Nutrient and Drought Effects on Biomass Allocation, Phytochemistry, and Ectomycorrhizae of Birch

Total Page:16

File Type:pdf, Size:1020Kb

Nutrient and Drought Effects on Biomass Allocation, Phytochemistry, and Ectomycorrhizae of Birch NUTRIENT AND DROUGHT EFFECTS ON BIOMASS ALLOCATION, PHYTOCHEMISTRY, AND ECTOMYCORRHIZAE OF BIRCH DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nathan Michael Kleczewski M.S. * * * * * The Ohio State University 2008 Dissertation Committee Associate Professor Pierluigi Bonello, Adviser Professor Daniel Herms Approved by: Associate Professor Landon Rhodes Professor Ralph Boerner ____________________________ Adviser Plant Pathology Graduate Program i ii ABSTRACT Trees acclimate to environmental variation by altering their growth patterns, internal chemistry, and mycorrhizal associations. Growth, chemical synthesis, and mycorrhizae simultaneously compete for limiting resources, such as nitrogen and water, and their interactions can significantly influence tree defenses against biotic and abiotic stress. The Optimal Allocation, Growth-Differentiation Balance, and Treseder and Allen’s models have been proposed, among others, to explain and predict patterns of tree and mycorrhizal responses to soil nutrient availability. To date, these models have been tested in isolation. This dissertation describes how these three models can be integrated into a single model that can explain patterns of tree acclimation over a nutrient availability gradient, the Mycorrhiza-Defense Allocation Synthesis (MyDAS). The MyDAS model was derived from greenhouse-based experiments, but was then tested and partly validated under conditions that more closely mimic field conditions. Testing showed that the initial patterns of acclimation to nutrient availability can have strong impacts on the mechanisms used by trees to respond to drought. An important corollary of this research is that fertilization and mycorrhizal inoculation, which are routinely used as a means to improve tree establishment and health in managed settings, can be irrelevant or even counterproductive to enhancing tree tolerance to biotic and abiotic stress. iii Aside from MyDAS, key outcomes of this research were: (1) lignin deposition likely plays a role in regulating mycorrhizal colonization; (2) acclimation to nutrient availability can significantly affect the nature of tree responses to drought; (3) initial soil type can influence tree growth more than fertilization and mycorrhizal inoculation on plant growth and health; and (4) commercial mycorrhizal products may not benefit trees in managed environments, even when these products are shown to be viable. I believe that these outcomes will open up new areas of investigation on the ecology of woody plants, from natural environments to urban landscape settings. Ultimately, a better understanding of acclimation processes will allow the development of more rational practices to alleviate biotic and abiotic stress in managed tree systems. iv Dedicated to my grandparents Julia, Antone, and Chester. I will see you again. v ACKNOWLEDGEMENTS I would like to express my gratitude to my advisor Enrico Bonello, who in addition to helping me to develop as a scientist and writer, also served as a second father to me while at The Ohio State University. I would also like to thank Dan Herms, who also played a large role in my development as a person and scientist, and always found a way to find something positive out of what I interpreted as a disaster. In addition, I wish to thank my committee members, Dr. Landon Rhodes and Dr. Ralph Boerner who provided insightful comments on my work and progress and were always willing to help me in my efforts. Recognition is due to the many members of the Herms and Bonello labs, particularly Duan Wang and Bryant Chambers, who went above and beyond to assist me with setting up and conducting the many experiments presented in this dissertation. In addition, David Snodgrass and Jim Vent from the Department of Horticultural Science were instrumental in setting up the greenhouse and Cravo studies. I would like to thank Dr. Mike Boehm and the Department of Plant Pathology at the Ohio State University for providing me with the tools necessary to be a well-rounded teacher and researcher. Lastly, I would like to send a special thanks to my friends Chris Wallis and Justin Whitehill, whose support, good humor, and tolerance of my banter made my time at Ohio State a fun and memorable experience. Certainly nothing I have ever done would be possible without the unconditional love and support of my parents and family. vi VITA Nathan Michael Kleczewski November 23rd 1980………………………………. Born-Sheboygan Wisconsin 2004……………………………………………….. B.S. Ecological and Organismal Biology. The University of Wisconsin- Oshkosh. Oshkosh, WI 2007. ………………………………………………. M.S. Plant Pathology, The Ohio State University Columbus, OH 2004-2008………………………………………….. Graduate Associate The Ohio State University Columbus, OH FIELDS OF STUDY Major Field: Plant pathology vii TABLE OF CONTENTS Abstract…………………………………..