Air Pollution and Biodiversity in Hong Kong

Total Page:16

File Type:pdf, Size:1020Kb

Air Pollution and Biodiversity in Hong Kong AUGUST 2003 NUMBER 29 Porcupine! Newsletter of the Department of Ecology & Biodiversity, The University of Hong Kong Air pollution and biodiversity in Hong Kong Nobody doubts that air pollution in Hong Kong is a major threat to human health, and nobody doubts that water pollution in Hong Kong is a major threat to freshwater and marine biodiversity. But what about the effects of air pollution on terrestrial biodiversity? This is an important question because the entire conservation strategy for terrestrial biodiversity in Hong Kong is based on the assumption that protecting areas – as Country Parks, Special Areas, SSSIs or whatever – protects species. Yet, as marine biologists know only too well, pollution does not respect park boundaries. The only research on this problem in Hong Kong was into the effects of sulphur dioxide pollution on lichens (Thrower, 1980). High levels of this pollutant in the 1960s and 70s eliminated most lichens from urban areas and the most sensitive species from the whole of Hong Kong, but sulphur dioxide levels are now declining and there is some evidence of a recovery in lichen populations. Other pollutants, however, are getting worse. Most conspicuous over the last decade has been the regional haze that blankets large areas of southeastern China for much of the year, reducing the amount of sunlight reaching the ground by 5-30% (Chameides et al., 1999). Although this reduction may have serious implications for crop yields, photosynthesis in wild plants is more likely to be limited by water and/or nutrients, so unshaded leaves usually receive more sunlight than they can use. The big worry is ozone (Corlett, 2001). Ozone is unique among air pollutants in that, although it is produced by reactions involving urban pollutants, urban ozone levels are reduced by reactions with nitrogen oxides so that the maximum levels occur downwind of cities, in rural areas (Gregg et al., 2003). Thus ozone concentrations measured at the Hong Kong Polytechnic University monitoring station at Cape D’Aguilar, in the remote southeastern tip of Hong Kong Island, often exceed those measured in urban areas, and the highest recorded hourly value in Hong Kong was in Tung Chung last September. There is no reason to believe that these sites are exceptional, but there has been very little monitoring of ozone in rural Hong Kong. Moreover, while much of Hong Kong’s ozone is generated locally, there are also regional high ozone events, covering much of eastern China, which would impact Hong Kong even if it were uninhabited. Peak ozone concentrations measured in Hong Kong are within the range that has been shown to damage both crops and wild plants in Europe and North America. Ozone reduces photosynthesis and plant growth, as well as causing visible damage to leaves. We have no direct evidence that such damage is occurring locally, but the visible symptoms are easily confused with other forms of natural damage, and no detailed study has been carried out. Regional ozone concentrations are predicted to continue rising for at least the next decade, so this is a problem that can only get worse. Richard T. Corlett (for bibliography see back page) 2 News from DEB Porcupine! As we embark upon yet another academic year at the Univer- sity of Hong Kong, we encounter many new faces: new first- NUMBER 29 year undergraduates in the classroom, and new research postgraduates in the laboratories. In the case of DEB, we are August 2003 lucky enough also to have some new teaching colleagues. Dr Cynthia Yau joined as Assistant Professor this Septem- ber, and an article introducing her will feature in the next Newsletter of the Department of Ecology & issue of Porcupine! And, while not new to exactly DEB, Dr Biodiversity, The University of Hong Kong Kenny Leung takes up a new position as Assistant Professor, also from September. For anyone who missed it, Kenny’s (revealing) personal profile is in Porcupine! 25. "And, INSIDE THIS ISSUE: finally, congratulations to Gray Williams who has been appointed Honorary Director of the Swire Marine Laboratory for the next three years. Gray is not, of course, new to DEB but this appointment will see him taking on an additional, important role on behalf of the department. We wish him Air pollution and biodiversity in Hong Kong 1 luck.” Editorial 2 More newness: DEB, AFCD and Friends of the Country Park DEB news 2 have just published a series of four field guides to local habitats. First off the block was Rocky Shores and Hill- Feedback 3 streams, and by the time you read this, Hillsides and Sandy Invertebrates 5 Shores will have joined them on the shelves of Hong Kong Vertebrates 8 bookshops. All four volumes are bilingual, well- illustrated, and contain gazetteers for sites of interest. We hope they Flora 13 will be of value to secondary school students, teachers, SWIMS tidings... 