Research Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calligonum Polygonoides Linnaeus Extract: HPLC-EC and Total Antioxidant Capacity Evaluation Sara M
Full Paper DOI: 10.1002/elan.201400555 Calligonum polygonoides Linnaeus Extract: HPLC-EC and Total Antioxidant Capacity Evaluation Sara M. C. Gomes,[a] Isabel P. G. Fernandes,[a] Narpat Singh Shekhawat,[b] Sunita Kumbhat,[c] and Ana Maria Oliveira-Brett*[a] Abstract: Flavonoids in Calligonum polygonoides Lin- pounds. The total antioxidant capacity was quantified naeus extract were separated, detected, and identified by using the DPPHC method and voltammetry. The RP- reverse-phase high-performance liquid chromatography HPLC-EC led to the detection of nine different flavo- (RP-HPLC) with electrochemical detection (EC) in com- noids: catechin, delphinidin, fisetin, myricetin, epicate- bined isocratic and gradient elution using a glassy carbon chin, kuromanin, rutin, callistephin and procyanidin A2, or a boron doped diamond electrode. Ultrasonication in a single run by direct injection of the sample extract coupled with a microwave-assisted technique was devel- solution. oped to optimize the extraction of the phenolic com- Keywords: Calligonum polygonoides Linnaeus · DPPHC method · Electrochemical detection · Flavonoids · Reverse-phase high- performance liquid chromatography 1 Introduction plant has made it vulnerable and endangered species in its habitat [2]. Phenolic compounds constitute one of the most numerous Calligonum polygonoides Linnaeus is known for its me- groups of plant secondary metabolites. The interest in the dicinal properties apart from being traditionally used as bioactivity of phenolic compounds is due to the potential food during frequent famines, Figure 1 [3–6]. These health benefits of these polyphenolic components and plants produce numerous flower buds during March and their involvement in important biological and industrial April. The local people harvest branches bearing on processes. -
Characterization of the Wild Trees and Shrubs in the Egyptian Flora
10 Egypt. J. Bot. Vol. 60, No. 1, pp. 147-168 (2020) Egyptian Journal of Botany http://ejbo.journals.ekb.eg/ Characterization of the Wild Trees and Shrubs in the Egyptian Flora Heba Bedair#, Kamal Shaltout, Dalia Ahmed, Ahmed Sharaf El-Din, Ragab El- Fahhar Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt. HE present study aims to study the floristic characteristics of the native trees and shrubs T(with height ≥50cm) in the Egyptian flora. The floristic characteristics include taxonomic diversity, life and sex forms, flowering activity, dispersal types,economic potential, threats and national and global floristic distributions. Nine field visits were conducted to many locations all over Egypt for collecting trees and shrubs. From each location, plant and seed specimens were collected from different habitats. In present study 228 taxa belonged to 126 genera and 45 families were recorded, including 2 endemics (Rosa arabica and Origanum syriacum subsp. sinaicum) and 5 near-endemics. They inhabit 14 habitats (8 natural and 6 anthropogenic). Phanerophytes (120 plants) are the most represented life form, followed by chamaephytes (100 plants). Bisexuals are the most represented. Sarcochores (74 taxa) are the most represented dispersal type, followed by ballochores (40 taxa). April (151 taxa) and March (149 taxa) have the maximum flowering plants. Small geographic range - narrow habitat - non abundant plants are the most represented rarity form (180 plants). Deserts are the most rich regions with trees and shrubs (127 taxa), while Sudano-Zambezian (107 taxa) and Saharo-Arabian (98 taxa) was the most. Medicinal plants (154 taxa) are the most represented good, while salinity tolerance (105 taxa) was the most represented service and over-collecting and over-cutting was the most represented threat. -
Some Threatened Medicinal Plants of Beer Jhunjhunu Conservation Reserve of Rajasthan, India