……………………………………………...iii Dedication………………………………...……………………………………………....v Acknowledgements……………………...………………………………………………vi Vita……………………………………………………………………………………....vii List of figures…………………………………………………………………………....xii List of tables…..………………………………………………………………………..xiv Chapters: 1. Introduction General considerations…...…………………………………………………………... 1 The impacts of drought on plant health and productivity…...………………………. .2 The impacts of nutrients on plant health and productivity…………………………... 4 Effects of nitrogen on plant stress tolerance ……………………………...............6 Plant responses to stress ………………………………………………………………7 Relationships between growth variables ………………………………………...........7 Growth patterns and the environment ……………………………………………….12 Plant chemistry, metabolism, and phenotypic plasticity …………………………….16 Primary metabolites ……………………………………………………..............17 Carbohydrates ……………………………………………………………….17 Carbohydrates and drought tolerance …………………………………...19 viii Amino acids …………………………………………………………………20 Amino acids and drought tolerance ……………………………………..20 Secondary metabolites …………………………………………………………..21 Phenolics: A basic overview of their metabolism …………………...............21 Roles of phenolics in plant stress…………………………………………….24 Protection from visible and UV radiation ………………….....................24 Protection against herbivores and pathogens ……………………………26 Relationships between primary and secondary metabolism as influenced by stress ……………………………………………………………………………………27 The Growth Differentiation Balance Hypothesis …………………...............28 Mycorrhizal associations ……………………………………………………………29 Arbuscular-Mycorrhizal fungi …………………………………………..............31 Ectomycorrhizal fungi …………………………………………………………..32 Process of colonization and symbiosis ………………………………………….34 Benefits of mycorrhizae …………………………………………………………37 Regulation of mycorrhizae ………………………………………………………38 Aims and objectives of this project ………………………………………………….42 2. Integrating models of phenotypic plasticity, plant defense, and mycorrhizal regulation. A case study with paper birch (Betula papyrifera) Introduction ………………………………………………………………………….44 Materials and methods ………………………………………………………………48 Plant material ……………………………………………………………………48 Experimental design ……………………………………………………………..49 Harvesting and sample preparation ……………………………………...............52 Growth and biomass analysis ……………………………………………………53 Chemical analysis: Sugars and starch …………………………………...............53 Chemical analysis: Phenolics ……………………………………………………54 Identification of EM fungi ………………………………………………………54 Statistical analysis ……………………………………………………………….55 Results ……………………………………………………………………………….56 Effects of soil type, fertilization, and drought on plant growth patterns ……………………………………………………………………………............56 Effects of soil type, fertilization, and drought on plant chemistry ………………61 Effects of soil type, fertilization, and drought on EM …………………………..65 ix Discussion …………………………………………………………………………...67 3. A test of the MyDAS model with river birch (Betula nigra) Introduction ………………………………………………………………………….76 Materials and methods ………………………………………………………………78 Plant material ……………………………………………………………………78 Experimental details ……………………………………………………………..79 Compound identification ………………………………………………..............83 Estimation of EM colonization and identification of EM fungi ………...............84 Statistical analysis ……………………………………………………………….84 Results ……………………………………………………………………………….85 Growth, water potential, and EM colonization ………………………………….85 Phytochemistry ………………………………………………………………….94 Total and individual amino acids ………………………………………………108 Discussion ………………………………………………………………………….117 Relationships between plant growth and drought tolerance …………...............119 Effects of fungicide …………………………………………………………….121 4. The impacts of urban tree management practices on growth, physiology, herbivore, and ectomycorrhizae of paper birch (Betula papyrifera) Introduction ..………………………………………………………………………123 Materials and methods ……...……………………………………………………...125 Experiment 1: Effects of EM inoculation on growth of paper birch under controlled conditions ………….………………………………………………..125 Plant material and growing conditions …………..……………………..….125 Treatments ………………………………………………………………….126 Experiment 2: Effects of EM inoculation and mineral fertilization on growth, chemistry, and defoliation of paper birch growing in field-simulated urban soils …………………………………………………………………………………..127 Plant material ………………………………………………………………127 Treatments …………………………………………………………………128 Measurements of growth …………………………………………..............130 Assessment of EM colonization ……………………………………………130 x Assessment of
Recommended publications
  • Does Allelopathy Have a Role in the Ecology of Chenopodium Murale?
