Application of Radiogenic Isotopes to Ore Deposit Research and Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Application of Radiogenic Isotopes to Ore Deposit Research and Exploration REVieWS IN EConomiC Geology Volume 12 APPLICATION OF RADIOGENIC ISOTOPES TO ORE DEPOSIT RESEARCH AND EXPLORATION CONTENTS Pb Isotopes, Ore Deposits, and R.M. Tosdal, J.L. Wooden, and R.M. Bouse Metallogenic Terranes Re-Os Isotope Geochemistry of Magmatic D.D. Lambert, J.G. Foster, L.R. Frick, and E.M. Ripley Sulfide Ore Systems Metallogenesis in Continental Margins: J. Ruiz and R. Mathur Re-Os Evidence from Porphyry Copper Deposits in Chile 40Ar/39Ar Geochronology of Supergene Processes in Ore Deposits P.M. Vasconcelos Integrative Geochronology of Ore Deposits: J.T. Chesley New Insights into the Duration and Timing of Hydrothermal Circulation Isotopic Dating of Diamonds D.G. Pearson and S.B. Shirey In Situ Analysis of Radiogenic Isotopes with Emphasis on R.A. Stern Ion Microprobe Techniques and Applications Editors D.D. Lambert and P.E. Brown SOCIETY OF ECONOMIC GEOLOGISTS, INC. Society of Economic Geologists, Inc. Reviews in Economic Geology, Vol. 12 Application of Radiogenic Isotopes to Ore Deposit Research and Exploration D.D. Lambert and P.E. Brown, Editors Additional copies of this publication can be obtained from Society of Economic Geologists, Inc. 7811 Shaffer Parkway Littleton, CO 80127 www.segweb.org ISBN: 978-1-629495-70-5 The Authors: Robin M. Bouse D. Graham Pearson Paulo Vasconcelos U.S. Geological Survey Department of Geological Sciences Department of Earth Sciences 345 Middlefield Road Durham University University of Queensland Menlo Park, CA 94025 South Road Brisbane, QLD 4072 USA Durham DH1 3LE Australia Telephone: 650.329.4448 U.K. Telephone: 61.7.3365.2297 Email: [email protected] Telephone: 44.191.374.4701 Email: Email: [email protected] [email protected] John Chesley Department of Geosciences Edward M. Ripley Joseph L. Wooden University of Arizona Department of Geological Sciences U.S. Geological Survey Tucson, AZ 85721 Indiana University 345 Middlefield Road USA Bloomington, IN 47405-5101 Menlo Park, CA 94025 Telephone: 520.621.6024 USA USA Email: [email protected] Telephone: 812.855.5581 Telephone: 650.725.9237 Email: [email protected] Email: [email protected] Jeffrey G. Foster BHP Minerals Discovery Joaquin Ruiz 40 McDougall Street Department of Geosciences Brisbane, QLD 4064 University of Arizona Australia Tucson, AZ 85721 Telephone: 61.7.3278.5733 USA Email: [email protected] Telephone: 520.621.6024 Email: [email protected] Louise R. Frick Victorian Institute of Earth and Steven B. Shirey Planetary Sciences Department of Terrestrial Magnetism Department of Earth Science Carnegie Institution of Washington Monash University 5241 Broad Branch Road, N.W. Melbourne, VIC 3168 Washington, D.C. 20015 Australia USA Telephone: 61.3.9905.4893 Telephone: 202.686.4370 Email: Email: [email protected] [email protected] Richard A. Stern David D. Lambert J.C. Roddick Ion Microprobe Victorian Institute of Earth and Laboratory Planetary Sciences Geological Survey of Canada Department of Earth Science 601 Booth St. Monash University Ottawa, ON K1A 0E8 Melbourne, VIC 3168 Canada Australia Telephone: 613.995.8935 Telephone: 61.3.9905.5767 Email: [email protected] Email: [email protected] Richard M. Tosdal Mineral Deposit Research Unit Ryan Mathur Department of Earth and Ocean Department of Geosciences Sciences University of Arizona University of British Columbia Tucson, AZ 85721 Vancouver, BC V6T 1Z4 USA Canada Telephone: 520.621.6024 Telephone: 604.822.6136 Email: [email protected] Email: [email protected] ii PREFACE The concept for Reviews in Economic Geology: Application included is one chapter devoted to the isotopic dating of di- of Radiogenic Isotopes to Ore Deposit Research and Exploration amonds. This study has profound implications for diamond grew out of discussions between scientists at several cen- genesis, the longevity of portions of the Earth’s upper man- ters for ore deposit studies in the United States, Canada, tle, and diamond exploration strategies in Archean cratonic and Australia. We recognized that there was a need for a settings. book that illustrates the diverse applications of radiogenic We sincerely hope that this volume makes members of isotope geochemistry in the mineral exploration arena. the economic geology community more aware of the The purpose of this volume and of the Society of Eco- broad field of radiogenic isotope geochemistry and the nomic Geologists short course is to provide economic geol- potential applications to their own research and explo- ogists, and the students of economic geology, with the fun- ration problems. The volume editors/short course con- damentals of the most commonly used radiogenic isotope venors and SEG editors are indebted to all of the authors systems and up-to-date information on applications of these for their efforts in the production of the short course and