Microarray Data From: Mariadason Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Microarray Data From: Mariadason Et Al Microarray Data from: Mariadason et al. A gene expression profile that defines colon cell maturation in vitro. Cancer Research , August 15, 2002. Caco-2 time course: Normalized gene expression ratios. Caco-2 cells at Day 0 (Control) versus Caco-2 cells at Days 5, 14 or 21. Normalized expression data for 13,638 genes with significant expression above background Genbank Spot # Gene Name Day 0 vs 2 Day 0 vs 5 Day 0 vs 14 Day 0 vs 21 Accession # 1 AA043412 peptidylprolyl isomerase C (cyclophilin C) 0.630 1.322 0.950 1.096 2 W46433 similar to glucosamine-6-sulfatases 0.508 1.386 0.921 0.991 3 H46001 synaptotagmin 7 0.511 1.624 0.991 1.174 4 AA465378 ESTs, Highly similar to S17597 Ig delta chain [H.sapiens] 0.771 1.457 1.052 1.098 5 R42880 ESTs 0.743 1.386 0.979 1.137 6 T40444 proteasome (prosome, macropain) 26S subunit, ATPase, 5 0.968 1.044 0.820 0.990 7 AA101348 dendritic cell protein 0.971 1.016 0.654 0.630 8 T61525 ESTs, Highly similar to EA8.5 GENE PROTEIN [Bacteriophage 1.085 0.916 1.006 1.013 lambda] 9 AA028921 SMA5 1.460 0.990 1.321 1.625 10 AA700048 gene from NF2/meningioma region of 22q12 0.871 0.651 0.644 0.673 11 N63192 EST, Highly similar to PNMT_HUMAN 0.845 1.129 0.868 0.926 PHENYLETHANOLAMINE N-METHYLTRANSFERASE [H.sapiens] 12 N53362 ESTs 1.121 1.100 0.886 1.093 13 W74802 ESTs 0.925 1.160 0.802 1.112 14 R06746 ESTs, Weakly similar to T12A2.1 [C.elegans] 0.748 1.342 0.909 1.125 15 AA149640 ESTs 0.816 0.928 1.108 1.088 16 T87132 ESTs, Highly similar to sodium/hydrogen exchanger isoform 5 0.715 0.943 0.938 0.955 [H.sapiens] 17 N94060 ESTs, Weakly similar to KIAA0806 protein [H.sapiens] 0.849 0.841 0.810 0.838 18 R98591 ESTs 1.029 0.934 1.036 1.076 19 T97430 ESTs 0.994 1.093 0.963 0.983 21 T95268 J domain containing protein 1 isoform a (JDP1) mRNA, complete 1.138 1.334 1.068 1.038 cds 22 AA460981 golgi autoantigen, golgin subfamily a, 4 1.087 0.676 0.943 1.073 23 R08816 acid phosphatase 5, tartrate resistant 1.136 1.072 0.801 1.012 24 AA424516 cDNA: FLJ21930 fis, clone HEP04301, highly similar to 1.320 1.065 1.071 1.111 HSU90916 Human clone 23815 mRNA sequence 25 AA434024 lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase) 1.474 0.971 0.761 0.743 26 R45056 hypothetical protein PRO1847 0.605 0.681 0.601 0.516 28 AA039547 ribosomal protein S5 pseudogene 1 0.464 1.590 0.973 1.109 29 H30286 transcriptional unit N143 0.509 1.338 0.840 1.184 Genbank Spot # Gene Name Day 0 vs 2 Day 0 vs 5 Day 0 vs 14 Day 0 vs 21 Accession # 30 AA459013 X-ray repair complementing defective repair in Chinese hamster 0.800 1.045 0.831 0.805 cells 3 31 AA479106 hypothetical protein FLJ10637 0.590 0.939 0.710 0.841 32 T40467 EST 1.001 1.213 0.780 1.149 33 AA598797 histone acetyltransferase 1.019 0.892 0.865 0.809 34 AA425769 Alg5, S. cerevisiae, homolog of 1.112 0.608 0.664 0.761 35 H39018 synaptotagmin 5 1.222 1.422 1.244 1.180 36 N59115 nuclear receptor subfamily 5, group A, member 2 1.256 1.803 1.358 1.225 37 AA481464 