awareness and cultivate interest in the geological sciences. In this project, the environment and species of plants and animals present in Tennessee during the Miocene, a period of time spanning from 23 to 5 million years ago, were studied. Fossil remains and observations of extant species were combined to recreate the plants and animals of the time. These recreations were then used to create a scene of a riparian forest, which was painted digitally utilizing Adobe Photoshop Elements and printed on canvas. iv Table of Contents List of Figures................................................................................................................. vii I. INTRODUCTION..................................................................................................... 1 II. THE GRAY FOSSIL SITE...................................................................................... 5 III. THE FLORA AND FAUNA OF MIOCENE TENNESSEE................................. 7 FLORA.................................................................................................................. 9 Trees............................................................................................................... 10 Oak (Quercus sp.)..................................................................................... 10 Hickory (Carya tennesseensis)................................................................. 12 Katsura (Cercidiphyllites minimireticulatus) (Cercidiphyllum sp.)......... 14 Birch (Trivestibulopollenites betuloides) (Betula sp.).............................. 16 Shrubs and Other Small Plants................................................................... 18 Bladdernut (Staphylea levisemia)............................................................. 18 Grapevine (Vitis lanatoides)..................................................................... 20 Polypod Fern (Laevigatosporites sp.) (Polypodium sp.).......................... 21 FAUNA................................................................................................................ 22 Barn Owl (Tyto sp.).................................................................................. 23 Bristol’s Appalachian Panda (Pristinailurus bristoli).............................. 24 Dwarf Tapir (Tapirus polkensis)............................................................... 26 Short-Faced Bear (Plionarctos sp.)........................................................... 28 v IV. COMPOSITION..................................................................................................... 31 V. CREATING THE FINAL PAINTING................................................................. 33 VI. ANALYSIS.............................................................................................................. 39 VII. REFERENCES...................................................................................................... 41 vi List of Figures Figure 1: Location of the Miocene in the geologic time scale........................................... 5 Figure 2: Oak (Quercus sp.) leaf fossils, photographed at Gray Fossil Site museum..... 10 Figure 3: Detail study of bark, leaves, and acorns, and growth habit study................... 12 Figure 4: Detail sketch of Carya sp. displaying common features of hickory species.... 14 Figure 5: Leaf and bark detail and growth habit study of Cercidiphyllum..................... 16 Figure 6: Growth habit and bark and leaf detail of Betula lenta.................................... 18 Figure 7: Detail of Staphylea, including leaves, flowers, and growth habits at various levels of maturity.............................................................................................. 20 Figure 8: Detail sketch of V. lanata................................................................................. 21 Figure 9: Leaf and growth habit sketch of Polypodium appalachianum......................... 22 Figure 10: Tyto sp. profile, face, and inner and outer wing color sketch........................ 23 Figure 11: Skeleton and body outline sketch of P. bristoli.............................................. 24 Figure 12: Color tests for Pristinailurus bristoli............................................................. 26 Figure 13: Skeleton and body outline sketch of T. polkensis........................................... 27 Figure 14: Juvenile and adult coloration sketches of T. polkensis.................................. 28 Figure 15: Skeletal reconstruction sketch of Plionarctos................................................ 29 Figure 16: Color tests for Plionarctos............................................................................. 30 Figure 17: Initial composition sketch (left) and shaded version (right).......................... 32 Figure 18: Second composition sketch (left) and the same sketch shaded (right)........... 32 Figure 19: Third composition sketch (top left), minor tree placement edits to create balance (top right), and color test (bottom)........................................ 33 vii Figure 20: Process of painting Quercus sp. (oak tree), showing application of texture to initial shadow and highlight figure (left) and final bark texture (right)................................................................................................. 35 Figure 21: Oak brush (left, black shape) and example of its usage (right)..................... 36 Figure 22: Progression of steps in painting Plionarctos, including polished sketch (top left), base color and beginning of highlights (top right), completion of majority of painting (bottom left), and final lighting and detail (bottom right)................................................................................ 