Lingua Botanica the National Newsletter for FS Botanists & Plant Ecologists
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table of Contents
Appendix C Botanical Resources Table of Contents Purpose Of This Appendix ............................................................................................................. Below Tables C-1. Federal and State Status, Current and Proposed Forest Service Status, and Global Distribution of the TEPCS Plant Species on the Sawtooth National Forest ........................... C-1 C-2. Habit, Lifeform, Population Trend, and Habitat Grouping of the TEPCS Plant Species for the Sawtooth National Forest ............................................................................... C-3 C-3. Rare Communities, Federal and State Status, Rarity Class, Threats, Trends, and Research Natural Area Distribution for the Sawtooth National Forest ................................... C-5 C-4. Plant Species of Cultural Importance for the Sawtooth National Forest ................................... C-6 PURPOSE OF THIS APPENDIX This appendix is designed to provide detailed information about habitat, lifeform, status, distribution, and habitat grouping for the Threatened, Proposed, Candidate, and Sensitive (current and proposed) plant species found on the Sawtooth National Forest. The detailed information is provided to enable managers to more efficiently direct the implementation of Botanical Resources goals, objectives, standards, and guidelines. Additionally, this appendix provides detailed information about the rare plant communities located on the Sawtooth National Forest and should provide additional support of Forest-wide objectives. Species of cultural -
University Degrees M.Sc. in Biology, University of Aarhus, 14.02.1992
Henrik Ærenlund Pedersen Associate Professor Natural History Museum of Denmark Postal address: Sølvgade 83, opg. S, rum 01-017, Botanisk Museum 1350 København K Email: [email protected] Mobile: +45 21 15 27 64 CV University degrees M.Sc. in biology, University of Aarhus, 14.02.1992. Ph.D. in science, University of Aarhus, 08.05.1995 [thesis: 'The genus Dendrochilum (Orchidaceae). Taxonomic and anthecological studies. I-IV']. Academic positions and affiliations Assistant professor at the Botanical Museum & Library, University of Copenhagen, 01.11.1995–31.10.1998. Associate professor at the Natural History Museum of Denmark (formerly the Botanical Museum & Library), University of Copenhagen, 01.11.1998-28.02-2017. Adjunct professor at Botany Department, Kasetsart University, Bangkok, since 08.12.2008. Owner of Select Nature, since 01.01.2017. Emeritus at the Natural History Museum of Denmark, University of Copenhagen, since 01.03.2017. Other scientific qualifications and in-house tasks Herbarium curator (Natural History Museum of Denmark) of Danish vascular plants (1995-2016), and of Greenland vascular plants (2015-2016) and Orchidaceae worldwide (2011-2016). Passed the course 'Teaching and Learning in Higher Education' at the Faculty of Science, University of Copenhagen, 02.04.1998. Member of the Ph.D. committee for botany/biology at the Faculty of Science, University of Copenhagen, 2002–2007. Member of University of Copenhagen's supervising committee concerning the nature reserve Allindelille Fredskov, 2008–2010. Member of the teaching committee, Natural History Museum of Denmark, 2008–2009. Member of the collections committee, Natural History Museum of Denmark, 2010–2013. Member of the outreach committee, Natural History Museum of Denmark, 2013-2016. -
Leading Botanists in San Diego Nancy Carol Carter
Journal of the California Garden & Landscape History Society Vol. 14, No. 4 • Fall 2011 The Brandegees: Leading Botanists in San Diego Nancy Carol Carter [This article, originally published in The Journal of San Diego History, is reprinted here, by permission, in a somewhat abridged form.1] he most renowned botanical couple of 19th-century and generally agreeing with his scientific principles, the T America lived in San Diego from 1894 until 1906. Brandegees eventually claimed a superior ability to classify They were early settlers in the Bankers Hill area, initially and appropriately name the plants they had collected and constructing a brick herbarium to house the world’s best observed in situ. Fully aware of delays and impatient with private collection of plant specimens from the western the imprecision of more distant classification work, both United States and Mexico. They lived in a tent until their resisted the tradition of submitting new species to Gray or treasured plant collection was properly protected, then built other East Coast scientists for botanical description.3 They a house connected to the herbarium. Around their home became expert taxonomists who described and defended they established San Diego’s first botanical garden—a col- their science in West Coast journals. During their lifetimes, lection of rare and exotic plants that furthered their research the Brandegees published a combined total of 159 scientific and delighted visitors. papers.4 Their example in- Botanists and plant ex- spired other Pacific Coast perts from around the botanists to greater confidence world knew of this garden in their own field experience and traveled to San Diego and the value of botanically to study its plants. -