important tools to understanding ore-forming processes. the resulting volume. The editors would especially like to The volume covers the fundamentals of the more tradi- thank Lisa Laird of SEG for her extreme patience during tional (Pb, Rb-Sr, Sm-Nd) as well as the more exotic (Re-Os) the final stages of production of this Reviews volume. isotope systems in both magmatic and hydrothermal min- eral deposits. Unique new applications of Ar-Ar geochronol- David D. Lambert ogy in understanding supergene processes are also pre- Joaquin Ruiz sented, as are the latest in situ U-Pb geochronology techniques using SHRIMP microbeam technology. Finally, iii BIOGRAPHIES ROBIN M. BOUSE received her BS degree from Duke DAVID D. LAMBERT received his PhD degree in geo- University and an MS degree from the University of Rhode chemistry from the Colorado School of Mines in 1982. He Island. In 1995, she received a PhD from the University of has worked for the Branch of Isotope Geology (U.S. Geo- Arizona. As a doctoral candidate, Bouse studied ore de- logical Survey) in Denver; Texas Christian University in posits and isotope geochemistry, with emphasis on por- Fort Worth; and the Department of Terrestrial Magnetism phyry copper deposits in Arizona. She is interested in the at Carnegie Institution of Washington in Washington, origin of metals in ore deposits and their use, fate, and D.C. In 1990, he joined the Department of Earth Sciences transport in the environment. Since 1994, Bouse has been at Monash University (Melbourne, Australia), where he with the USGS Water Resources Division in Menlo Park, leads the Ore Genesis Research Group. The prime focus California, where she has concentrated on isotope geo- of this group is the study of igneous processes that are chemistry and its application to tracing sources of metals recorded in ultramafic-mafic intrusions, mantle xenoliths, in the environment. komatiite and flood basalt successions, ultrapotassic rocks, and granite porphyry system—in particular, those JOHN T. CHESLEY began his career in exploration with processes that concentrated strategic mineral resources of a BSc degree in geology from Oregon State University. He chromium, nickel, copper, gold, the platinum-group ele- received his MSc degree from OSU in 1986 and spent the ments, and diamonds. His research and teaching is cen- next two years helping set up the 40Ar/39Ar facility at the tered on the role of lithospheric geodynamics in the pet- U.S. Geological Survey in Denver. A continuing interest in rogenesis of giant ore deposits and in new applications of ore deposits led to his completion of a PhD degree at the trace element and radiogenic isotope geochemistry in University of Michigan in 1993. Chesley’s thesis was enti- tracing elemental pathways in magmatic and hydrother- tled, “Geochronology of Hydrothermal Ore Deposits.” For mal systems. He is a Fellow of the Society of Economic Ge- this, he used Sm-Nd in fluorite for direct dating of ore de- ologists and a member of the American Geophysical posits; he was the first person to do so. In conjunction with Union, Geochemical Society, and the Geological Societies other researchers at the University of Michigan and the of America and Australia. University of Arizona, Chesley has shown the importance of directly dating ore deposits and the application of mul- D. GRAHAM PEARSON is a graduate of the Royal School tiple isotopic dating methods toward understanding the of Mines, Imperial College, London. He completed a PhD overall lifetime of hydrothermal systems. He has worked at Leeds University in 1989, studying graphitised dia- with the U-Pb, Ar-Ar, Rb-Sr, Sm-Nd and Re-Os systems. monds in the Beni Bousera peridotite massif, north Mo- Currently he is a Research Associate at the University of rocco. He then undertook postdoctoral work at the De- Arizona, where he helped set up the Re-Os facility and partment of Terrestrial Magnetism (DTM), Carnegie continues his research on the geochronology of ore de- Institution of Washington, applying the Re-Os isotope sys- posits. His research horizons have broadened to include tem to dating mantle xenoliths in kimberlites. This work the timing of formation of Archean cratons, crust/mantle continued back in the UK, where he established an Re-Os interaction, Himalayan tectonics, and Sr in groundwater. isotope laboratory at the Open University. Moving to Durham in 1995, as a lecturer, he began applying the LOUISE R. FRICK graduated with a PhD in geochemistry Re-Os isotope system to dating diamond inclusions, col- from Monash University in 1999. As a graduate student, laborating with Steve Shirey and Rick Carlson at DTM. she spent three months as a predoctoral fellow at the De- Current research is focused on diamond genesis, plat- partment of Terrestrial Magnetism at Carnegie Institution inum-group-element geochemistry and applications of of Washington in Washington, D.C. Her specialty is the ap- Re-Os isotopes to Earth sciences, among other things.