37 Figure 23: Work in progress detail of Plionarctos’s nose and muzzle........................... 38 viii INTRODUCTION The night is quiet aside from the unending murmur of rain. A convoy of jeeps sit motionless, their fluorescent green flanks a jarring contrast to the mud that pools around their tires. The camera pans to cup of water on one of their dashboards, where rhythmic ripples portend the approach of something enormous. Within moments it becomes apparent to whom those footfalls belong, as the metallic twang of snapping cables gives way to telltale roar of a monster that would haunt the nightmares of kids – and parents alike – for years. Steven Spielberg’s 1993 film Jurassic Park would go on to become one of the most iconic films in American sci-fi cinema. Although Michael Crichton’s novels as a rule need no help in building suspense or driving home their unnerving plausibility, the visceral horror lent to his story by the masterful use of animatronics and CGI in Spielberg’s films is undeniable. So successful, in fact, were those reconstructions of extinct creatures, that entire generations now picture Spielberg’s gaunt, draconic T. rex whenever the subject of dinosaurs is broached. In the public consciousness, dinosaurs remain scaly, cold-blooded reptiles. However, researchers continue to discover evidence to the contrary. The astounding discovery of the fossilized Archaeopteryx painted a picture to the world of an extensively feathered, birdlike dinosaur. But Archaeopteryx was miniscule compared to the likes of dinosaurs that dominate popular culture. Its small size made it easy to picture as something that could be soft and feathered. It is harder to imagine, however, something as big as T. rex being covered in a layer of fluff. Except, we’ve discovered almost exactly that. Dubbed Yutyrannus huali, the fossil find revealed a massive, carnivorous, tyrannosaur-like dinosaur with “long filamentous feathers, [a discovery which provides] direct evidence for the presence of extensively feathered gigantic dinosaurs” (Cheng et al., 2012). Even
Recommended publications
  • A Partial Short-Faced Bear Skeleton from an Ozark Cave with Comments on the Paleobiology of the Species
    Blaine W. Schubert and James E. Kaufmann - A partial short-faced bear skeleton from an Ozark cave with comments on the paleobiology of the species. Journal of Cave and Karst Studies 65(2): 101-110. A PARTIAL SHORT-FACED BEAR SKELETON FROM AN OZARK CAVE WITH COMMENTS ON THE PALEOBIOLOGY OF THE SPECIES BLAINE W. SCHUBERT Environmental Dynamics, 113 Ozark Hall, University of Arkansas, Fayetteville, AR 72701, and Geology Section, Research and Collections, Illinois State Museum, Springfield, IL 62703 USA JAMES E. KAUFMANN Department of Geology and Geophysics, University of Missouri-Rolla, Rolla, MO 65409 USA Portions of an extinct giant short-faced bear, Arctodus simus, were recovered from a remote area with- in an Ozark cave, herein named Big Bear Cave. The partially articulated skeleton was found in banded silt and clay sediments near a small entrenched stream. The sediment covered and preserved skeletal ele- ments of low vertical relief (e.g., feet) in articulation. Examination of a thin layer of manganese and clay under and adjacent to some skeletal remains revealed fossilized hair. The manganese in this layer is con- sidered to be a by-product of microorganisms feeding on the bear carcass. Although the skeleton was incomplete, the recovered material represents one of the more complete skeletons for this species. The stage of epiphyseal fusion in the skeleton indicates an osteologically immature individual. The specimen is considered to be a female because measurements of teeth and fused postcranial elements lie at the small end of the size range for A. simus. Like all other bears, the giant short-faced bear is sexually dimorphic.
    [Show full text]
  • GFS Fungal Remains from Late Neogene Deposits at the Gray
    GFS Mycosphere 9(5): 1014–1024 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/5/5 Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA Worobiec G1, Worobiec E1 and Liu YC2 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland 2 Department of Biological Sciences and Office of Research & Sponsored Projects, California State University, Fullerton, CA 92831, U.S.A. Worobiec G, Worobiec E, Liu YC 2018 – Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA. Mycosphere 9(5), 1014–1024, Doi 10.5943/mycosphere/9/5/5 Abstract Interesting fungal remains were encountered during palynological investigation of the Neogene deposits at the Gray Fossil Site, Washington County, Tennessee, USA. Both Cephalothecoidomyces neogenicus and Trichothyrites cf. padappakarensis are new for the Neogene of North America, while remains of cephalothecoid fungus Cephalothecoidomyces neogenicus G. Worobiec, Neumann & E. Worobiec, fragments of mantle tissue of mycorrhizal Cenococcum and sporocarp of epiphyllous Trichothyrites cf. padappakarensis (Jain & Gupta) Kalgutkar & Jansonius were reported. Remains of mantle tissue of Cenococcum for the fossil state are reported for the first time. The presence of Cephalothecoidomyces, Trichothyrites, and other fungal remains previously reported from the Gray Fossil Site suggest warm and humid palaeoclimatic conditions in the southeast USA during the late Neogene, which is in accordance with data previously obtained from other palaeontological analyses at the Gray Fossil Site. Key words – Cephalothecoid fungus – Epiphyllous fungus – Miocene/Pliocene – Mycorrhizal fungus – North America – palaeoecology – taxonomy Introduction Fungal organic remains, usually fungal spores and dispersed sporocarps, are frequently found in a routine palynological investigation (Elsik 1996).