peptidylprolyl isomerase B (cyclophilin B) 1.029 1.211 0.903 1.000 38 W72231 ESTs 1.048 1.437 0.911 1.041 39 W86002 ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J 0.933 1.163 0.806 1.125 SEQUENCE CONTAMINATION WARNING ENTRY [H.sapiens] 40 AA150422 cDNA: FLJ23462 fis, clone HSI08475 0.963 1.466 0.925 1.046 41 AA485349 cDNA FLJ13663 fis, clone PLACE1011646, highly similar to 0.850 0.969 0.813 1.067 clone 25059 mRNA sequence 42 AA464143 cDNA: FLJ22637 fis, clone HSI06677 0.706 0.827 0.835 0.946 43 N94264 ESTs 0.952 0.953 0.901 1.045 44 R98905 ESTs 0.889 1.177 1.006 0.939 45 T97887 ESTs 1.104 1.219 0.864 1.152 46 H64260 H91620p protein 1.178 1.128 1.080 1.095 47 R01796 androgen induced protein 1.581 2.135 2.002 2.424 48 AA287196 tetraspan 3 1.420 1.235 1.201 1.479 49 H05768 ATPase, H+ transporting, lysosomal (vacuolar proton pump) 0.859 0.725 0.671 0.740 42kD 51 R19889 DAZ associated protein 2 1.192 1.346 1.296 1.452 52 AA427688 protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 1.004 0.987 0.888 1.080 65), alpha isoform 54 AA284245 ESTs, Weakly similar to /prediction=(method:""genefinder"", 0.512 1.369 0.864 1.124 version:""084"", score:""23.69"")~/prediction=(method:""genscan"", version:""1.0"", score:""39.63"")~/match=(desc:""SD07039.5prime SD Drosophila melanogaster Schneider L2 cell culture pOT2 Drosop 55 H68370 putatative 28 kDa protein 0.432 0.938 0.628 0.912 56 AA458932 clone 23783 mRNA sequence 0.492 0.893 0.714 0.741 57 AA424754 KIAA1214 protein 0.717 1.259 0.935 1.017 58 T50137 ESTs 0.924 1.239 0.948 1.015 59 W69379 cDNA DKFZp586D0923 (from clone DKFZp586D0923) 1.124 1.189 0.946 0.985 Genbank Spot # Gene Name Day 0 vs 2 Day 0 vs 5 Day 0 vs 14 Day 0 vs 21 Accession # 60 H19227 alpha2,3-sialyltransferase 1.289 1.129 0.890 1.110 61 AA016290 retinoblastoma-binding protein 6 0.979 0.866 0.839 0.777 62 N90109 nucleolin 1.177 0.979 1.019 0.628 63 R95962 paired box gene 6 (aniridia, keratitis) 1.182 1.174 0.918 1.019 64 AA130117 clone HH114 unknown mRNA 1.034 1.066 0.772 0.882 65 N52651 cDNA: FLJ22474 fis, clone HRC10568 1.184 1.383 0.879 1.191 66 W89128 ESTs 1.143 0.972 0.806 1.066 67 AA029312 cDNA DKFZp434D0935 (from clone DKFZp434D0935) 0.924 0.881 0.683 0.946 68 N34362 regulator of G-protein signalling 5 0.881 0.990 0.740 1.035 69 N94274 ESTs 1.059 1.132 0.873 1.105 70 H48445 ESTs 0.961 0.927 0.999 0.930 71 T97910 clone IMAGE:121558 mRNA sequence 1.113 1.033 0.861 1.056 72 N77326 cDNA: FLJ21905 fis, clone HEP03764 1.283 1.598 1.289 1.725 73 H81104 ESTs 1.120 1.320 1.004 1.139 74 AA456028 Rab geranylgeranyltransferase, beta subunit 0.955 0.916 0.708 0.861 75 H85355 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 1.024 1.023 0.896 0.996 76 H98636 tumor necrosis factor receptor superfamily, member 5 1.206 1.079 0.941 1.003 77 AA490493 centaurin beta2 0.830 0.848 0.796 0.950 80 AA022558 cDNA: FLJ22120 fis, clone HEP18874 0.452 1.427 0.786 1.145 81 H97691 paired box gene 3 (Waardenburg syndrome 1) 0.626 1.288 0.876 1.085 82 AA459244 cofactor required for Sp1 transcriptional activation, subunit 9 0.673 