International Journal of Pharmaceutical and Medical Research Volume – 2 Issue – 1 February 2014 Website: www.woarjournals.org/IJPMR ISSN: 2348-0262 Some Threatened Medicinal Plants of Beer Jhunjhunu Conservation Reserve of Rajasthan, India Manju Chaudhary Department of Botany, S.R.R.M. Govt. College Jhunjhunu Abstract: Plant diversity remains essential for human beings, providing numerous modern and traditional remedies to the healthcare system. The vast land of Rajasthan together with its vegetation and flora has a variety of medicinal plants growing in different habitats. The present study aimed to document the preliminary analysis of rare and threatened medicinal plants of Beer Jhunjhunu Conservation Reserve of Rajasthan. The study area is a protected forest area and considered as important in terms of biodiversity. The area harbors rich flora and fauna. However, the rich resources including medicinal plants are disappearing at an alarming rate due to over- exploitation. Therefore, the management of traditional medicinal plant resources has become a matter of urgency. Conservation of the species in natural habitat and artificial regeneration would be the best opinion to recover the species from near extinction. Keywords: Threatened, Endangered, Extinct, Conservation Reserve, in-situ and ex-situ conservation Introduction Jhunjhunu Conservation Reserve of Rajasthan is such an area Plants containing medicinal and other beneficial properties have which was declared as conservation reserve by the State been known and used in some form or other since time immemorial Government on 9 March, 2012 for the purpose of protecting in the traditional system of medicines (Jain and Saklani, 1991). The landscapes, flora and fauna and their habitat. -
Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia
plants Article Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia Olfa Karous 1,2,* , Imtinen Ben Haj Jilani 1,2 and Zeineb Ghrabi-Gammar 1,2 1 Institut National Agronomique de Tunisie (INAT), Département Agronoime et Biotechnologie Végétale, Université de Carthage, 43 Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunisia; [email protected] (I.B.H.J.); [email protected] (Z.G.-G.) 2 Faculté des Lettres, Université de Manouba, des Arts et des Humanités de la Manouba, LR 18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), 2010 Manouba, Tunisia * Correspondence: [email protected] Abstract: Thanks to its geographic location between two bioclimatic belts (arid and Saharan) and the ancestral nomadic roots of its inhabitants, the sector of Ouled Dabbeb (Southern Tunisia) represents a rich source of plant biodiversity and wide ranging of ethnobotanical knowledge. This work aims to (1) explore and compile the unique diversity of floristic and ethnobotanical information on different folk use of plants in this sector and (2) provide a novel insight into the degree of knowledge transmission between the current population and their semi-nomadic forefathers. Ethnobotanical interviews and vegetation inventories were undertaken during 2014–2019. Thirty informants aged from 27 to 84 were interviewed. The ethnobotanical study revealed that the local community of Ouled Dabbeb perceived the use of 70 plant species belonging to 59 genera from 31 families for therapeutic (83%), food (49%), domestic (15%), ethnoveterinary (12%), cosmetic (5%), and ritual purposes (3%). Moreover, they were knowledgeable about the toxicity of eight taxa. Nearly 73% of reported ethnospecies were freely gathered from the wild. -
Wood Anatomy of Resedaceae Sherwin Carlquist Santa Barbara Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 16 | Issue 2 Article 8 1997 Wood Anatomy of Resedaceae Sherwin Carlquist Santa Barbara Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1997) "Wood Anatomy of Resedaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 16: Iss. 2, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol16/iss2/8 Aliso, 16(2), pp. 127-135 © 1998, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 WOOD ANATOMY OF RESEDACEAE SHERWIN CARLQUIST1 Santa Barbara Botanic Garden 1212 Mission Canyon Road Santa Barbara, CA 93105 ABSTRACT Quantitative and qualitative data are presented for seven species of four genera of Resedaceae. Newly reported for the family are helical striations in vessels, vasicentric and marginal axial paren chyma, procumbent ray cells, and perforated ray cells. Wood features of Resedaceae may be found in one or more of the families of Capparales close to it (Brassicaceae, Capparaceae, Tovariaceae). Lack of borders on pits of imperforate tracheary elements is likely a derived character state. Wood of Reseda is more nearly juvenile than that of the other genera in ray histology; this corresponds to the herba ceousness of Reseda. The quantitative features of wood of Resedaceae are intermediate between those of dicotyledonous annuals and those of dicotyledonous desert shrubs. Wood of Resedaceae appears especially xeromorphic in narrowness of vessels, a fact related to the subdesert habitats of shrubby species and to the dry conditions in which annual or short-lived perennial Resedaceae flower and fruit. -
