Calligonum Polygonoides Linnaeus Extract: HPLC-EC and Total Antioxidant Capacity Evaluation Sara M

Total Page:16

File Type:pdf, Size:1020Kb

Calligonum Polygonoides Linnaeus Extract: HPLC-EC and Total Antioxidant Capacity Evaluation Sara M Full Paper DOI: 10.1002/elan.201400555 Calligonum polygonoides Linnaeus Extract: HPLC-EC and Total Antioxidant Capacity Evaluation Sara M. C. Gomes,[a] Isabel P. G. Fernandes,[a] Narpat Singh Shekhawat,[b] Sunita Kumbhat,[c] and Ana Maria Oliveira-Brett*[a] Abstract: Flavonoids in Calligonum polygonoides Lin- pounds. The total antioxidant capacity was quantified naeus extract were separated, detected, and identified by using the DPPHC method and voltammetry. The RP- reverse-phase high-performance liquid chromatography HPLC-EC led to the detection of nine different flavo- (RP-HPLC) with electrochemical detection (EC) in com- noids: catechin, delphinidin, fisetin, myricetin, epicate- bined isocratic and gradient elution using a glassy carbon chin, kuromanin, rutin, callistephin and procyanidin A2, or a boron doped diamond electrode. Ultrasonication in a single run by direct injection of the sample extract coupled with a microwave-assisted technique was devel- solution. oped to optimize the extraction of the phenolic com- Keywords: Calligonum polygonoides Linnaeus · DPPHC method · Electrochemical detection · Flavonoids · Reverse-phase high- performance liquid chromatography 1 Introduction plant has made it vulnerable and endangered species in its habitat [2]. Phenolic compounds constitute one of the most numerous Calligonum polygonoides Linnaeus is known for its me- groups of plant secondary metabolites. The interest in the dicinal properties apart from being traditionally used as bioactivity of phenolic compounds is due to the potential food during frequent famines, Figure 1 [3–6]. These health benefits of these polyphenolic components and plants produce numerous flower buds during March and their involvement in important biological and industrial April. The local people harvest branches bearing on processes. Flavonoids can be found in fruits, vegetables, opened but still green flower buds, sun-dry, harvest and tea, wine and chocolate. The basic structure of flavonoids store them, as valuable condiment/vegetable, “phog” consists on the tricyclic C6ÀC3ÀC6. Their benefits to flowers or “phogla”. The vegetable “phogla” is used to people are anti-inflammatory, hormonal, anti-bleeding, make delicious heat relieving “Raiyta” (a curd/yogurt anti-allergic and even prevention of the cancer onset. It is preparation) by locals. The flowers of the plants are also attributed to flavonoids the improvement in hair and known to contain a high amount of protein, possess tonic nails condition since they promote the vitamin C absorp- and digestive properties, being also useful against asthma, tion. However, the most important is their antioxidant cough and cold. The juice is applied to the eye as an anti- property, which fights free radicals in the human body, dote to scorpion sting, the latex is used to treat eczema, detoxifying the body, and making better use of nutrients. bite dogs and abortion, and the roots decoction mixed The consumption of fruits and vegetables has long been with catechu is used as gargle for sore gum. Phytochemi- associated with health benefits due to their high antioxi- cal screening of Calligonum polygonoides shows the pres- dants concentration. ence of flavonoids, alkaloids, proteins, tannins, steroids, The genus Calligonum (family polygonaceae) comprises phenols, carbohydrates and terpenoids in flower buds, about 80 species, has numerous therapeutic benefits al- flowers, seeds, and stems [7–11]. ready known and studied, and are distributed throughout Thus, owing to the health properties associated with northern Africa, southern Europe and western Asia. Cal- these shrubs, in which the phenolic antioxidants play ligonum polygonoides Linnaeus, locally known as Phog or Phogra, is a common woody shrub grown naturally in [a] S. M. C. Gomes, I. P. G. Fernandes, A. M. Oliveira-Brett sand dunes of the desert of Rajasthan, in India [1] and it Department of Chemistry, University of Coimbra 3004-535 Coimbra, Portugal is well known for its adaptability in extreme xeric condi- *e-mail: [email protected] tions. The plant is ecologically valuable as it stabilizes the [b] N. S. Shekhawat sand dunes and prevents soil erosion, and is also an im- Department of Botany, Jai Narain Vyas (J.N.V.) University portant source of