1.278 0.859 1.036 (33kD) 83 R40031 cell recognition molecule Caspr2 0.787 1.331 0.874 1.200 84 T50974 ESTs 0.985 1.221 0.852 1.009 85 AA434135 Cip1-interacting zinc finger protein 1.681 1.132 0.845 0.751 86 H15685 catalase 1.548 1.425 1.121 1.148 87 W90116 nuclear mitotic apparatus protein 1 1.246 0.895 0.863 0.836 88 W69954 allograft inflammatory factor 1 1.142 1.077 1.022 0.738 89 AA485377 v-fos FBJ murine osteosarcoma viral oncogene homolog 1.284 1.308 0.904 1.012 90 AA026167 ESTs 1.311 1.345 0.752 1.105 91 N31952 cDNA: FLJ21938 fis, clone HEP04471, highly similar to 0.923 0.872 0.628 0.645 HST000014 mRNA full length insert cDNA clone EUROIMAGE 195423 92 R07128 ESTs 1.033 0.963 0.708 1.011 93 AA443116 KIAA1224 protein 1.684 0.905 0.779 1.271 94 AA458487 eukaryotic translation initiation factor 4 gamma, 1 1.096 0.891 0.823 1.069 95 N99514 ESTs 1.336 0.951 0.823 1.102 96 H89843 ESTs 1.123 0.963 1.039 0.886 97 R09411 ESTs 1.156 1.117 0.858 1.039 Genbank Spot # Gene Name Day 0 vs 2 Day 0 vs 5 Day 0 vs 14 Day 0 vs 21 Accession # 98 T97637 ESTs 1.230 1.267 0.918 1.057 99 H50667 uncharacterized bone marrow protein BM042 1.281 2.041 1.274 1.386 100 AA458533 forkhead box J1 0.792 1.025 0.944 0.910 102 H13577 ectonucleoside triphosphate diphosphohydrolase 1 1.148 1.285 1.143 1.232 103 H60460 KIAA0022 gene product 1.109 1.250 1.224 1.504 106 AA039640 wee1+ (S. pombe) homolog 0.499 1.082 0.861 1.009 107 AA758354 immunoglobulin lambda gene locus DNA, clone:61D6 0.533 1.467 0.867 0.961 108 AA490998 transport-secretion protein 2.2, 0.675 0.969 0.789 0.996 109 R60711 KIAA1091 protein 0.812 1.094 0.722 0.883 110 T54603 ESTs 1.138 1.140 0.844 1.004 111 AA130866 hypothetical protein FLJ10727 1.493 1.436 0.989 1.034 112 AA485867 macrophage receptor with collagenous structure 1.255 1.354 0.992 1.142 113 AA676322 metal-regulatory transcription factor 1 1.281 1.260 0.977 1.054 114 AA425823 sterol regulatory element binding transcription factor 1 1.121 1.160 0.975 0.903 115 AA700876 orosomucoid 1 2.334 4.607 2.444 3.427 116 N67972 ESTs 1.205 1.103 0.788 1.146 117 N51843 ESTs 1.286 1.097 0.759 0.939 118 AA115559 DKFZP566K023 protein 1.382 0.897 0.683 0.997 119 AA464195 hypothetical protein DKFZp434D0412 1.436 0.958 0.808 1.260 120 AA120816 hypothetical protein 1.140 0.790 0.630 0.752 121 W01645 ESTs 1.415 1.350 0.932 1.238 122 R99386 ESTs 1.058 1.548 1.043 0.989 123 T98075 clone IMAGE:121736 mRNA sequence 1.385 0.991 0.965 1.038 124 T64956 KIAA1268 protein 1.348 1.217 0.889 1.090 125 N77514 CGI-150 protein 1.033 0.850 0.742 0.787 127 AA447528 ubiquitination factor E4A (homologous to yeast UFD2) 1.000 1.157 1.179 1.110 128 AA434483 CD34 antigen 1.135 1.162 0.978 1.017 129 AA236617 Rac/Cdc42 guanine exchange factor (GEF) 6 1.070 1.083 1.118 0.989 132 N54456 ALEX3 protein 0.633 2.095 1.145 1.151 133 AA629900 replication protein A1 (70kD) 0.553 1.260 0.768 1.104 134 AA489073 hypothetical protein 23851 0.839 1.245 0.754 1.135 135 AA418729 cDNA: FLJ22318 fis, clone HRC05303 1.020 1.080 0.978 1.019 136 T52152 hypothetical protein FLJ10749 0.893 0.585 