Hypoxylon Canker
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
Diseases of Trees in the Great Plains
United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here. -
Tree Health Issues Abiotic Tree Problems, Tree Diseases, & Stress Factors
Tree Health Issues Abiotic Tree Problems, Tree Diseases, & Stress Factors Master Gardener Tree Care Specialist Training March 14, 2019 Garland, TX David Appel Dept. of Plant Pathology and Microbiology Texas A&M University, College Station, TX 77843 Presentation Outline • Attributes of a healthy tree, • What can go wrong? • The threat of drought to good tree health, • Tree diseases associated with Declines, • Diseases of non-stressed trees, I. Tree Physiology and Resource Allocation Photosynthesis CO +H O+sunlight O + fixed carbon (sugars) Sugars 2 2 2 Resources, in the form of Sugars sugars and starches, needed for growth, reproduction, and host defense. Sugars Sugars Sugars Sugars Sugars Sugars Cellular Respiration Water is a building material Fixed carbon + O CO +H O + biological energy in photosynthesis, a reaction 2 2 2 medium for cell chemistry and a transport medium. Starches Starches II. Tree Physiology and Water Transport Nutrients and Growth Regulators Transpiration from foliage is the driving force of water Sugars transport. Auxinxs Growth regulators produced at apical Auxins Auxins meristems to insure proper form through branching patterns, types of foliage, etc. Auxins Auxins Sugars Absorption of water from soil is necessary to supply demand of the tree in response to transpiration. Macro- and micro nutrients Starches absorbed with water N, P, K, etc. What can go wrong? Tree diseases in Texas • Herbicides • Drought, other abiotics • Bacterial wetwood • Declines (numerous species)Abiotic • Dutch elm disease • Black spot (elm) -
Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists. -
A Taxonomic and Phylogenetic Investigation of Conifer Endophytes
A Taxonomic and Phylogenetic Investigation of Conifer Endophytes of Eastern Canada by Joey B. Tanney A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2016 Abstract Research interest in endophytic fungi has increased substantially, yet is the current research paradigm capable of addressing fundamental taxonomic questions? More than half of the ca. 30,000 endophyte sequences accessioned into GenBank are unidentified to the family rank and this disparity grows every year. The problems with identifying endophytes are a lack of taxonomically informative morphological characters in vitro and a paucity of relevant DNA reference sequences. A study involving ca. 2,600 Picea endophyte cultures from the Acadian Forest Region in Eastern Canada sought to address these taxonomic issues with a combined approach involving molecular methods, classical taxonomy, and field work. It was hypothesized that foliar endophytes have complex life histories involving saprotrophic reproductive stages associated with the host foliage, alternative host substrates, or alternate hosts. Based on inferences from phylogenetic data, new field collections or herbarium specimens were sought to connect unidentifiable endophytes with identifiable material. Approximately 40 endophytes were connected with identifiable material, which resulted in the description of four novel genera and 21 novel species and substantial progress in endophyte taxonomy. Endophytes were connected with saprotrophs and exhibited reproductive stages on non-foliar tissues or different hosts. These results provide support for the foraging ascomycete hypothesis, postulating that for some fungi endophytism is a secondary life history strategy that facilitates persistence and dispersal in the absence of a primary host. -
Fungal Dynamics Underlying Tree Health
1 Fungal Dynamics Underlying Tree Health with Michael Phillips author of The Holistic Orchard and The Herbalist’s Way Fungal disease of plants involves an opportunistic organism getting a leg up on the immunity defense of that plant and what should be full competitive colonization by beneficial fungi and bacteria on that plant. Holistic understanding leads the organic grower to a whole new understanding of how to preempt diseases using nutrient sprays and diverse microbe stewardship. Come learn from the “herbal orchardist” how to build health and happiness for our tree friends. This wild weaving of holistic tree care involves fermented herbal teas to overcome disease, earth poultices to ward off blights, mulch considerations, and a biological product review. Many trees offer medicinal gifts. and it’s high time we returned the favor! Stewarding Tree Health Nutrient balance The mycelium marketplace (see http://vimeo.com/83697133) Rumen of the soil Healthy Plant Metabolism Photosynthesis efficiency Protein synthesis Fats, essential oils, and phenolics Understanding Disease Progression Pathogen ‘staging areas’ Fungal timing Bacterial opportunists Biofilm protection mechanisms Changing the Paradigm Green immune function The Arboreal Food Web Plant probiotics Fatty acid nutrition Ecological Landscape Alliance 2014 www.GrowOrganicApples.com 2 Inducing Systemic Resistance to Disease The immune response of plants • Oxidative burst • Salicylic acid build-up • Phytoalexins (terpenes and isoflavanoids) Boosting disease resistance with plant-based -
Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
(topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota. -
A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA. -
Waterwise Tree Care