Recommended publications
  • Podiform Chromite Deposits—Database and Grade and Tonnage Models
    Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S.
    [Show full text]
  • Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes”
    minerals Editorial Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes” Pavel A. Serov Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia; [email protected] Magmatism, ore genesis and metamorphism are commonly associated processes that define fundamental features of the Earth’s crustal evolution from the earliest Precambrian to Phanerozoic. Basically, the need and importance of studying the role of metamorphic processes in formation and transformation of deposits is of great value when discussing the origin of deposits confined to varied geological settings. In synthesis, the signatures imprinted by metamorphic episodes during the evolution largely indicate complicated and multistage patterns of ore-forming processes, as well as the polygenic nature of the mineralization generated by magmatic, postmagmatic, and metamorphic processes. Rapid industrialization and expanding demand for various types of mineral raw ma- terials require increasing rates of mining operations. The current Special Issue is dedicated to the latest achievements in geochemistry, mineralogy, and geochronology of ore and metamorphic complexes, their interrelation, and the potential for further prospecting. The issue contains six practical and theoretical studies that provide for a better understanding of the age and nature of metamorphic and metasomatic transformations, as well as their contribution to mineralization in various geological complexes. The first article, by Jiang et al. [1], reports results of the first mineralogical–geochemical Citation: Serov, P.A. Editorial for studies of gem-quality nephrite from the major Yinggelike deposit (Xinjiang, NW China). Special Issue “Ore Genesis and The authors used a set of advanced analytical techniques, that is, electron probe microanaly- Metamorphism: Geochemistry, sis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry Mineralogy, and Isotopes”.
    [Show full text]
  • The Genetic Model of the Hohentauern/Sunk Sparry Magnesite Deposit (Eastern Alps/Austria)
    Dissertation Amir Morteza Azim Zadeh The genetic model of the Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria) Dissertation PhD Thesis submitted to obtain the degree of: Doktor der montanistischen Wissenschaften Amir Morteza Azim Zadeh BSc. & MSc. Supervisor: O. Univ.-Prof. Dr. phil. Fritz Ebner Department of Applied Geosciences and Geophysics Geology and Economic Geology University of Leoben, Austria 2009 Referees: O. Univ.-Prof. Dr. phil. Fritz Ebner Ao. Univ.-Prof. Dr. Ronald J. Bakker I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume. Amir M. Azimzadeh Leoben, May 2009 „…und dicht neben meinem Wissen lagerte mein schwarzes Unwissen.“ Also sprach Zarathustra Friedrich Wilhelm Nietzsche Contents . Contents: Abstract I Zusammenfassung II Publications and conference presentations of A. M. Azim Zadeh related to this thesis IV Acknowledgment VI List of figures VIII List of tables XVI 1. Introduction 1 1.1 Aim 2 1.2 Applied methods 2 1.2.1 Field methods and sampling 3 1.2.2 Analytical techniques 3 1.2.2.1 Petrography 3 1.2.2.2 Cathodoluminescence microscopy 3 1.2.2.3 Electron microprobe analysis (EPMA) 3 1.2.2.4 X-ray fluorescence spectrometry (XRF) 4 1.2.2.5 Inductively coupled plasma mass spectrometry (ICP-MS) 4 1.2.2.6 Atomic absorption spectroscopy (AAS) 5 1.2.2.7 Fluid inclusion analysis 6 1.2.2.7.1 Ion chromatography (IC) 6 1.2.2.7.2 Microthermometry 7 1.2.2.8 Raman spectroscopy 8 1.2.2.9 Laser-ablation MC-ICP-MS isotope analysis 9 1.3 Magnesite as mineral and ore 9 1.4 Types and origin of magnesite 11 Contents .