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • NYFA Newsletter
    NYFA Newsletter New York Flora Association of the New York State Museum Institute Vol. 8. No. 1 Richard S. Mitchell, Editor April, 1997 New York State Museum ADDRESS ALL CORRESPONDENCE TO NYFA, 3140 CEC, ALBANY, NY 12230 - DUES $10 PER YEAR A New Fern Hot Spot in a Cool Clime When we joined NYF A later in 1994, we learned of this by Brian and Eileen Keelan contest and its results in the back issues of the newsletter, In the December, 1992 NYFA Newsletter, Frank and wondered whether any site in the acidic, largely Knight listed 25 species of fems found in Joralemon granitic Adirondacks could support fem diversity even Park, Albany Co., and suggested that it would be approaching that of lowland limestone areas such as interesting to look for other ~mall areas with even higher Joralemon Park and Clark Reservation. In. 19~5 w-:> b~ 6~n =- sur'.''=Y of ua~cubr p!::!lts in the Dick Mitchell announced a formal contest to find the Moose River Plains and vicinity, southeast of Inlet, most fem species within a one mile diameter circular area Hamilton Co., NY, in the southwest Adirondacks. Our within the state. In the NYFA Newsletter of Feb. 1994, study area, which would fit in a 6-mile radius, lies mostly Joseph McMullen, Bernard Carr and Diane Wheelock between 1700 and 2100 feet in elevation, although there reported 26 species from the lovely Clark Reservation, are a few higher areas with difficult access. The study Onondaga Co., and took the prize in the contest. area is primarily maple-beech forest, also encompassing coniferous forest, sandy plains and various acidic lakes, creeks, marshes and boggy areas.
    [Show full text]
  • New Records of Colubrids from the Late Hemphillian Gray Fossil Site of Northeastern Tennessee Derek J
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2016 New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee Derek J. Jurestovsky East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Geology Commons, and the Paleontology Commons Recommended Citation Jurestovsky, Derek J., "New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee" (2016). Electronic Theses and Dissertations. Paper 3030. https://dc.etsu.edu/etd/3030 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee A thesis presented to the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences by Derek Jurestovsky May 2016 Dr. Jim I. Mead, Chair Dr. Steven C. Wallace Dr. Blaine W. Schubert Keywords: Colubridae, Gray Fossil Site, Hemphillian, Miocene, Natricinae, Serpentes ABSTRACT New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee by Derek Jurestovsky The Gray Fossil Site is a rich Hemphillian (North American Land Mammal Age) locality located in northeastern Tennessee which has produced tens-of-thousands of fossils of multiple taxa including hundreds of individual snake skeletal remains.
    [Show full text]
  • Spring 2010 - 29 President’S Message
    Foundation THE HARDY FERN FOUNDATION P.O. Box 3797 Federal Way, WA 98063-3797 Web site: www.hardyfernfoundation.org Revised Edition, due to a software issue some of the graphics printed improperly. Our apologies - Impression Printing The Hardy Fern Foundation was founded in 1989 to establish a comprehen¬ sive collection of the world’s hardy ferns for display, testing, evaluation, public education and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and ornamental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corporate Headquarters, in Federal Way, Washington. Satellite fern gardens are at the Birmingham Botanical Gardens, Birmingham, Alabama, California State University at Sacramento, California, Coastal Maine Botanical Garden, Boothbay , Maine. Dallas Arboretum, Dallas, Texas, Denver Botanic Gardens, Denver, Colorado, Georgeson Botanical Garden, University of Alaska, Fairbanks, Alaska, Harry R Leu Garden, Orlando, Florida, Inniswood Metro Gardens, Columbus, Ohio, New York Botanical Garden, Bronx, New York, and Strybing Arboretum, San Francisco, California. The fern display gardens are at Bainbridge Island Library. Bainbridge Island, WA, Bellevue Botanical Garden, Bellevue, WA, Lakewold, Tacoma, Washington, Lotusland, Santa Barbara, California, Les Jardins de Metis, Quebec, Canada, Rotary Gardens, Janesville, Wl, and Whitehall Historic Home and Garden, Louisville, KY. Hardy Fern Foundation members participate in a spore exchange, receive a quarterly newsletter and have first access to ferns as they are ready for distribution. Cover design by Willanna Bradner HARDY FERN FOUNDATION QUARTERLY THE HARDY FERN FOUNDATION QUARTERLY Volume 20 Editor- Sue Olsen ISSN 154-5517 President’s Message Patrick Kennar Discovery and Development of the Polystichum setiferum cv.