WaterwiseWaterwise TreeTree CareCare Help trees survive drought: Tips for inland Southern California Water, or the lack of it, should never be far from the minds of southern Californians. Whether it is due to drought or climate change, water is rapidly becoming a more limited and expensive resource. Like water, trees are also a precious resource. Trees can suffer and decline if they are in landscapes where watering is decreased due to shortage or drought. During those periods, you may be asked to cut back on watering your yard. Trees should be given a higher priority over lawns and shrubs, because trees take many years to mature. Grass and small shrubs are relatively quick to replace. Make sure you keep your trees alive and healthy by providing adequate water. Urban trees provide many benefits worth preserving, including shade, energy savings, improved air quality, higher property values, Photo by nancy SaPPington wildlife nesting sites and food sources, How can you tell if a tree is under stress? improved quality of life, plus control of • Wilting, curling, graying or yellowing of leaves storm water, erosion and climate extremes. and browning of leaf edges According to research by the USDA Forest • Dieback of twigs and branches Service* an average tree in the Inland Empire • Lack of new growth and shoot lengthening in provides $3880 of benefits. spring *Trees Pay Us Back by the USDA Forest Service Pacific Southwest • Disease and/or insect infestation. Research Station: http://www.fs.fed.us/psw/programs/uesd/uep/ products/18/804uesd_uep_tpub_InlandEmpire.pdf Did you know? Trees that are stressed may curl their leaves up or down to reduce the amount of solar radiation they absorb. -
Tree Biology, and CODIT
Texas Chapter International Society of Arboriculture Tree Biology, and CODIT ISA‐T Oak Wilt Qualification Training May 23, 2019 Weatherford, TX David Appel Dept. of Plant Pathology and Microbiology Texas A&M University, College Station, TX 77843 1 What is a Tree? Two Perspectives Old Plants at least 6 m (20 ft) high at maturity and, more importantly, having secondary branches supported on a single main stem or trunk (see shrub for comparison). 2 What is a tree? New Compartmented, generating system that survives, when injured, by forming new barriers and strengthening old Dr. Alex Shigo barriers that resist the spread of microorganisms, and that protect the structural, transport and storage systems. 3 2019 Oak Wilt Qualification Course and Assessment Manual 1 Texas Chapter International Society of Arboriculture Tree Biology and Response to Injury and Disease • Important to understand how a tree functions, • Understanding certain aspects of tree anatomy help in analyzing tree health, • Also gives clues to the various treatment options and their limitations. 4 I. Tree Physiology and Resource Allocation Photosynthesis CO +H O+sunlight O + fixed carbon (sugars) Sugars 2 2 2 Resources, in the form of Sugars sugars and starches, needed for growth, reproduction, and host defense. Sugars Sugars Sugars Sugars Sugars Sugars Cellular Respiration Water is a building material Fixed carbon + O CO +H O + biological energy in photosynthesis, a reaction 2 2 2 medium for cell chemistry and a transport medium. Starches Starches 5 II. Tree Physiology and Water Transport Nutrients and Growth Regulators Transpiration from foliage is the driving force of water Sugars transport. -
Heart Rot and Root Rot in Tropical Acacia Plantations
Heart rot and root rot in tropical Acacia plantations Proceedings of a workshop held in Yogyakarta, Indonesia, 7–9 February 2006 Editors: Karina Potter, Anto Rimbawanto and Chris Beadle Australian Centre for International Agricultural Research Canberra 2006 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS SERIES This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 Potter, K., Rimbawanto, A. and Beadle, C., ed., 2006. Heart rot and root rot in tropical Acacia plantations. Proceedings of a workshop held in Yogyakarta, Indonesia, 7–9 February 2006. Canberra, ACIAR Proceedings No. 124, 92p. ISBN 1 86320 507 1 print ISBN 1 86320 510 1 online Cover design: Design One Solutions Technical editing and desktop operations: Clarus Design Pty Ltd Printing: Elect Printing From: Potter, K., Rimbawanto, A. and Beadle, C., ed., 2006. Heart rot and root rot in tropical Acacia plantations. Proceedings of a workshop held in Yogyakarta, Indonesia, 7–9 February 2006. Canberra, ACIAR Proceedings No. 124. Foreword Fast-growing hardwood plantations are increasingly important to the economies of many countries around the Pacific rim, including Australia, Indonesia and the Philippines. -
Nutrient and Drought Effects on Biomass Allocation, Phytochemistry, and Ectomycorrhizae of Birch
NUTRIENT AND DROUGHT EFFECTS ON BIOMASS ALLOCATION, PHYTOCHEMISTRY, AND ECTOMYCORRHIZAE OF BIRCH DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nathan Michael Kleczewski M.S. * * * * * The Ohio State University 2008 Dissertation Committee Associate Professor Pierluigi Bonello, Adviser Professor Daniel Herms Approved by: Associate Professor Landon Rhodes Professor Ralph Boerner ____________________________ Adviser Plant Pathology Graduate Program i ii ABSTRACT Trees acclimate to environmental variation by altering their growth patterns, internal chemistry, and mycorrhizal associations. Growth, chemical synthesis, and mycorrhizae simultaneously compete for limiting resources, such as nitrogen and water, and their interactions can significantly influence tree defenses against biotic and abiotic stress. The Optimal Allocation, Growth-Differentiation Balance, and Treseder and Allen’s models have been proposed, among others, to explain and predict patterns of tree and mycorrhizal responses to soil nutrient availability. To date, these models have been tested in isolation. This dissertation describes how these three models can be integrated into a single model that can explain patterns of tree acclimation over a nutrient availability gradient, the Mycorrhiza-Defense Allocation Synthesis (MyDAS). The MyDAS model was derived from greenhouse-based experiments, but was then tested and partly validated under conditions that more closely mimic field conditions. Testing showed that the initial patterns of acclimation to nutrient availability can have strong impacts on the mechanisms used by trees to respond to drought. An important corollary of this research is that fertilization and mycorrhizal inoculation, which are routinely used as a means to improve tree establishment and health in managed settings, can be irrelevant or even counterproductive to enhancing tree tolerance to biotic and abiotic stress.