    Ann. Bot. Fennici 41: 37–45 ISSN 0003-3847 Helsinki 27 February 2004 © Finnish Zoological and Botanical Publishing Board 2004 Does allelopathy have a role in the ecology of Chenopodium murale? Ahmed A. El-Khatib1, Ahmed K. Hegazy2 & Hanaa K. Galal1 1) Department of Botany, Faculty of Science, 82524 Sohag, Egypt 2) Department of Botany, Faculty of Science, Cairo University, Egypt Received 10 Jan. 2003, revised version received 3 June 2003, accepted 12 June 2003 El-Khatib, A. A., Hegazy, A. K. & Galal, H. K. 2004: Does allelopathy have a role in the ecology of Chenopodium murale? — Ann. Bot. Fennici 41: 37–45. Bioassays on Chenopodium murale demonstrated that root and shoot aqueous extracts reduced the seed germination, seedling establishment, plant growth and metabolite production of four target species. Leaf area and dry matter production showed a decreasing trend in response to the different treatments. Similar effects were found for pigment, carbohydrate and protein contents. In general, inhibition percentage was a function of extract concentration and plant tissue type. Shoot treatment was more strongly inhibitory than root treatment. The target species arranged from the most affected to the least affected were Melilotus indicus–Trifolium alexandrinum–Triticum pyramidal–Lycopersicon esculentum–Cucumis sativus. Key words: allelopathy, Chenopodium murale, ecology, inter-specific competition, phytotoxicity Introduction winter weed and is considered a pest in agro-eco- systems, roadsides etc. Galal (2000) studied the The importance of allelopathy in nature has plant sociological characteristics of a C. murale and attracted ecologists’ attention with the main reported its negative association with many species, goal of using the phenomenon in interpretation even with those with similar ecological require- in many disciplines related to plant community ments.
    [Show full text]
  • Allelopathy; a Brief Review
    Journal of Novel Applied Sciences Available online at www.jnasci.org ©2020 JNAS Journal-2020-9-1/1-12 ISSN 2322-5149 ©2020 JNAS ALLELOPATHY; A BRIEF REVIEW Javed Kamal Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan. Corresponding author: Javed Kamal Email: [email protected] Mobile: 00923046886850 ABSTRACT: Allelopathy is a well known area of active research in ecology. However, its importance in agro-ecology is still underappreciated. This review sets out to address this situation and introduce this new and developing field to a wider research audience and to stimulate new research in it. The review starts with an introduction, followed by discussions of allelochemicals, the role of allelopathy in crop production, Allelopathy related problems in crop production, and Suggestions for future research. It also describes broader research into allelopathy in agriculture and the biosciences, and literature resources on the subject. We hope that it will encourage more scientists to initiate research into this exciting new field. Keywords: Allelopathy, Agro-ecology, Bio-sciences, Crop production, Ecology. INTRODUCTION Allelopathy is a natural phenomenon, defined as: “The inhibition of growth in one species of plants by chemicals produced by another species” Or, more widely: “The biochemical interactions among all types of plants, including microorganisms” The word allelopathy derives from two roots: allelon, meaning “of each other”; and pathos, meaning “to suffer”. The “inhibitory” chemical is released into the environment by one plant, where it then affects the growth and development of its neighbors. All living things need certain resources to live and grow, and plants require sunlight, nutrients, water, and air.
    [Show full text]
  • Allelopathy Be Used to Efficiently Resist the Invasion of Exotic Plants in Subtropical Forests?