    [Show full text]
  • Solidago 19(2), June 2018 to Exist and Flourish Where It Occurs
    Solidago Newsletter of the Founded in 1997. Finger Lakes Native Plant Society Logo art of Tall Goldenrod, Solidago altissima, by Nat Cleavitt, 2006. Volume 19, No. 2 June 2018 Local Flora Eupatorium serotinum – Have You Seen This Plant? (And What To Do If You Do See It! ) by Rosemarie Parker, with lots of input from 1 Photo by Arieh Tal Arieh Tal, David Werier, and Mike Hough HEN I NOTICED A DIFFERENT-LOOKING PLANT IN MY “MEA- DOW” LAST YEAR, and asked for help with identification, I inadvertently kicked off an interesting dialog. In the end, I am hoping that some readers will look out for this plant, and help document where it is found within New York State. ARIEH TAL recognized my Mystery Plant images immediately: “Your plant is Eupatorium serotinum (Late Thoroughwort) [1]. It is rare in central N. Y. It is present in a few of the easternmost counties of the state. How it got here is unknown. Wiegand and Eames didn't even list it in their Flora of the Cayuga Lake Basin (1926). Obviously, birds, squirrels, and deer didn't spread the species all the way to [Tompkins Co., N.Y.] on their fur/feathers. I collected the first and only [Tompkins County] specimen of it last year, along the railroad tracks south of Cecil Malone Drive in Ithaca. I went over there earlier in the season this year and found that the entire area around where the plants were found was sprayed and everything was killed. Perhaps some seeds germinated this summer and reestablished the population.” I asked a few experts about the advisability of collecting seed for the FLNPS seed exchange, and got mixed results.
    [Show full text]
  • Late Miocene Tapirus(Mammalia
    Bull. Fla. Mus. Nat. Hist. (2005) 45(4): 465-494 465 LATE MIOCENE TAPIRUS (MAMMALIA, PERISSODACTYLA) FROM FLORIDA, WITH DESCRIPTION OF A NEW SPECIES, TAPIRUS WEBBI Richard C. Hulbert Jr.1 Tapirus webbi n. sp. is a relatively large tapir from north-central Florida with a chronologic range of very late Clarendonian (Cl3) to very early Hemphillian (Hh1), or ca. 9.5 to 7.5 Ma. It is about the size of extant Tapirus indicus but with longer limbs. Tapirus webbi differs from Tapirus johnsoni (Cl3 of Nebraska) by its larger size, relatively shorter diastema, thicker nasal, and better developed transverse lophs on premolars. Tapirus webbi is more similar to Tapirus simpsoni from the late early Hemphillian (Hh2, ca. 7 Ma) of Nebraska, but differs in having narrower upper premolars and weaker transverse lophs on P1 and P2. Tapirus webbi differs from North American Plio-Pleistocene species such as Tapirus veroensis and Tapirus haysii in its polygonal (not triangu- lar) interparietal, spicular posterior lacrimal process, relatively narrow P2-M3, and lack of an extensive meatal diverticulum fossa on the dorsal surface of the nasal. In Florida, Hh2 Tapirus is known only from relatively incomplete specimens, but at least two species are represented, both of significantly smaller size than Tapirus webbi or Tapirus simpsoni. One appears to be the dwarf Tapirus polkensis (Olsen), previously known from the very late Hemphillian (Hh4) in Florida and the Hemphillian of Tennessee (referred specimens from Nebraska need to be reexamined). Previous interpretations that the age of T. polkensis is middle Miocene are incorrect; its chronologic range in Florida is Hh2 to Hh4 based on direct association with biochronologic indicator taxa such as Neohipparion eurystyle, Dinohippus mexicanus and Agriotherium schneideri.