Native Plants
3 Biotech (2017) 7:144 DOI 10.1007/s13205-017-0746-1 ORIGINAL ARTICLE Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants 1 1 1 Lina Maloukh • Alagappan Kumarappan • Mohammad Jarrar • 1 1 1 Jawad Salehi • Houssam El-wakil • T. V. Rajya Lakshmi Received: 24 October 2016 / Accepted: 6 February 2017 / Published online: 8 June 2017 Ó Springer-Verlag Berlin Heidelberg 2017 Abstract DNA barcoding of United Arab Emirates (UAE) the rbcL sequences and for 6 of matK sequences. We native plants is of high practical and scientific value as the suggest rbcL as a promising barcode locus for the tested plants adapt to very harsh environmental conditions that group of 51 plants. In the present study, an inexpensive, challenge their identification. Fifty-one plant species simple method of identification of rare desert plant taxa belonged to 22 families, 2 monocots, and 20 eudicots; a through rbcL barcode is being reported. maximum number of species being legumes and grasses were collected. To authenticate the morphological identi- Keywords United Arab Emirates Á Monocots Á Eudicots Á fication of the wild plant taxa, rbcL and matK regions were Native plants Á rbcL Á matK Á Barcode used in the study. The primer universality and discrimi- natory power of rbcL is 100%, while it is 35% for matK locus for these plant species. The sequences were submit- Introduction ted to GenBank; accession numbers were obtained for all The UAE is a dry land, covered with wadis, waterless riv- erbeds, sand dunes, plains, and mountains. -
Phylogeny and Multiple Independent Whole‐Genome Duplication Events
RESEARCH ARTICLE Phylogeny and multiple independent whole-genome duplication events in the Brassicales Makenzie E. Mabry1,11 , Julia M. Brose1, Paul D. Blischak2, Brittany Sutherland2, Wade T. Dismukes1, Christopher A. Bottoms3, Patrick P. Edger4, Jacob D. Washburn5, Hong An1, Jocelyn C. Hall6, Michael R. McKain7, Ihsan Al-Shehbaz8, Michael S. Barker2, M. Eric Schranz9, Gavin C. Conant10, and J. Chris Pires1,11 Manuscript received 10 December 2019; revision accepted 5 May PREMISE: Whole-genome duplications (WGDs) are prevalent throughout the evolutionary 2020. history of plants. For example, dozens of WGDs have been phylogenetically localized 1 Division of Biological Sciences and Christopher S. Bond Life across the order Brassicales, specifically, within the family Brassicaceae. A WGD event has Sciences Center, University of Missouri, Columbia, Missouri 65211, also been identified in the Cleomaceae, the sister family to Brassicaceae, yet its placement, USA as well as that of WGDs in other families in the order, remains unclear. 2 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA METHODS: Phylo-transcriptomic data were generated and used to infer a nuclear 3 Informatics Research Core Facility and Christopher S. Bond Life phylogeny for 74 Brassicales taxa. Genome survey sequencing was also performed on 66 Sciences Center, University of Missouri, Columbia, Missouri 65211, of those taxa to infer a chloroplast phylogeny. These phylogenies were used to assess and USA confirm relationships among the major families of the Brassicales and within Brassicaceae. 4 Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA Multiple WGD inference methods were then used to assess the placement of WGDs on the 5 Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri nuclear phylogeny. -
Infra-Specific Genetic Diversity of Ochradenus Baccatus Delile, a Gynodioecious Species in Egyptian Flora