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Recent Advances in BIF-Related Iron Ore Models and Exploration Strategies
    Ore Deposits and Exploration Technology _________________________________________________________________________________________ Paper 54 Recent Advances in BIF-related Iron Ore Models and Exploration Strategies Hagemann, S. [1], Dalstra, H. I. [2], Hodkiewicz, P. [3], Flis, M. [4], Thorne, W. [1] McCuaig, C. [1] _________________________ 1. University of Western Australia, CET-Centre for Exploration Targeting, Crawley, Australia 2. Rio Tinto Exploration Pty, Ltd, Belmont WA, Australia 3. SRK Consulting, West Perth, Australia 4. Rio Tinto Iron Ore, Perth, Australia ABSTRACT Recent research on BIF-related high-grade iron ore mineralization has resulted in new genetic models that emphasize the structurally controlled hypogene alteration and upgrade of BIF to high-grade (>65% Fe) iron ore. Conventional structural and stratigraphic mapping and reconstructions of the tectonic history of iron districts, in combination with high-tech geochemical analyses such as laser ICP-MS analyses of in situ oxides and fluid inclusions, stable (C-O-H) and radiogenic (Sr) isotopes, provide the iron explorationists with an invaluable set of tools to discover concealed iron ore bodies, deposits and districts. Two case studies from Western Australia illustrate: (1) the power of a tectonic reconstruction of the Paraburdoo Ranges and its significance for the location of high-grade hematite mineralization, and (2) the interpretation of structural controls on iron mineralization in the C deposit and its implications for resource estimation. INTRODUCTION RECENT ADVANCES IN GENETIC MODELS The past 15 years has seen significant new research conducted on BIF-related iron ore mineralization leading to new genetic In the mid-1990’s Hamersley Iron established a task force to models that emphasize the role of hypogene alteration and investigate the potential of exploring for concealed iron ore structurally controlled hydrothermal fluid flow in the upgrade of bodies in the Hamersley Province of Western Australia.
    [Show full text]
  • Monchegorsk Layered Intrusion, Fennoscandian Shield)
    minerals Article Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield) Artem V. Mokrushin 1,* and Valery F. Smol’kin 2 1 Geological Institute—Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 14 Fersman Street, 184209 Apatity, Russia 2 Vernadsky State Geological Museum of the Russian Academy of Sciences, 11/11 Mokhovaya Street, 125009 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-(902)133-39-95 Abstract: In 1990, the Sopcheozero Cr deposit was discovered in the Monchegorsk Paleoprotero- zoic layered mafic-ultramafic layered intrusion (Monchepluton). This stratiform early-magmatic deposit occurs in the middle part of the Dunite Block, which is a member of the Monchepluton layered series. The Cr2O3 average-weighted content in ordinary and rich ores of the deposit is 16.65 and 38.76 wt.%, respectively, at gradually changing concentrations within the rich, ordinary and poor ore types and ore body in general. The ores of the Sopcheozero deposit, having a ratio of Cr2O3/FeOtotal = 0.9–1.7, can serve as raw materials for the refractory and chemical industries. The ore Cr-spinel (magnochromite and magnoalumochromite) is associated with highly magnesian olivine (96–98 Fo) rich in Ni (0.4–1.1 wt.%). It confirms a low S content in the melt and complies with the low oxygen fugacity. The coexisting Cr-spinel-olivine pairs crystallized at temperatures ◦ from 1258 to 1163 C, with accessory Cr-spinel crystallizing at relatively low, while ore Cr-spinel at higher temperatures. The host rock and ore distinguish with widespread plastic deformations of ◦ Citation: Mokrushin, A.V.; Smol’kin, olivine at the postcrystallization phase under conditions of high temperature (above 400 C) and V.F.