    [Show full text]
  • First Mio-Pliocene Salamander Fossil Assemblage from the Southern Appalachians
    Palaeontologia Electronica http://palaeo-electronica.org First Mio-Pliocene salamander fossil assemblage from the southern Appalachians Grant S. Boardman and Blaine W. Schubert ABSTRACT The Gray Fossil Site (GFS) of northeastern Tennessee has yielded a diverse sala- mander fossil assemblage for the southern Appalachian Mio-Pliocene. This assem- blage includes at least five taxa (Ambsytoma sp.; Plethodon sp., Spelerpinae, gen. et sp. indet., Desmognathus sp.; and Notophthalmus sp.) from three families (Ambystom- atidae, Plethodontidae, and Salamandridae, respectively). All taxa are present in the area today and support a woodland-pond interpretation of the site. Reported speci- mens represent the earliest record of their families in the Appalachian Mountains (and the earliest record of Plethodontidae and Ambystomatidae east of the Mississippi River); with the Notophthalmus sp. vertebrae being the only Mio-Pliocene body fossil known for the Salamandridae in North America. The Desmognathus sp. specimens may help shed light on the evolutionary origins of the genus Desmognathus, which pur- portedly has its roots in this region during the Mio-Pliocene. Grant S. Boardman. Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA and Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, Tennessee, 37614, USA [email protected] Blaine W. Schubert. Department of Geosciences and Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, Tennessee, 37614, USA [email protected] KEYWORDS: Mio-Pliocene; Gray Fossil Site; Caudata; Appalachian; salamanders INTRODUCTION of Texas (Parmley 1989) and A. kansense, a neo- tenic form, from Edson Quarry, Kansas (Holman Three salamander families are reported from 2006).
    [Show full text]
  • Intercontinental Migration of Large Mammalian Carnivores: Earliest Occurrence of the Old World Beardog Amphicyon (Carnivora, Amphicyonidae) in North America Robert M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in the Earth and Atmospheric Sciences Earth and Atmospheric Sciences, Department of 2003 Intercontinental Migration of Large Mammalian Carnivores: Earliest Occurrence of the Old World Beardog Amphicyon (Carnivora, Amphicyonidae) in North America Robert M. Hunt Jr. University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Hunt, Robert M. Jr., "Intercontinental Migration of Large Mammalian Carnivores: Earliest Occurrence of the Old World Beardog Amphicyon (Carnivora, Amphicyonidae) in North America" (2003). Papers in the Earth and Atmospheric Sciences. 545. https://digitalcommons.unl.edu/geosciencefacpub/545 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Chapter 4 Intercontinental Migration of Large Mammalian Carnivores: Earliest Occurrence of the Old World Beardog Amphicyon (Carnivora, Amphicyonidae) in North America ROBERT M. HUNT, JR.1 ABSTRACT North American amphicyonid carnivorans are prominent members of the mid-Cenozoic terres- trial carnivore community during the late Eocene to late Miocene (Duchesnean to Clarendonian). Species range in size from ,5kgto.200 kg. Among the largest amphicyonids are Old and New World species of the genus Amphicyon: A. giganteus in Europe (18±;15? Ma) and Africa, A. ingens in North America (15.9±;14.2 Ma). Amphicyon ®rst appears in the Oligocene of western Europe, surviving there until the late Miocene.
    [Show full text]
  • Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments
    U.S. Fish & Wildlife Service Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments Contributors: Printing was made possible through the generous funding from Adkins Arboretum; Baltimore County Department of Environmental Protection and Resource Management; Chesapeake Bay Trust; Irvine Natural Science Center; Maryland Native Plant Society; National Fish and Wildlife Foundation; The Nature Conservancy, Maryland-DC Chapter; U.S. Department of Agriculture, Natural Resource Conservation Service, Cape May Plant Materials Center; and U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Reviewers: species included in this guide were reviewed by the following authorities regarding native range, appropriateness for use in individual states, and availability in the nursery trade: Rodney Bartgis, The Nature Conservancy, West Virginia. Ashton Berdine, The Nature Conservancy, West Virginia. Chris Firestone, Bureau of Forestry, Pennsylvania Department of Conservation and Natural Resources. Chris Frye, State Botanist, Wildlife and Heritage Service, Maryland Department of Natural Resources. Mike Hollins, Sylva Native Nursery & Seed Co. William A. McAvoy, Delaware Natural Heritage Program, Delaware Department of Natural Resources and Environmental Control. Mary Pat Rowan, Landscape Architect, Maryland Native Plant Society. Rod Simmons, Maryland Native Plant Society. Alison Sterling, Wildlife Resources Section, West Virginia Department of Natural Resources. Troy Weldy, Associate Botanist, New York Natural Heritage Program, New York State Department of Environmental Conservation. Graphic Design and Layout: Laurie Hewitt, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Special thanks to: Volunteer Carole Jelich; Christopher F. Miller, Regional Plant Materials Specialist, Natural Resource Conservation Service; and R. Harrison Weigand, Maryland Department of Natural Resources, Maryland Wildlife and Heritage Division for assistance throughout this project.
    [Show full text]