    BioInvasions Records (2019) Volume 8, Issue 3: 487–499 CORRECTED PROOF Research Article Can allelopathy be used to efficiently resist the invasion of exotic plants in subtropical forests? Jin Zheng1, Qiao-Jing Ou1, Tai-Jie Zhang2, Wei-Jie Liang1, Bo-Hui Li1 and Chang-Lian Peng1,* 1Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China 2Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China *Corresponding author E-mail: [email protected] Citation: Zheng J, Ou Q-J, Zhang T-J, Liang W-J, Li B-H, Peng C-L (2019) Can Abstract allelopathy be used to efficiently resist the invasion of exotic plants in subtropical Mature subtropical forests can resist the invasion of Mikania micrantha, a notorious forests? BioInvasions Records 8(3): 487– exotic invasive plant, but the underlying mechanism for this resistance is still debated. 499, https://doi.org/10.3391/bir.2019.8.3.03 In this study, we explored whether allelochemicals produced by the dominant Received: 13 March 2019 species in a subtropical forest were sufficient to inhibit the invasion of M. micrantha. Accepted: 3 July 2019 Allelopathic effects of three tree species (Syzygium rehderianum, Cryptocarya concinna and C. chinensis) on the germination and vegetative growth of M. micrantha Published: 12 August 2019 were investigated. The results showed that aqueous extracts from the leaves of all Handling editor: Margarita Arianoutsou tree species had allelopathic inhibitory effects on M.
    [Show full text]
  • ALLELOPATHY in TREES and FORESTS a Selected Bibliography Dr
    ALLELOPATHY IN TREES AND FORESTS A Selected Bibliography Dr. Kim D. Coder, Daniel B. Warnell School of Forest Resources, University of Georgia 4/99 Allelopathy in trees and forests is an important health care issue. Allelopathy is the chemical modification of the site by an individual to enhance interference effectiveness. Allelopathy also in- volves the ecological communications between species which can positively or negatively influence growth, behavior, reproduction, and survival of associated species. To assist people in appreciating the scientific literature on this subject, this selected bibliography was developed. This bibliography is not intended to be all-inclusive of allelopathy research literature, but tries to include every major investigative trail being followed in the last few decades. Older works were not included because they are broadly cited in many current papers. This bibliography cites only those works in English. This bibliography is for assisting professionals interested in allelopathy to quickly identify both original research papers and scientific review articles about allelopathy as related to trees and forests. Ahlgren, CE, and Ahlgren, IF. 1981. Some effects of different forest litters on seed germination and growth. Canadian Journal of Forest Research 11:710-714. al Humaid, AI, and Warrag, MOA. 1998. Allelopathic effects of mesquite (Prosopis juliflora) foliage on seed germination and seedling growth of bermudagrass (Cynodon dactylon). Journal of Arid Environments 38:237-243. Bisla, SS, Nandal, DPS, and Narwal, SS. 1992. Influence of aqueous leaf extracts of eucalyptus and poplar on the germina- tion and seedling growth of winter crops. Proceedings of the First National Symposium on Allelopathy in Agroecosystems, P.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Daily Report 12.09.2013 Lecture Summaries Allelopathy
    Daily Report 12.09.2013 Alena Nostova, Jiří Mastný, Frederick Zittrell Lecture summaries Frederick Zittrell Allelopathy Functions, Release, Interactions and Current Research Approaches (Fernandez) Definition (Inderjit et al., 2011): Suppression of the growth and/or establishment of neighboring plants by chemicals released from a plant or plant parts. → Allelochemicals: Secondary compounds of plant origin that interact with their environment and possess allelopathic activities. Other definitions also include stimulative effects, reciprocal interactions, for example with microorganisms, and autotoxicity. Characteristics of allelochemicals Present in all organs (root, shoot, leave, flower, fruit) Variable in metabolic pathway of production Different ways of release: Volatilization (into the air), leaching (solute into the ground), active exudation and decomposition Variable basis of detrimental effects on growth (enzyme activity, cell division, growth regulator activity, membrane permeability…) Methodology of Allelopathy Research General difficulty: Separation of competition and allelopathic effects. Preliminary studies: Identification and characterization of allelochemicals (chemical properties, metabolical and anatomical derivation, way of release, variability in time…) Common approach: Filter paper bioassays; addition of macerated, presumably allelochemicals containing organs of a donor plant in different developmental stages and concentrations on seedlings of target species → Detection of allelopathic potentiality of respective plant organ in respective plant community Field experiments: Direct addition of suspected substance onto the field 1 Example 1: Experimental demonstration of allelopathic effects of grass on apple seedlings Example 2: Allelopathic impact on secondary succession in Mediterranean plant communities; Bioassay approach 1. Application of needle and root macerates of 10, 5 and 2.5% concentration from Pinus halepensis of 10, 20 and 30y age on seedlings from 2 herb species.