    [Show full text]
  • Why Magnesite, Talc, and MVT Ore Deposits Are Associated with Burial Dolostones: Serpentinization Provides the Magnesium
    Why magnesite, talc, and MVT ore deposits are associated with burial dolostones: Serpentinization provides the magnesium Enrique Merino Dept of Earth and Atmospheric Sciences, Indiana University, Bloomington IN 47405, USA. [email protected] Àngels Canals Dept of Mineralogy, Petrology and Applied Geology, Universitat de Barcelona, Spain. [email protected] Abstract. Magnesite, talc, and MVT ore deposits are dolomite and may also replace quartz in quartzites hosted in burial dolomites in several districts because (Tornos and Spiro 2000). they all form from the same deep hot Mg-rich brines that However, saying that Mg is needed to make first drive replacement of limestone by dolomite. Then magnesite and talc does not make it clear which are the talc and magnesite replace the dolomite. These mineral reactions involved, or what are their driving replacements are Mg-driven and happen by forces, or how to account for the fact that all the ores precipitation/pressure-dissolution, which is why mineral and the dolomite that hosts them occur as volume is preserved, which warrants adjusting replacements, or where the necessary magnesium replacement mass balances on volume. The dolomite- comes from. Our approach below is to adjust for-calcite replacement is self-accelerating via the Ca2+ replacement mass balances on volume (as required by released and affects huge volumes of limestone. the conservation of volume shown in Figures 1-3), and Continued infiltration of the dolostone by the Mg-rich to take account of the new replacement physics (Merino brine causes its replacement by magnesite and talc. The and Dewers 1998; Merino and Canals 2011), by which talc, magnesite, and MVT ores, and dedolomitization replacement forms not by dissolution-precipitation as too, are part and parcel of the dolomitization process.
    [Show full text]
  • Reviews in Economic Geology, Vol. 20
    REVIEWS IN ECONOMIC GEOLOGY Volume 20 DIVERSITY OF CARLIN-STYLE GOLD DEPOSITS Editor John L. Muntean Ralph J. Roberts Center for Research in Economic Geology Nevada Bureau of Mines and Geology University of Nevada Reno SOCIETY OF ECONOMIC GEOLOGISTS, INC. Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/4617793/edocrev20fm.pdf by guest on 30 September 2021 REVIEWS IN ECONOMIC GEOLOGY Published by the Society of Economic Geologists, Inc. 7811 Shaffer Parkway Littleton, CO 80127, USA Website: segweb.org E-mail: [email protected] Printed by: robinprint 9457 S. University Blvd., #807 Highlands Ranch, CO 80126-4976 Email: [email protected] ISSN 0741–0123 (Print) 2374–443X (PDF) ISBN 978–1–629492–22–3 (Print) 978–1–629495–78–1 (PDF) Reviews in Economic Geology is a series publication of the Society of Economic Geolo- gists designed to accompany the Society’s Short Course series. Like the Short Courses, each volume provides comprehensive updates on various applied and academic topics for practicing economic geologists and geochemists in exploration, development, research, and teaching. Volumes are produced in conjunction with each new Short Course, first serving as a textbook for that course and subsequently made available to SEG members and others at a modest cost. On the cover: Map showing locations of Carlin-style gold deposits discussed in this volume: Great Basin, Nevada; Dian- Qian-Gui “Golden Triangle,” SW China; Nadaleen trend, Yukon, Canada; Bau district, Sarawak, Malaysia; Agdarreh and Zarshouran deposits, NW Iran; and Allchar deposit, Republic of Macedonia. Inset shows possible interrelationships between various sources of ore fluid and types of Carlin-style deposits, described in the introduction by Muntean in this volume.
    [Show full text]
  • Garnet U-Pb and O Isotopic Determinations Reveal a Shear-Zone
    www.nature.com/scientificreports OPEN Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system Received: 22 March 2019 Zhongjiang Zang3, Leilei Dong1,2,4, Wei Liu1,2, Han Zhao1,2, Xinshui Wang5, Keda Cai6 & Accepted: 5 July 2019 Bo Wan 1,2 Published: xx xx xxxx The absolute crystallization ages of minerals from hydrothermal fuids measured in situ can unravel the timing of key events leading to the formation of, for instance, ore deposits and hydrothermally derived geological terrains. In this study, a skarn iron deposit from northwest (NW) China is shown to have U-Pb garnet and U-Pb zircon ages of 254.2 ± 1.7 Ma and 255.5 ± 1.0 Ma, respectively, which are both signifcantly younger than magmatism and metamorphism of the region. This skarn age instead correlates with the occurrence of strike-slip and thrust faulting in the region. The water/rock mass ratio of 0.065~0.115 suggests the δ18O garnet composition is ~1‰ at temperatures ranging from 250–450 °C. The low oxygen isotopic composition indicates the role of meteoric water in the garnet formation. These measurements can be interpreted as the shear along faults circulating meteoric water ~10 km below the hanging wall of meta-volcanic sedimentary rock. Meteoric water in this hydrothermal system would leach cations from the meta-volcano-sedimentary rocks necessary for mineralization. Silica-rich hydrothermal fuid reacts with calcic-rich materials in the meta-volcano-sedimentary rocks, depositing the garnet and magnetite. Our work suggests that the shear zone is rich in ores, rendering this deposit for NW China a prospective source for future mineral resource exploration.