International Journal of Research Studies in Biosciences (IJRSB) Volume 3, Issue 5, May 2015, PP 74-85 ISSN 2349-0357 (Print) & ISSN 2349-0365 (Online) www.arcjournals.org Infra-Specific Genetic Diversity of Ochradenus Baccatus Delile, a Gynodioecious Species in Egyptian Flora Wafaa M. Amer1, AzzaM. H. El Hadidy2, Rania A. Hassan3 Cairo University Herbarium/ Department of Botany and Microbiolgy/Faculty of Science, Cairo University, Giza 12613, Egypt. [email protected], [email protected], [email protected] Abstract: Ochradenus Delile is a small genus of 6-9 species within family Resedaceae. In Egypt, it is only represented by the gynodioecious Ochradenus baccatus Delile, the most widespread species across the entire range of the genus. Within Egypt, field populations and herbarium specimens of O.baccatus showed vast morphological and gender diversity within and between different populations even in the same habitat. This enhanced authors to apply additional genotypic information using RAPD technique to differentiate between the studied O.baccatus forms and populations to support the taxonomic identification of this species. The morphological examination revealed the presence of four transitional inconstant male forms (MF1-MF4) and three female forms (FF1-FF3) on the basis of their floral and fruit traits.The prescreening of the studied forms using twenty primers resulted in 109 scorable bands of which 50 (45.9 %) were polymorphic. All the primers used developed monomorphic bands with the studied O.baccatus forms ranged from 3 in OPZ-13 primer to 6 in OPD-05 primer. This study revealed the detection of certain RAPD bands characterized and linked to different sex forms. -
ANATOMICAL CHARACTERISTICS and ECOLOGICAL TRENDS in the XYLEM and PHLOEM of BRASSICACEAE and RESEDACAE Fritz Hans Schweingruber
IAWA Journal, Vol. 27 (4), 2006: 419–442 ANATOMICAL CHARACTERISTICS AND ECOLOGICAL TRENDS IN THE XYLEM AND PHLOEM OF BRASSICACEAE AND RESEDACAE Fritz Hans Schweingruber Swiss Federal Research Institute for Forest, Snow and Landscape, CH-8903 Birmensdorf, Switzerland (= corresponding address) SUMMARY The xylem and phloem of Brassicaceae (116 and 82 species respectively) and the xylem of Resedaceae (8 species) from arid, subtropical and tem- perate regions in Western Europe and North America is described and ana- lysed, compared with taxonomic classifications, and assigned to their ecological range. The xylem of different life forms (herbaceous plants, dwarf shrubs and shrubs) of both families consists of libriform fibres and short, narrow vessels that are 20–50 μm in diameter and have alter- nate vestured pits and simple perforations. The axial parenchyma is para- tracheal and, in most species, the ray cells are exclusively upright or square. Very few Brassicaceae species have helical thickening on the vessel walls, and crystals in fibres. The xylem anatomy of Resedaceae is in general very similar to that of the Brassicaceae. Vestured pits occur only in one species of Resedaceae. Brassicaceae show clear ecological trends: annual rings are usually dis- tinct, except in arid and subtropical lowland zones; semi-ring-porosity decreases from the alpine zone to the hill zone at lower altitude. Plants with numerous narrow vessels are mainly found in the alpine zone. Xylem without rays is mainly present in plants growing in the Alps, both at low and high altitudes. The reaction wood of the Brassicaceae consists primarily of thick-walled fibres, whereas that of the Resedaceae contains gelatinous fibres. -
Molecular Systematics and Biogeography of Resedaceae Based on ITS and Trnl-F Sequences
Molecular Phylogenetics and Evolution 44 (2007) 1105–1120 www.elsevier.com/locate/ympev Molecular systematics and biogeography of Resedaceae based on ITS and trnL-F sequences Santiago Martín-Bravo a,¤, Harald Meimberg c,d, Modesto Luceño a, Wolfgang Märkl c, Virginia Valcárcel a, Christian Bräuchler c, Pablo Vargas b, Günther Heubl c a Pablo de Olavide University, Ctra. Utrera km 1, 41013 Sevilla, Spain b Royal Botanical Garden of Madrid, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain c Department of Biology I, Section: Biodiversity Research, Ludwig-Maximilians-University Munich, Menzinger Str. 67, 80638 Munich, Germany d Department of Bioagricultural Sciences and Pest Management, Colorado State University, Plant Sciences Building, University Ave. 307, Fort Collins, CO 80523, USA Received 9 October 2006; revised 11 December 2006; accepted 18 December 2006 Available online 31 