food [1,2]. It has leafless fleshy green Jodhpur-342033, India smooth branches and white stem and produce small nu- [c] S. Kumbhat merous flower buds and succulent flowers that are con- Department of Chemistry, Jai Narain Vyas (J.N.V.) verted in hairy/spiny fruits. The over exploitation of the University Jodhpur-342033, India www.electroanalysis.wiley-vch.de 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Electroanalysis 2015, 27, 293 – 301 293 Full Paper Fig. 1. Calligonum polygonoides Linneaus: (A) plant (B) flowering plant (C) Dried flower buds. a crucial role, it is indispensable to have reliable methods The presence of voltammetric signals at low anodic po- capable of measuring their antioxidant activity. tentials indicates the presence of polyphenolics of high Many different methods can be used to measure the antioxidant capacity, whereas the polyphenolics with low total antioxidant activity, the DPPHC (1,1-diphenyl-2-pic- antioxidant activity show electrochemical activity at rylhydrazine) method measures the radical scavenging ac- higher oxidation potentials [25]. tivity [12–15], presenting advantages when compared to The electrochemical behavior of flavonoids, such as cat- other spectrophotometric methods such as ABTS(2,2- echin (flavan-3-ols) and epicatechin (flavonols), that ex- azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method hibit an identical oxidation potential [24,26], are very [16–18], because the DPPHC does not require the genera- good antioxidant electrochemical standards. tion of the radical. In fact, the DPPHC is a commercial The electrochemical index (EI) was defined as the total radical that can be reduced by antioxidant molecules, phenolics concentration obtained using electrochemical changing its color from purple to yellow after the reac- techniques for predominant and representative phenolic tion, and causing the absorbance decrease at the wave- classes, taking into account the peak potential (Eap) and length l516 nm. peak current (Iap) [23,24,26]. The electrochemical techniques, mostly voltammetric The lower peak potential corresponds to greater elec- techniques, are applied to the study of electroactive spe- tron donor ability and higher peak current, and the EI is cies, including the antioxidant compounds, in order to calculated using the equation [23]: evaluate the antioxidant activity of plant extracts, herbal products or other compounds [19–22] presenting many EI ¼ðIap1=Eap1ÞþðIap2=Eap2Þþ ... þðIapn=EapnÞ advantages such as speed of analysis, low cost, simplicity and low consumption of reagents when compared to Extraction of phytochemicals from plant materials is other methods [23]. Its important to note that the vol- the most important step before further analysis, and it has tammetric techniques depend only on the inherent elec- been accomplished by traditional extraction processes, trochemical properties of antioxidants present in the such as solid-liquid extraction, using solvents such as sample. methanol, ethanol and acetone, and also through steam Antioxidants can act as reduction agents and tend to distillation. The separation process consists in the distri- be easily oxidized at inert electrodes, enabling the estab- bution of analyte between two immiscible phases. It is im- lishment of a relationship between electrochemical be- portant that the extraction processes occurs with selective havior and “antioxidant power”, the lower the oxidation separation of the target components from the sample at potential the greater the antioxidant power [24]. maximum amount and/or interferences elimination. www.electroanalysis.wiley-vch.de 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Electroanalysis 2015, 27, 293 – 301 294 Full Paper One of the simplest extraction techniques is the ultra- rutin hydrate, quercetin dihydrate and chrysin, were from sonic extraction that is easy to perform in an ultrasonic Sigma-Aldrich, Madrid, Spain. DPPHC free radical form bath. In this method, the crushed sample is mixed with was obtained from Sigma-Aldrich, Madrid, Spain. Metha- a suitable solvent and placed into the ultrasonic bath nol HPLC-grade and formic acid were from Merck, where the working temperature and extraction time are Darmstadt, Germany. set [27–29]. Extraction of the flavonoids from seeds has All solutions were prepared using analytical grade re- been performed by ultrasonication, using hydrochloric agents and purified water from a Millipore Milli-Q acid in methanol as extraction solvent (MeOH/HCl system (conductivity 0.1 mScmÀ1). (99 :1) v/v) [28,30]. In order to increase the efficiency of Stock standard solutions of ~10 mM of the phenolic the extraction procedure, microwave radiation has also compounds were prepared in the HPLC mobile phase, been used before ultrasonication [31]. 