    [Show full text]
  • Metals and Society: an Introduction to Economic Geology
    Metals and Society: an Introduction to Economic Geology . Nicholas Arndt l Cle´ment Ganino Metals and Society: an Introduction to Economic Geology Nicholas Arndt Cle´ment Ganino University of Grenoble University of Nice Grenoble Nice 38031 06103 France France [email protected] [email protected] Nicholas T. Arndt, Cle´ment Ganino: Ressources mine´rales: Cours et exercices corrige´s Originally published: # Dunod, Paris, 2010 ISBN 978-3- 642-22995-4 e-ISBN 978-3- 642-22996-1 DOI 10.1007/978-3-642-22996-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011942416 # Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Thousands of years ago European’s were transporting tin from Cornwall in southwest England to Crete in the eastern Mediterranean to create bronze by alloying tin and copper to create a new and more useful metal allow.
    [Show full text]
  • (Kızıldağ, Hatay and Islahiye, Antep) and Tauric Ophiolite Belt (Pozantı-Karsantı, Adana), Turkey
    The Mineralogy and Chemistry of the Chromite Deposits of Southern (Kızıldağ, Hatay and Islahiye, Antep) and Tauric Ophiolite Belt (Pozantı-Karsantı, Adana), Turkey M. Zeki Billor1 and Fergus Gibb2 1 Visiting researcher, Department of Geoscience The University of Iowa Iowa City, IA 52242, USA (Permanent address: Çukurova University, Department of Geology, 01330 Adana, Turkey) 2 Department of Engineering Materials, University of Sheffield, Sheffield, S1 3JD, UK e-mail: [email protected] Introduction recognized in Turkey are: a) the southern (peri- The Tethyan ophiolite belt is one of the Arabic) ophiolite belt, b) the Tauric (median) longest ophiolite belts in the world, extending from ophiolite belt, and c) the northern ophiolite belt. Spain to the Himalayas. The geochemistry, genesis In this study, chromite deposits from the and geological time scale of the ophiolite belt southern and Tauric ophiolite belts have been varies from west to east. It shows its maximum studied. In the study area, the Southern and Tauric development in Turkey. The tectonic setting of the ophiolites have more than 2000 individual chromite Turkish ophiolite belt is a direct result of the deposits throughout the ophiolite; geographically, closure of the Tethyan Sea. the chromite pods are clustered in four locations: Ophiolites in Turkey are widespread from the Karsantı and Gerdibi-Cataltepe districts in the west to east and show tectonically complex Tauric ophiolite belt and the Hatay and Islahiye structures and relationships with other formations area in
    [Show full text]
  • Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits Within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (A Review)
    minerals Review Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review) Anita N. Berzina *, Adel P. Berzina and Victor O. Gimon V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, Koptyug Ave. 3, Novosibirsk 630090, Russia; [email protected] (A.P.B.); [email protected] (V.O.G.) * Correspondence: [email protected]; Tel.: +7-383-333-2304 Academic Editor: Maria Economou-Eliopoulos Received: 31 July 2016; Accepted: 21 November 2016; Published: 29 November 2016 Abstract: The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu) porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of the Siberian craton and discusses the igneous processes that controlled the evolution of these magmatic systems related to mineralization. Geochronological data show that these porphyry deposits have an eastward-younging trend evolving from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment) hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas porphyry Cu–Mo deposits in the central part (Northern Mongolia) formed in the Late Paleozoic–Early Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west gulf of the Mongol–Okhotsk Ocean under the Siberian continent.
    [Show full text]