0.562 0.562 137 AA121360 hypothetical protein FLJ20277 1.405 1.208 0.973 1.063 138 AA187349 ferredoxin 1 1.481 1.357 1.039 1.353 139 AA629909 glycyl-tRNA synthetase 1.023 0.819 0.656 0.645 140 N45979 SH3 domain protein 1B 1.143 1.134 0.860 1.024 141 AA430382 nucleoside phosphorylase 1.194 1.230 0.882 0.879 142 N59871 ESTs 1.001 1.001 1.002 0.925 Genbank Spot # Gene Name Day 0 vs 2 Day 0 vs 5 Day 0 vs 14 Day 0 vs 21 Accession # 143 R89828 ESTs, Moderately similar to ALU7_HUMAN ALU
Recommended publications
  • Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools
    8882 • The Journal of Neuroscience, August 24, 2016 • 36(34):8882–8894 Cellular/Molecular Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools X Junhua Geng,1* Liping Wang,1,2* Joo Yeun Lee,1,4 XChun-Kan Chen,1 and Karen T. Chang1,3,4 1Zilkha Neurogenetic Institute, 2Department of Biochemistry and Molecular Biology, and 3Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and 4Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089 The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools.
    [Show full text]
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Identification and Diagnostic Performance of a Small RNA Within the PCA3 and BMCC1 Gene Locus That Potentially Targets Mrna
    Published OnlineFirst November 12, 2014; DOI: 10.1158/1055-9965.EPI-14-0377 Research Article Cancer Epidemiology, Biomarkers Identification and Diagnostic Performance of a & Prevention Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA Ross M. Drayton1, Ishtiaq Rehman1, Raymond Clarke2, Zhongming Zhao3,4, Karl Pang1, Saiful Miah1, Robert Stoehr5, Arndt Hartmann5, Sheila Blizard1, Martin Lavin2, Helen E. Bryant1, Elena S. Martens-Uzunova6, Guido Jenster6, Freddie C. Hamdy7, Robert A. Gardiner2, and James W.F. Catto1 Abstract Background: PCA3 is a long noncoding RNA (lncRNA) with malignant prostatic tissues, exfoliated urinary cells from men unknown function, upregulated in prostate cancer. LncRNAs may with prostate cancer (13–273 fold change; t test P < 0.003), and be processed into smaller active species. We hypothesized this for closely correlated to PCA3 expression (r ¼ 0.84–0.93; P < 0.001). PCA3. Urinary PCA3-shRNA2 (C-index, 0.75–0.81) and PCA3 (C-index, Methods: We computed feasible RNA hairpins within the 0.78) could predict the presence of cancer in most men. PCA3- BMCC1 gene (encompassing PCA3) and searched a prostate shRNA2 knockup altered the expression of predicted target transcriptome for these. We measured expression using qRT- mRNAs, including COPS2, SOX11, WDR48, TEAD1, and Noggin. PCR in three cohorts of prostate cancer tissues (n ¼ 60), PCA3-shRNA2 expression was negatively correlated with COPS2 exfoliated urinary cells (n ¼ 484 with cancer and n ¼ 166 in patient samples (r ¼0.32; P < 0.001). controls), and in cell lines (n ¼ 22). We used in silico predictions Conclusion: We identified a short RNA within PCA3, whose and RNA knockup to identify potential mRNA targets of short expression is correlated to PCA3, which may target mRNAs transcribed RNAs.