83% purified water, 16% methanol and 1% formic acid. Reverse-phase high-performance liquid chromatogra- The stock solution flasks were protected from light with phy (RP-HPLC) methods with electrochemical (EC) aluminum foil, kept in a refrigerator at 48C, and re- glassy carbon detectors have been widely used for the mained stable for at least one month. These solutions separation, detection and identification of polyphenols in were appropriately diluted to 10À6 M and from this con- different extracts and
Recommended publications
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 8, Issue, 02, pp.26040-26047, February, 2016 ISSN: 0975-833X RESEARCH ARTICLE FLORISTIC PERSPECTIVE FOR SOME MEDICINAL PLANTS GROWING IN THE COASTAL AND INLAND DESERTS OF EGYPT Ibrahim A. Mashaly, *Mohamed Abd El-Aal, Heshmat S. Aldesuquy and Baedaa A. Mahdee Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt ARTICLE INFO ABSTRACT Article History: This study aimed at characterizing the floristic features of plant species associated with four wild medicinal plants in the Egyptian deserts. Two plants were chosen from the inland north part of the Received 08th November, 2015 Received in revised form eastern desert (Wadi Hagul and Wadi El-Molak) namely Pulicaria undulata (L.) C. A. Mey. and 22nd December, 2015 Hyoscyamus muticus L., and the two other species were selected from the coastal desert along the Accepted 05th January, 2016 Deltaic Mediterranean Sea coast namely Calligonum polygonoides L. subsp. comosum and Nicotiana Published online 14th February, 2016 glauca R.C. Graham. A total of 125 plant species belonging to 107 genera and 29 families were recorded. Asteraceae, Poaceae, Chenopodiaceae and Brassicaceae were the leading families which Key words: represented by 55.2% of the total number of recorded species. Preponderance of perennials, therophytes and Saharo-Sindian/ Mediterranean taxa indicating the semi-arid and arid climate of the Medicinal plants, Flora, study area. Four vegetation groups or community types were yielded after TWINSPAN and named Multivariate analysis, Chorotype, after the first dominant species. Group A: Zygophyllum coccineum, group B: Pulicaria undulata, group C: Calligonum polygonoides and group D: Nicotiana glauca.
    [Show full text]
  • Karymorphological and Molecular Studies on Seven Species in Polygonoideae (Polygonaceae) in Egypt
    Chromosome Botany (2012) 7: 17-22 © Copyright 2012 by the International Society of Chromosome Botany Karymorphological and molecular studies on seven species in Polygonoideae (Polygonaceae) in Egypt Magdy Hussein Abd El-Twab1, Ahmed M. Abdel-Hamid and Hagar Ata A. Mohamed Department of Botany and Microbiology, Faculty of Science, Minia University 61519, El-Minia City, Egypt 1Author for correspondence: ([email protected]) Received January 22, 2012; accepted February 29, 2012 ABSTRACT. Seven species in four genera of the Polygonoideae (Polygonaceae) in Egypt were subjected to karyomorphological and molecular studies in order to identify their chromosomal characteristics and investigate their phylogenetical relationships by the conventional staining method and the 5S rDNA PCR. Seed germination after treatment with low temperature stratifi cation and acidifi cation by concentrated H2SO4 was studied. Three rates of germination were obtained in response to the cold stratifi cation and acidifi cation: 1) High in Polygonum equisetiforme, Persicaria lanigera, Pe. lapathifolia and Pe. salicifolia; 2) low in Rumex dentatus; 3) no effect in R. pictus and Emex spinosa. Variation in the chromosome complements number, length and structure were detected for Po. equisetiforme (2n=58; new count); Pe. lanigera (2n=40; new count); Pe. lapathifolia (2n=22); Pe. salicifolia (2n=60); Emex spinosa (2n=18; a new count); Rumex dentatus (2n=40); and R. pictus (2n=18; a new count). Eighteen polymorphic bands of 5S rDNA were used to determine the similarities among the taxa with the similarity coeffi cient ranging between 0.2 and 0.67. KEYWORDS: Acidifi cation, Chromosomes, 5S rDNA, Polygonaceae, Stratifi cation. The Polygonaceae is cosmopolitic to temperate regions have been widely used to elucidate generic relationships (Täckholm 1974; Boulos 1999).