Appendix F3 Rare Plant Survey Report
Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5 -
Situational Analysis Report for Gaston County, North Carolina 21 Century
Situational Analysis Report for Gaston County, North Carolina 21st Century Communities Initiative North Carolina Department of Commerce Jim Fain, Secretary December 6, 2001 1 Table of Contents I. Introduction - The 21st Century Communities Initiative......................................... 3 II. The Process for Implementing the Gaston County 21st Century Communities Initiative. ................................................................................................................. 4 III. Overview of Gaston County ................................................................................... 5 IV. Executive Summary of the Key Issues identified in Gaston County by the Commerce Resource Team..................................................................................... 7 V. A Listing of the members of the North Carolina Department of Commerce Resource Team that conducted interviews of 74 individuals in Gaston County on October 30-31, 2001 ............................................................................................. 13 VI. Gaston County Economic Development Roundtable Recommendations ............ 14 VII. NC Department of Commerce Recommendations: .............................................. 16 VIII. The Next Steps in the 21st Century Community Process...................................... 16 IX. Timeline of Events for the 21st Century Communities Initiative during the next 12 Months (Tentative): ........................................................................................ 17 Appendix: Gaston -
(Orchidaceae: Pleurothallidinae) from North-Western Ecuador
LANKESTERIANA 19(2): 99–105. 2019. doi: http://dx.doi.org/10.15517/lank.v19i2.38773 A NEW AND SHOWY SPECIES OF LEPANTHES (ORCHIDACEAE: PLEUROTHALLIDINAE) FROM NORTH-WESTERN ECUADOR LUIS E. BAQUERO1,2,*, TATIANA JARAMILLO-VIVANCO2 & DENISSE GALARZA VERKOVITCH2 1Grupo de Investigación en Medio Ambiente y Salud BIOMAS, Carrera de Ingeniería Agroindustrial y Alimentos. Facultad de Ingeniería y Ciencias Agropecuarias. Universidad de Las Américas, Calle José Queri, Quito 170137, Pichincha, Ecuador 2Jardín Botánico de Quito, Pasaje #34, Rumipampa E6-264 y Av Shyris, Interior Parque La Carolina, Quito, 170135, Pichincha, Ecuador *Author for Correspondence: [email protected] ABSTRACT. A new species of Lepanthes from north-western Ecuador is presented here. Lepanthes mashpica is similar to L. satyrica, with a long, descending, triangular process of the body of the lip but different in the simple and acute appendix versus the vertically bilobed appendix of L. satyrica. The species was found growing in several locations of Mashpi Reserve, a low-land cloud forest close to Quito. RESUMEN. Se presenta aquí una nueva especie de Lepanthes del noroeste de Ecuador. Lepanthes mashpica es similar a L. satyrica, con el cuerpo del labelo largo, descendente y triangular pero se diferencian en el apéndice simple y agudo del labelo en L. mashpica comparado con el apéndice verticalmente bilobado en L. satyrica. La especie se encontró creciendo en varias localidades dentro de la Reserva Mashpi, un bosque nublado de tierras bajas cercano a Quito. KEYWORDS / PALABRAS CLAVE: Ecuadorean orchids, Lepanthes mashpica, Lepanthes satyrica, orquídeas del Ecuador, Mashpi Reserve, Reserva Mashpi Introduction. New species of Lepanthes Sw. -
(Orchidaceae: Pleurothallidinae) from Península De Osa, Puntarenas, Costa Rica
A NEW LEPANTHES (ORCHIDACEAE: PLEUROTHALLIDINAE) FROM PENÍNSULA DE OSA, PUNTARENAS, COSTA RICA ISLER F. CHINCHILLA,1–3 REINALDO AGUILAR,4 AND DIEGO BOGARÍN1,5,6 Abstract. Lepanthes is one of the most species-rich genera of orchids in the Neotropics, with most of the species found in medium to high elevation forests and few species in lowlands. We describe and illustrate Lepanthes osaensis, a new species from the very wet lowland forest of Península de Osa, Costa Rica. It is similar to Lepanthes cuspidata but differs mostly in the vinous leaves; smaller sepals; the narrower, bilobed petals; and the smaller lip with triangular blades. Notes on its distribution, habitat, flowering, and conservation status, as well as discussion of a taxon with similar morphology, are provided. Keywords: Lepanthes cuspidata, orchid endemism, Pleurothallidinae taxonomy, twig epiphytes, very wet