applied sciences Article Weather Simulation of Extreme Precipitation Events Inducing Slope Instability Processes over Mountain Landscapes Alessio Golzio 1,* , Irene Maria Bollati 2 , Marco Luciani 3, Manuela Pelfini 2 and Silvia Ferrarese 1 1 Department of Physics, Università degli Studi di Torino, Via Giuria 1, 10125 Torino, Italy;
[email protected] 2 Earth Sciences Department “A. Desio”, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy;
[email protected] (I.M.B.); manuela.pelfi
[email protected] (M.P.) 3 Studio di Geologia Luciani, Viale Castelli 17, 28868 Varzo, Italy;
[email protected] * Correspondence:
[email protected] Received: 15 May 2020; Accepted: 16 June 2020; Published: 20 June 2020 Featured Application: High-resolution weather analysis and forecasts for warnings and civil protection against landslides and hydrological instability. Abstract: Mountain landscapes are characterised by a very variable environment under different points of view (topography, geology, meteorological conditions), and they are frequently affected by mass wasting processes. A debris flow that occurred along the Croso stream, located in the Italian Lepontine Alps in the Northern Ossola Valley, during summer 2019, was analysed from a geological/geomorphological and meteorological point of view. The debris flow was triggered by an intense precipitation event that heavily impacted a very restricted area over the course of three hours. A previous debris flow along the same stream occurred in Autumn 2000, but it was related to an intense and prolonged rainfall event. The slope was characterised in terms of sediment connectivity, and data were retrieved and elaborated from the Web-GIS (Web-Geographic Information System) database of the IFFI-Italian Landslide Inventory and historical archives of landslides.