    [Show full text]
  • Characterization of the Wild Trees and Shrubs in the Egyptian Flora
    10 Egypt. J. Bot. Vol. 60, No. 1, pp. 147-168 (2020) Egyptian Journal of Botany http://ejbo.journals.ekb.eg/ Characterization of the Wild Trees and Shrubs in the Egyptian Flora Heba Bedair#, Kamal Shaltout, Dalia Ahmed, Ahmed Sharaf El-Din, Ragab El- Fahhar Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt. HE present study aims to study the floristic characteristics of the native trees and shrubs T(with height ≥50cm) in the Egyptian flora. The floristic characteristics include taxonomic diversity, life and sex forms, flowering activity, dispersal types,economic potential, threats and national and global floristic distributions. Nine field visits were conducted to many locations all over Egypt for collecting trees and shrubs. From each location, plant and seed specimens were collected from different habitats. In present study 228 taxa belonged to 126 genera and 45 families were recorded, including 2 endemics (Rosa arabica and Origanum syriacum subsp. sinaicum) and 5 near-endemics. They inhabit 14 habitats (8 natural and 6 anthropogenic). Phanerophytes (120 plants) are the most represented life form, followed by chamaephytes (100 plants). Bisexuals are the most represented. Sarcochores (74 taxa) are the most represented dispersal type, followed by ballochores (40 taxa). April (151 taxa) and March (149 taxa) have the maximum flowering plants. Small geographic range - narrow habitat - non abundant plants are the most represented rarity form (180 plants). Deserts are the most rich regions with trees and shrubs (127 taxa), while Sudano-Zambezian (107 taxa) and Saharo-Arabian (98 taxa) was the most. Medicinal plants (154 taxa) are the most represented good, while salinity tolerance (105 taxa) was the most represented service and over-collecting and over-cutting was the most represented threat.
    [Show full text]
  • Some Threatened Medicinal Plants of Beer Jhunjhunu Conservation Reserve of Rajasthan, India
    International Journal of Pharmaceutical and Medical Research Volume – 2 Issue – 1 February 2014 Website: www.woarjournals.org/IJPMR ISSN: 2348-0262 Some Threatened Medicinal Plants of Beer Jhunjhunu Conservation Reserve of Rajasthan, India Manju Chaudhary Department of Botany, S.R.R.M. Govt. College Jhunjhunu Abstract: Plant diversity remains essential for human beings, providing numerous modern and traditional remedies to the healthcare system. The vast land of Rajasthan together with its vegetation and flora has a variety of medicinal plants growing in different habitats. The present study aimed to document the preliminary analysis of rare and threatened medicinal plants of Beer Jhunjhunu Conservation Reserve of Rajasthan. The study area is a protected forest area and considered as important in terms of biodiversity. The area harbors rich flora and fauna. However, the rich resources including medicinal plants are disappearing at an alarming rate due to over- exploitation. Therefore, the management of traditional medicinal plant resources has become a matter of urgency. Conservation of the species in natural habitat and artificial regeneration would be the best opinion to recover the species from near extinction. Keywords: Threatened, Endangered, Extinct, Conservation Reserve, in-situ and ex-situ conservation Introduction Jhunjhunu Conservation Reserve of Rajasthan is such an area Plants containing medicinal and other beneficial properties have which was declared as conservation reserve by the State been known and used in some form or other since time immemorial Government on 9 March, 2012 for the purpose of protecting in the traditional system of medicines (Jain and Saklani, 1991). The landscapes, flora and fauna and their habitat.