    [Show full text]
  • Allelopathy As an Evolutionarily Stable Strategy
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.04.455130; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 ALLELOPATHY AS AN EVOLUTIONARILY STABLE STRATEGY 2 3 Rachel M. McCoy1,2, Joshua R. Widhalm1,2, and Gordon G. McNickle1,3,* 4 5 1Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA. 6 7 2Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall 8 Drive, West Lafayette, IN 47907, USA. 9 10 3Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West 11 Lafayette, IN 47907, USA. 12 13 *Correspondence: G.G. McNickle, Center for Plant Biology and Department of Botany and Plant 14 Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA. 15 ([email protected]) fax + 1 765 494 0363, tel. +1 765 494 4645 16 17 Running title: Allelopathy as an evolutionarily stable strategy 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.04.455130; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 ABSTRACT 20 In plants, most competition is resource competition, where one plant simply pre-empts the 21 resources away from its neighbours.
    [Show full text]
  • Allelopathic Effect of Morus Alba, Populus Nigra and Euphorbia Helioscopia On
    Pure Appl. Biol., 10(2): 532-538, June, 2021 http://dx.doi.org/10.19045/bspab.2021.100056 Research Article Allelopathic effect of Morus alba, Populus nigra and Euphorbia helioscopia on Brassica campestris Shah Khalid1*, Amreen1, Somaeeya Bibi1, Syeda Asma Taskeen1, Hoor Shumail2 and Syed Inzimam Ul Haq1 1. Department of Botany, Islamia College Peshawar, KPK-Pakistan 2. Department of Microbiology, Women University Mardan, KPK-Pakistan *Corresponding author’s email: [email protected] Citation Shah Khalid, Amreen, Somaeeya Bibi, Syeda Asma Taskeen, Hoor Shumail and Syed Inzimam Ul Haq. Allelopathic effect of Morus alba, Populus nigra and Euphorbia helioscopia on Brassica campestris. Pure and Applied Biology. Vol. 10, Issue 2, pp532-538. http://dx.doi.org/10.19045/bspab.2021.100056 Received: 02/07/2020 Revised: 26/09/2020 Accepted: 03/10/2020 Online First: 20/10/2020 Abstract The current research work investigates the allelopathic potential of leaves of most common plants found in Brassica farms i.e. Morus alba, Populus nigra and Euphorbia helioscopia on seed germination and seedling growth of Brassica campestris. Fresh and dry leaves of M. alba, P. nigra and E. Helioscopia was prepared by soaking fresh chopped leaves and dry leaves in powder form (5g, 10g and 15g) were soaked in 100ml of distilled water for 48hrs and were filtered after 24hrs. The extract of M. alba, P. nigra and E. helioscopia was applied on B. campestris seeds to study its effect on germination percentage, radicle length and plumule length. The data was recorded in triplicates after 72hrs of the incubation period at 26ºC.