    [Show full text]
  • Supplementary Material for “Characterization of the Opossum Immune Genome Provides Insights Into the Evolution of the Mammalian Immune System”
    Supplementary material for “Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system” Katherine Belov1*, Claire E. Sanderson1, Janine E. Deakin2, Emily S.W. Wong1, Daniel Assange3, Kaighin A. McColl3, Alex Gout3,4, Bernard de Bono5, Terence P. Speed3, John Trowsdale5, Anthony T. Papenfuss3 1. Faculty of Veterinary Science, University of Sydney, Sydney, Australia 2. ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia 3. Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 4. Department of Medical Biology, The University of Melbourne, Parkville, Australia 5. Immunology Division, University of Cambridge, Cambridge, UK *Corresponding author: K. Belov, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia ph 61 2 9351 3454, fx 61 2 9351 3957, email [email protected] MHC paralogous regions Only 36 of the 114 genes in the opossum MHC have paralogs in one of the three paralogous regions (Supplementary Table 1). Genes represented in at least three of the four paralogous regions (13 genes) were used to compare gene order, revealing rearrangements between the four regions in opossum. Table 1: MHC genes with paralogs on opossum chromosomes 1, 2 and 3, corresponding to MHC paralogous regions on human chromosomes 9, 1 and 19 respectively. MHC Chromosome 1 Chromosome 2 Chromosome 3 (Human Chr 9) (Human Chr 1) (Human Chr 19) AGPAT1 AGPAT2 AIF1 C9orf58 ATP6V1G2 ATP6V1G1 ATP6V1G3 B3GALT4 B3GALT2 BAT1 DDX39 BAT2 KIAA0515 BAT2D1 BRD2 BRD3 BRDT BRD4 C4 C5 C3 SLC44A4 SLC44A5 SLC44A2 CLIC1 CLIC3 CLIC4 COL11A2 COL5A1 COL11A1 COL5A3 CREBL1 ATF6 DDAH2 DDAH1 DDR1 DDR2 EGFL8 EGFL7 EHMT2 EHMT1 GPX5 GPX4 MHC Class I CD1 HSPA1A HSPA5 MDC1 PRG4 NOTCH4 NOTCH1 NOTCH2 NOTCH3 PBX2 PBX3 PBX1 PBX4 PHF1 MTF2 PRSS16 DPP7 PSMB9 PSMB7 RGL2 RALGDS RGL1 RGL3 RING1 RNF2 RXRB RXRA RXRG SYNGAP1 RASAL2 TAP ABCA2 TNF/LTA/LTB TNFSF8/TNFSF15 TNFSF4 CD70/TNFSF9/ TNFSF14/ TNXB TNC TNR Table 2.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • 1 ICR-Geneset Gene List
    ICR-geneset Gene List. IMAGE ID UniGene Locus Name Cluster 20115 Hs.62185 SLC9A6 solute carrier family 9 (sodium/hydrogen exchanger), isoform 6 21738 21899 Hs.78353 SRPK2 SFRS protein kinase 2 21908 Hs.79133 CDH8 cadherin 8, type 2 22040 Hs.151738 MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase) 22411 Hs.183 FY Duffy blood group 22731 Hs.1787 PHRET1 PH domain containing protein in retina 1 22859 Hs.356487 ESTs 22883 Hs.150926 FPGT fucose-1-phosphate guanylyltransferase 22918 Hs.346868 EBNA1BP2 EBNA1 binding protein 2 23012 Hs.158205 BLZF1 basic leucine zipper nuclear factor 1 (JEM-1) 23073 Hs.284244 FGF2 fibroblast growth factor 2 (basic) 23173 Hs.151051 MAPK10 mitogen-activated protein kinase 10 23185 Hs.289114 TNC tenascin C (hexabrachion) 23282 Hs.8024 IK IK cytokine, down-regulator of HLA II 23353 23431 Hs.50421 RB1CC1 RB1-inducible coiled-coil 1 23514 23548 Hs.71848 Human clone 23548 mRNA sequence 23629 Hs.135587 Human clone 23629 mRNA sequence 23658 Hs.265855 SETMAR SET domain and mariner transposase fusion gene 23676 Hs.100841 Homo sapiens clone 23676 mRNA sequence 23772 Hs.78788 LZTR1 leucine-zipper-like transcriptional regulator, 1 23776 Hs.75438 QDPR quinoid dihydropteridine reductase 23804 Hs.343586 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 23831 Hs.155247 ALDOC aldolase C, fructose-bisphosphate 23878 Hs.99902 OPCML opioid binding protein/cell adhesion molecule-like 23903 Hs.12526 Homo sapiens clone 23903 mRNA sequence 23932 Hs.368063 Human clone 23932 mRNA sequence 24004