    [Show full text]
  • The C4 Plant Lineages of Planet Earth
    Journal of Experimental Botany, Vol. 62, No. 9, pp. 3155–3169, 2011 doi:10.1093/jxb/err048 Advance Access publication 16 March, 2011 REVIEW PAPER The C4 plant lineages of planet Earth Rowan F. Sage1,*, Pascal-Antoine Christin2 and Erika J. Edwards2 1 Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S3B2 Canada 2 Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA * To whom correspondence should be addressed. E-mail: [email protected] Received 30 November 2010; Revised 1 February 2011; Accepted 2 February 2011 Abstract Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C4 photosynthetic pathway. Here, 62 recognizable lineages of C4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a Downloaded from minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C3–C4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C4 lineage, indicating that they did not share common C3–C4 ancestors with C4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to jxb.oxfordjournals.org cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south- central South America, central Asia, northeastern and southern Africa, and inland Australia.
    [Show full text]
  • Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae
    Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) Plus Dilleniales Author(s): Ying Yu, Alexandra H. Wortley, Lu Lu, De-Zhu Li, Hong Wang and Stephen Blackmore Source: Annals of the Missouri Botanical Garden, 103(1):106-161. Published By: Missouri Botanical Garden https://doi.org/10.3417/2017017 URL: http://www.bioone.org/doi/full/10.3417/2017017 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. EVOLUTION OF ANGIOSPERM Ying Yu,2 Alexandra H. Wortley,3 Lu Lu,2,4 POLLEN. 5. EARLY DIVERGING De-Zhu Li,2,4* Hong Wang,2,4* and SUPERASTERIDAE Stephen Blackmore3 (BERBERIDOPSIDALES, CARYOPHYLLALES, CORNALES, ERICALES, AND SANTALALES) PLUS DILLENIALES1 ABSTRACT This study, the fifth in a series investigating palynological characters in angiosperms, aims to explore the distribution of states for 19 pollen characters on five early diverging orders of Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) plus Dilleniales.
    [Show full text]
  • Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia
    plants Article Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia Olfa Karous 1,2,* , Imtinen Ben Haj Jilani 1,2 and Zeineb Ghrabi-Gammar 1,2 1 Institut National Agronomique de Tunisie (INAT), Département Agronoime et Biotechnologie Végétale, Université de Carthage, 43 Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunisia; [email protected] (I.B.H.J.); [email protected] (Z.G.-G.) 2 Faculté des Lettres, Université de Manouba, des Arts et des Humanités de la Manouba, LR 18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), 2010 Manouba, Tunisia * Correspondence: [email protected] Abstract: Thanks to its geographic location between two bioclimatic belts (arid and Saharan) and the ancestral nomadic roots of its inhabitants, the sector of Ouled Dabbeb (Southern Tunisia) represents a rich source of plant biodiversity and wide ranging of ethnobotanical knowledge. This work aims to (1) explore and compile the unique diversity of floristic and ethnobotanical information on different folk use of plants in this sector and (2) provide a novel insight into the degree of knowledge transmission between the current population and their semi-nomadic forefathers. Ethnobotanical interviews and vegetation inventories were undertaken during 2014–2019. Thirty informants aged from 27 to 84 were interviewed. The ethnobotanical study revealed that the local community of Ouled Dabbeb perceived the use of 70 plant species belonging to 59 genera from 31 families for therapeutic (83%), food (49%), domestic (15%), ethnoveterinary (12%), cosmetic (5%), and ritual purposes (3%). Moreover, they were knowledgeable about the toxicity of eight taxa. Nearly 73% of reported ethnospecies were freely gathered from the wild.