    [Show full text]
  • Tree Health Issues Abiotic Tree Problems, Tree Diseases, & Stress Factors
    Tree Health Issues Abiotic Tree Problems, Tree Diseases, & Stress Factors Master Gardener Tree Care Specialist Training March 14, 2019 Garland, TX David Appel Dept. of Plant Pathology and Microbiology Texas A&M University, College Station, TX 77843 Presentation Outline • Attributes of a healthy tree, • What can go wrong? • The threat of drought to good tree health, • Tree diseases associated with Declines, • Diseases of non-stressed trees, I. Tree Physiology and Resource Allocation Photosynthesis CO +H O+sunlight O + fixed carbon (sugars) Sugars 2 2 2 Resources, in the form of Sugars sugars and starches, needed for growth, reproduction, and host defense. Sugars Sugars Sugars Sugars Sugars Sugars Cellular Respiration Water is a building material Fixed carbon + O CO +H O + biological energy in photosynthesis, a reaction 2 2 2 medium for cell chemistry and a transport medium. Starches Starches II. Tree Physiology and Water Transport Nutrients and Growth Regulators Transpiration from foliage is the driving force of water Sugars transport. Auxinxs Growth regulators produced at apical Auxins Auxins meristems to insure proper form through branching patterns, types of foliage, etc. Auxins Auxins Sugars Absorption of water from soil is necessary to supply demand of the tree in response to transpiration. Macro- and micro nutrients Starches absorbed with water N, P, K, etc. What can go wrong? Tree diseases in Texas • Herbicides • Drought, other abiotics • Bacterial wetwood • Declines (numerous species)Abiotic • Dutch elm disease • Black spot (elm)
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • Fungal Dynamics Underlying Tree Health
    1 Fungal Dynamics Underlying Tree Health with Michael Phillips author of The Holistic Orchard and The Herbalist’s Way Fungal disease of plants involves an opportunistic organism getting a leg up on the immunity defense of that plant and what should be full competitive colonization by beneficial fungi and bacteria on that plant. Holistic understanding leads the organic grower to a whole new understanding of how to preempt diseases using nutrient sprays and diverse microbe stewardship. Come learn from the “herbal orchardist” how to build health and happiness for our tree friends. This wild weaving of holistic tree care involves fermented herbal teas to overcome disease, earth poultices to ward off blights, mulch considerations, and a biological product review. Many trees offer medicinal gifts. and it’s high time we returned the favor! Stewarding Tree Health Nutrient balance The mycelium marketplace (see http://vimeo.com/83697133) Rumen of the soil Healthy Plant Metabolism Photosynthesis efficiency Protein synthesis Fats, essential oils, and phenolics Understanding Disease Progression Pathogen ‘staging areas’ Fungal timing Bacterial opportunists Biofilm protection mechanisms Changing the Paradigm Green immune function The Arboreal Food Web Plant probiotics Fatty acid nutrition Ecological Landscape Alliance 2014 www.GrowOrganicApples.com 2 Inducing Systemic Resistance to Disease The immune response of plants • Oxidative burst • Salicylic acid build-up • Phytoalexins (terpenes and isoflavanoids) Boosting disease resistance with plant-based
    [Show full text]
  • Allelopathy and Application of Natural Phytochemicals As Pesticides: a Review in Present Scenario
    [ VOLUME 5 I ISSUE 3 I JULY– SEPT 2018] E ISSN 2348 –1269, PRINT ISSN 2349-5138 Allelopathy and Application of Natural Phytochemicals as Pesticides: A Review in Present Scenario Dr. Amitava Nayek Dept. of Botany, Trivenidevi Bhalotia College, Raniganj, Paschim Barddhaman -713347, West Bengal, India Received: June 14, 2018 Accepted: June 22, 2018 ABSTRACT Biocides using in agriculture and in social life are basically synthetic chemical compounds which have a strong adverse effect upon environment. The concept of allelopathy is very noble which can be used in development of biocides. Allelopathy is a natural process where on plant interacts with other plant by chemical means other than competition. Plant possesses a huge number of water soluble organic compounds which have the ability to suppress the growth of other plant. Terpenoids, alkaloids, flavonoids derivatives, sesquiterpenoid lactone, saponins are some common natural phytochemicals present in plants. Plants contain a virtually untapped reservoir of biocides that can be used directly or as templates for nature friendly biocides. Phytochemicals are mainly the secondary metabolites of plants may be considered as source materials for formulating pesticides with the help of advances of chemical technology. Government should have a clear motto in this regard. Keywords: Allelopathy, pesticide, phytochemicals, biocide. Pesticides are pest controlling substances. Pesticide is an umbrella term which includes herbicides, insecticides, termiticides, nematicides, molluscicide, avicide, rodenticide, fungicide, antimicrobial agents. Herbicide is used in higher extent than other pesticides of which a large amount, approximately 80-85% is used to protect crop plants, which in general, protect plants from weeds, fungi, or insects. Pesticides have been used for crop protection from very early period.
    [Show full text]