December 2006 Abstract The Resedaceae, containing 6 genera and ca. 85 species, are widely distributed in the Old World, with a major center of species diver- sity in the Mediterranean basin. Phylogenetic analyses of ITS and plastid trnL–trnF sequences of 66 species from all genera of the Resed- aceae reveal (1) monophyly of the family, in congruence with preliminary phylogenetic studies; (2) molecular support for the traditional morphological subdivision of the Resedaceae into three tribes according to ovary and placentation types, and carpel number; (3) two monophyletic genera (Caylusea, Sesamoides), and one natural group (core Reseda), which includes the remaining four genera of the fam- ily (Ochradenus, Oligomeris, Randonia, Reseda); (4) a monophyletic origin for four of the six taxonomic sections recognized within Reseda (Leucoreseda, Luteola, Glaucoreseda, Phyteuma). -
DNA Barcoding and Biochemical Profil-Ing of Medicinal Plants Of
SUMMARY | APRIL 2010 WORKING PAPER No. 037 | February 2016 DNA Barcoding and Biochemical Profil- ing of Medicinal Plants of Northern and Desert Areas of Pakistan to Improve Ru- ral Living Standards Amer Jamil and Muhammad Ashfaq Posted: 2/17/2016 THE PAKISTAN STRATEGY SUPPORT PROGRAM (PSSP) WOKRING PAPERS SUMMARY | APRIL 2010 ABOUT PSSP The Pakistan Strategy Support Program (PSSP) is an initiative to strengthen evidence-based policymaking in Pakistan in the areas of rural and agricultural development. Funded by the United States Agency for International Development (USAID) and implemented by the International Food Policy Research Institute (IFPRI), the PSSP provides analysis in four areas: agricultural production and productivity; water management and irrigation; macroeconomics, markets and trade; and poverty reduction and safety nets. The PSSP is undertaken with guidance from the Government of Pakistan through the federal Planning Commission and a National Advisory Committee, and in collaboration with Innovative Development Strategies (Pvt) Ltd. (IDS), Islamabad, and other development partners. For more infor- mation, please visit pssp.ifpri.info. ABOUT the COMPETITIVE GRANTS PROGRAM The Competitive Grants Program (CGP) is a component of the PSSP that provides support to Pakistani researchers on topics addressing the PSSP and related objectives. The goals of the CGP are to strengthen social science research within the academic community of Pakistan and to produce quality papers on important development policy issues. While PSSP working papers are not classified as peer-reviewed final publications, the papers developed under the CGP have been presented in program conferences and subject to reviews at the interim and final report stages. The CGP is guided by an academic Research Advisory Committee. -
Doostmohammadi Et Al Botanical
Is Pteropyrum a pathway to C4 evolution in Polygonaceae? An integrative approach to the taxonomy and anatomy of Pteropyrum (C3), an immediate relative of Calligonum (C4) Moslem Doostmohammadi, Maryam Malekmohammadi, Morteza Djamali, Hossein Akhani To cite this version: Moslem Doostmohammadi, Maryam Malekmohammadi, Morteza Djamali, Hossein Akhani. Is Pteropyrum a pathway to C4 evolution in Polygonaceae? An integrative approach to the taxonomy and anatomy of Pteropyrum (C3), an immediate relative of Calligonum (C4). Botanical Journal of the Linnean Society, Linnean Society of London, 2020, 192 (2), pp.369-400. 10.1093/botlinnean/boz079. hal-02391348 HAL Id: hal-02391348 https://hal-amu.archives-ouvertes.fr/hal-02391348 Submitted on 3 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Is Pteropyrum a pathway to C4 evolution in Polygonaceae? An integrative approach to the taxonomy and anatomy of Pteropyrum (C3), an immediate relative of Keywords=Keywords=Keywords_First=Keywords Calligonum (C ) HeadA=HeadB=HeadA=HeadB/HeadA 4 HeadB=HeadC=HeadB=HeadC/HeadB HeadC=HeadD=HeadC=HeadD/HeadC MOSLEM DOOSTMOHAMMADI1, MARYAM MALEKMOHAMMADI1, Extract3=HeadA=Extract1=HeadA MORTEZA DJAMALI2 and HOSSEIN AKHANI1,*, REV_HeadA=REV_HeadB=REV_HeadA=REV_HeadB/HeadA 1 REV_HeadB=REV_HeadC=REV_HeadB=REV_HeadC/HeadB Halophytes and C4 Plants Research Laboratory, Department of Plant Sciences, School of Biology, College REV_HeadC=REV_HeadD=REV_HeadC=REV_HeadD/HeadC of Science, University of Tehran, P.O.