    [Show full text]
  • Native Plants
    3 Biotech (2017) 7:144 DOI 10.1007/s13205-017-0746-1 ORIGINAL ARTICLE Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants 1 1 1 Lina Maloukh • Alagappan Kumarappan • Mohammad Jarrar • 1 1 1 Jawad Salehi • Houssam El-wakil • T. V. Rajya Lakshmi Received: 24 October 2016 / Accepted: 6 February 2017 / Published online: 8 June 2017 Ó Springer-Verlag Berlin Heidelberg 2017 Abstract DNA barcoding of United Arab Emirates (UAE) the rbcL sequences and for 6 of matK sequences. We native plants is of high practical and scientific value as the suggest rbcL as a promising barcode locus for the tested plants adapt to very harsh environmental conditions that group of 51 plants. In the present study, an inexpensive, challenge their identification. Fifty-one plant species simple method of identification of rare desert plant taxa belonged to 22 families, 2 monocots, and 20 eudicots; a through rbcL barcode is being reported. maximum number of species being legumes and grasses were collected. To authenticate the morphological identi- Keywords United Arab Emirates Á Monocots Á Eudicots Á fication of the wild plant taxa, rbcL and matK regions were Native plants Á rbcL Á matK Á Barcode used in the study. The primer universality and discrimi- natory power of rbcL is 100%, while it is 35% for matK locus for these plant species. The sequences were submit- Introduction ted to GenBank; accession numbers were obtained for all The UAE is a dry land, covered with wadis, waterless riv- erbeds, sand dunes, plains, and mountains.
    [Show full text]
  • Calligonum Taklimakanense Sp. Nov. (Polygonaceae) from Xinjiang, China
    Nordic Journal of Botany 28: 680Á682, 2010 doi: 10.1111/j.1756-1051.2010.00739.x, # The Authors. Journal compilation # Nordic Journal of Botany 2010 Subject Editor: Torbjo¨rn Tyler. Accepted 5 July 2010 Calligonum taklimakanense sp. nov. (Polygonaceae) from Xinjiang, China Gulnur Sabirhazi, Bo-Rong Pan, Guan-Mian Shen and Ming-Li Zhang G. Sabirhasi ([email protected]), Key Lab of Biogeography and Biological Resources in Arid Regions, Xinjiang Inst. of Ecology and Geography, the Chinese Academy of Sciences, CNÁ830011 Urumqi, PR China. Á GS, B.-R. Pan, G.-M. Shen and M.-L. Zhang, Xinjiang Inst. of Ecology and Geography, the Chinese Academy of Sciences, CNÁ830011 Urumqi, PR China. MLZ also at: Inst. of Botany, the Chinese Academy of Sciences, CNÁ100093 Beijing, PR China. PECIAL ISSUE S Calligonum taklimakanense B. R. Pan & G. M. Shen, a new species of Polygonaceae from Taklimakan Desert, Xinjiang, China, is described and illustrated. It is closely related to C. ebinuricum Ivanova ex Soskov in having similar fruit shape and achenes with two rows of bristles, but differs in straight old branches and slightly coiled achenes without a long beak. Calligonum ebinuricum has tortuous old branches, very coiled achenes, and a 2Á4 mm long beak. The genus Calligonum L. (Polygonaceae) comprises 35Á80 characters of branches and fruits as well as the habitat are AXONOMY species, mainly distributed in the arid desert areas of illustrated in Fig. 1Á3. T North Africa, southern Europe and Asia (Mabberley 1990, Brandbyge 1993). In China, there are 23 species of Calligonum mainly in Nei Mongol, Gansu, Qinghai and Calligonum taklimakanense B.
    [Show full text]
  • Some Thoughts from the Director. .. the Fascinating Family Of
    Some Thoughts from the Director: The Fascinating Family of Polygonaceae Item Type Article Authors Siegwarth, Mark Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 26/09/2021 15:22:07 Link to Item http://hdl.handle.net/10150/556793 28 Desert Plants Some Thoughts from the Director. .. Often one's adventures start at home. This spring, my neighbors and I have been commiserating about a particular weed that over the last five years has started to thrive in our front yards despite our best efforts to eradicate it. The plant was identified by Boyce Thompson Arboretum staff as Eriogonum dejlexum or Skeleton weed, a member of the Buckwheat or Polygonaceae family. Mark Dimmitt of the Arizona Sonora Desert Museum describes the genus Eriogonum on their website: "Species in this genus vary in growth form from herbaceous annuals and perennials to woody shrubs. Most of the approximately 100 species in the Sonoran Desert region can be readily recognized by their general appearance. The herbaceous species are called skeleton weeds. Their basal rosettes of leaves are rather inconspicuous, but their inflorescences are distinctive. One to several of them arise from the basal rosette and branch profusely, often trifurcately, from a few inches to 2 feet (60 em) tall. The flowering stems are leafless or nearly so, and bear tiny flowers at each node. Then they dry out and persist as skeletons for a year or more. Each of the 20 or so desert species has distinct skeletal forms, several of which are very attractive and are used in dried arrangements." I then consulted the Flora ofNorthAmerica (FNA) for more detail.