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Differential Proteomic Analysis of the Pancreas of Diabetic Db/Db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus
    Int. J. Mol. Sci. 2014, 15, 9579-9593; doi:10.3390/ijms15069579 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Differential Proteomic Analysis of the Pancreas of Diabetic db/db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus Victoriano Pérez-Vázquez 1,*, Juan M. Guzmán-Flores 1, Daniela Mares-Álvarez 1, Magdalena Hernández-Ortiz 2, Maciste H. Macías-Cervantes 1, Joel Ramírez-Emiliano 1 and Sergio Encarnación-Guevara 2 1 Depto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico; E-Mails: [email protected] (J.M.G.-F.); [email protected] (D.M.-A.); [email protected] (M.H.M.-C.); [email protected] (J.R.-E.) 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; E-Mails: [email protected] (M.H.-O.); [email protected] (S.E.-G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-477-7143-812; Fax: +52-477-7167-623. Received: 4 April 2014; in revised form: 14 May 2014 / Accepted: 19 May 2014 / Published: 30 May 2014 Abstract: Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins.
    [Show full text]
  • ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed
    ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed Probe Sets in Livers of GK Rats. A. Immune/Inflammatory (67 probe sets, 63 genes) Age Strain Probe ID Gene Name Symbol Accession Gene Function 5 WKY 1398390_at small inducible cytokine B13 precursor Cxcl13 AA892854 chemokine activity; lymph node development 5 WKY 1389581_at interleukin 33 Il33 BF390510 cytokine activity 5 WKY *1373970_at interleukin 33 Il33 AI716248 cytokine activity 5 WKY 1369171_at macrophage stimulating 1 (hepatocyte growth factor-like) Mst1; E2F2 NM_024352 serine-throenine kinase; tumor suppression 5 WKY 1388071_x_at major histocompatability antigen Mhc M24024 antigen processing and presentation 5 WKY 1385465_at sialic acid binding Ig-like lectin 5 Siglec5 BG379188 sialic acid-recognizing receptor 5 WKY 1393108_at major histocompatability antigen Mhc BM387813 antigen processing and presentation 5 WKY 1388202_at major histocompatability antigen Mhc BI395698 antigen processing and presentation 5 WKY 1371171_at major histocompatability antigen Mhc M10094 antigen processing and presentation 5 WKY 1370382_at major histocompatability antigen Mhc BI279526 antigen processing and presentation 5 WKY 1371033_at major histocompatability antigen Mhc AI715202 antigen processing and presentation 5 WKY 1383991_at leucine rich repeat containing 8 family, member E Lrrc8e BE096426 proliferation and activation of lymphocytes and monocytes. 5 WKY 1383046_at complement component factor H Cfh; Fh AA957258 regulation of complement cascade 4 WKY 1369522_a_at CD244 natural killer
    [Show full text]
  • Research Article Characterization of the Equine Skeletal Muscle
    McGivney et al. BMC Genomics 2010, 11:398 http://www.biomedcentral.com/1471-2164/11/398 RESEARCH ARTICLE Open Access CharacterizationResearch article of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training Beatrice A McGivney1, Paul A McGettigan1, John A Browne1, Alexander CO Evans1,3, Rita G Fonseca2, Brendan J Loftus3, Amanda Lohan3, David E MacHugh1,3, Barbara A Murphy1, Lisa M Katz2 and Emmeline W Hill*1 Abstract Background: Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) and T2 - trained (20 ± 0.7 months old). Results: The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease. Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]