lowland forest Lepanthes Sw. is one of the most species-rich genera of Jiménez and Grayum, 2002; Bogarín and Pupulin, 2007; Pleurothallidinae (Orchidaceae), with over 1200 species Rakosy et al., 2013) and the continued long-term fieldwork from southern Mexico and the Antilles to Bolivia and by the second author (RA). A possible explanation is the northern Brazil (Pridgeon, 2005; Luer and Thoerle, 2012; marked seasonality between dry and wet seasons from Vieira-Uribe and Moreno, 2019; Bogarín et al., 2020). the north toward the central Pacific, contrasting with Lepanthes comprises plants with ramicauls enclosed by the prevailing wet conditions in the Caribbean throughout several infundibular sheaths, named “lepanthiform sheaths,” the year (Kohlmann et al., 2002). The most suitable areas racemose inflorescences of successive flowers, subsimilar, for lowland Lepanthes in the Pacific are the tropical wet glabrous sepals, petals wider than long, frequently bilobed forests from Carara in the central Pacific to Península with divergent lobes, the lip usually trilobed with the lateral de Osa and Burica. -
Orchids: 2017 Global Ex Situ Collections Assessment
Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Threatened, Endangered, Candidate & Proposed Plant Species of Utah
TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var. -
Proceedings of the California Academy of Sciences (4)5
PROCEEDINGS OF THE CALIFORNIA Academy of Sciences FOURTH SERIES Vol. V 1915 OS" SAN P^RANCISCO PUBLISHED BY THE ACADEMY 1915 COMMITTEE ON PUBLICATION George C. Edwards, Chairman C. E. Grunsky Barton Warren Evermann, Editor CONTENTS OF VOLUME V. Plates 1-19. PAGE Title-page i Contents iii Report of the President of the Academy for the Year 1914. By C. E. Grunsky 1 (Published March 26, 1915) Report of the Director of the Museum for the Year 1914. By Barton Warren Evermann - 1 1 (Published March 26, 1915) Fauna of the Type Tejon : Its Relation to the Cowlitz Phase of the Tejon Group of Washington. By Roy E. Dickerson. (Plates 1-11) 33 (Published June 15, 1915) A List of the Amphibians and Reptiles of Utah, with Notes on the Species in the Collection of the Academy. By John Van Den- burgh and Joseph R. Slevin. (Plates 12-14) 99 (Published June 15, 1915) Description of a New Subgenus (Arborimus) of Phenacomys, with a Contribution to Knowledge of the Habits and Distribution of Phenacomys longicaudus True. By Walter P. Taylor. (Plate 15) 1 1 1 (Published December 30, 1915) Tertiary Deposits of Northeastern Mexico. By E. T. Durable. (Plates 16-19) 163 (Published December 31, 1915) Report of the President of the Academy for the Year 1915. By C. E. Grunsky 195 (Published May 4, 1916) Report of the Director of the Museum for the Year 1915. By Barton Warren Evermann 203 (Published May 4, 1916) Index 225, 232 July 19, 1916 / f / ^3 F»ROCEDEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Fourth Series Vol. -
Ecological Archives Christopher N. Kaiser-Bunbury, Diego P. Vázquez
1 Ecological Archives 2 3Christopher N. Kaiser-Bunbury, Diego P. Vázquez, Martina Stang, and Jaboury Ghazoul. 2014. 4Determinants of the microstructure of plant-pollinator networks. Ecology. 5 6Appendix A: Detailed supplementary information on the methods, including tables and figures 7 8 A.1 Plant–pollinator networks 9In total, 97 flower visitor taxa were recorded, of which 14 taxa, belonging to the groups of 10spiders, crickets, true bugs (hemiptera) and ants, were excluded from the networks as they were 11not considered pollinators of the inselberg plants. Pollinators were identified to species level for 1228 taxa (34%) and to morpho-species level for the remaining 55 taxa (66%; hereafter all 13pollinator taxa are referred to as ‘pollinator species’). Morpho-species were not pooled based on 14morphological traits such as size, but they were distinguished at the smallest possible level 15without taxonomic determination and assigned a species code. Flower visitors were recorded as 16pollinators when they touched the sexual parts of flowers. Sampling of interactions was 17conducted by the same three observers throughout the 8-month flowering season and sampling 18was standardized between observers fortnightly. We used equal observation periods for all plant 19species to reduce sampling bias and to collect data on interaction frequency independent of size 20constraints and flower abundance (Ollerton and Cranmer 2002). 21 To assess the effect of sampling on network dissimilarities we conducted a rarefaction 22analysis (Hurlbert 1971, Heck et al. 1975). We calculated Bray-Curtis dissimilarities (see Section 23D below for a detailed description on dissimilarity matrices) between rarefied interaction 24matrices sampled at four different proportions (0.8, 0.6, 0.4 and 0.2) and compared the resulting 25mean ± 95% CI dissimilarities of the rarefied matrices to the dissimilarity between the original 26matrices.