    [Show full text]
  • Polygonaceae)
    Journal of Integrative JIPB Plant Biology Tertiary montane origin of the Central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae) † Ming‐Li Zhang1,2*, Stewart C. Sanderson3, Yan‐Xia Sun1 , Vyacheslav V. Byalt4 and Xiao‐Li Hao1,5 1Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences, Research Article Urumqi 830011, China, 2Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China, 3Shrub Sciences Laboratory, Intermountain Research Station, Forest Service, US Department of Agriculture, Provo, UT 84601, USA, 4Komarov Botanical Institute, Russian Academy of † Sciences, St Petersburg RU‐197376, Russia, 5School of Life Science, Shihezi University, Shihezi 832003, China. Present address: Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China. *Correspondence: [email protected] Abstract Atraphaxis has approximately 25 species and a paleogeographic events, shrinkage of the inland Paratethys Sea distribution center in Central Asia. It has been previously used to at the boundary of the late Oligocene and early Miocene, and hypothesize an origin from montane forest. We sampled 18 the time intervals of cooling and drying of global climate from species covering three sections within the genus and 24 (22) Ma onward likely facilitated early diversification of sequenced five cpDNA spacers, atpB‐rbcL, psbK‐psbI, psbA‐ Atraphaxis, while rapid uplift of the Tianshan Mountains during trnH, rbcL, and trnL‐trnF. BEAST was used to reconstruct the late Miocene may have promoted later diversification. phylogenetic relationship and time divergences, and S‐DIVA and fi Lagrange were used, based on distribution area and ecotype Keywords: Allopatric diversi cation; Atraphaxis; biogeography; Central Asia flora; molecular clock; montane origin; phylogeny; Polygonaceae data, for reconstruction of ancestral areas and events.
    [Show full text]
  • DNA Barcoding and Biochemical Profil-Ing of Medicinal Plants Of
    SUMMARY | APRIL 2010 WORKING PAPER No. 037 | February 2016 DNA Barcoding and Biochemical Profil- ing of Medicinal Plants of Northern and Desert Areas of Pakistan to Improve Ru- ral Living Standards Amer Jamil and Muhammad Ashfaq Posted: 2/17/2016 THE PAKISTAN STRATEGY SUPPORT PROGRAM (PSSP) WOKRING PAPERS SUMMARY | APRIL 2010 ABOUT PSSP The Pakistan Strategy Support Program (PSSP) is an initiative to strengthen evidence-based policymaking in Pakistan in the areas of rural and agricultural development. Funded by the United States Agency for International Development (USAID) and implemented by the International Food Policy Research Institute (IFPRI), the PSSP provides analysis in four areas: agricultural production and productivity; water management and irrigation; macroeconomics, markets and trade; and poverty reduction and safety nets. The PSSP is undertaken with guidance from the Government of Pakistan through the federal Planning Commission and a National Advisory Committee, and in collaboration with Innovative Development Strategies (Pvt) Ltd. (IDS), Islamabad, and other development partners. For more infor- mation, please visit pssp.ifpri.info. ABOUT the COMPETITIVE GRANTS PROGRAM The Competitive Grants Program (CGP) is a component of the PSSP that provides support to Pakistani researchers on topics addressing the PSSP and related objectives. The goals of the CGP are to strengthen social science research within the academic community of Pakistan and to produce quality papers on important development policy issues. While PSSP working papers are not classified as peer-reviewed final publications, the papers developed under the CGP have been presented in program conferences and subject to reviews at the interim and final report stages. The CGP is guided by an academic Research Advisory Committee.
    [Show full text]