14 biology undergraduates, and members of the public who want to find out a bit more about Hong Kong’s rich Diversity at a glance 14 biodiversity. Miscellany 16 Finally, new from Government is recently released and very In the News 18 long awaited Consultation Document entitled Nature Wild Corner 19 Outlook: A Review of Nature Conservation Policy (http:// www.etwb.gov.hk). It sets out conservation efforts and Recent publications 21 achievements of Government, describes their limitations, and makes some proposals for improvement that include the Editorial introduction of a scoring system for assessing ecological value of sites, and options for conserving ecologically impor- Colour coding – have you noticed that when an unpalatable or tant sites under private ownership. The sharp-eyed reader difficult conservation viewpoint is expressed, the apparent offender may note that this brief description of the contents of Nature is often glibly dismissed as being a ‘green’ (or even a greenie)? Outlook doesn’t seem to include anything on actual policy This is becoming a rather convenient retort to dodge what are (see pp.16 & 17), and the marine environment also gets short generally rather complex issues, ones that typically require shrift. However, Government has invited comments on the informed responses, creative thinking and pose real and important document, and I urge everyone with an interest in the protec- challenges to government and society. This easy let-out ignores the tion of the Hong Kong environment to read the document fact that there are many shades of ‘green’, from the rather extreme and send their views by October 18 2003 to the Environ- ‘environment above all else’ to the wholly practical, and very real, ment, Transport and Works Bureau. They can be need to balance man and nature for the benefit of both. It is time, reached at [email protected], 2138 3221 (fax) or maybe, to assign a colour to those who do not want to address core 2150 7144 (phone). There now an important opportunity issues, who procrastinate, are uninformed maybe, or who, all in all, to have an input into conservation initiatives in Hong Kong, continue to contribute to the environmental problems that surround and we should make the most of it. us simply by lack of action and obfuscation. In mulling this over, I concluded that ‘grey’ was rather fitting. The lack of colour reflects the absence of action, the distorting (sometimes) of truth, apathy David Dudgeon and general unwillingness to consider changing the status quo or meeting challenges. While there are shades of grey, few give much hope that things will improve substantially in the near term. We could do with more colour. YS 3 swollen bellies have been observed. We have also observed many large adult fish tussling for territory at the artificial reef Feedback aggregation and noted courtship behaviour, including fin and tail flicking towards dusk. For these reasons we reported the ‘Sexed up’ fish data presence of a spawning group of Coral trout. During new moons on 31st May 2003 and 30th June 2003, 35-50, mostly Dear Feedback, 16”-22”, Coral trouts were again counted within a small area at the aggregation site (which is the same artificial reef site As the author of the Artificial Reefs and Reef Fish in Hong each year) and a male spawning rush was observed. We also Kong I must respond to the comments made in Andy pointed out on page 43 that recruitment of juvenile Coral trout Cornish’s review of this book in the April 2003 Porcupine!. has dramatically improved since 2000 when we first observed The first printing of this book involved the production of a spawning groups on an artificial reef. Following the limited number of books, which have already sold out. For the publication of the book we have also filmed pairs of Red second edition, which is currently in preparation, we are groupers, Epinephelus akaara spawning at the same attending to any errors identified and are taking the aggregation site. opportunity to update the book. An erratum for the first has been prepared and will be posted on AFCD artificial reef web Reef fishes are especially vulnerable during spawning pages. I am grateful to the reviewer for his helpful fish aggregation periods. Despite its status as a Marine Park there identification comments. The reviewer’s comments regarding is no statutory protection for Yan Chau Tong’s spawning the making of unsubstantiated claims regarding spawning groupers from licensed fishers. The artificial reef in question observations in the book are, however, entirely unjustified. It has developed into a primary aggregation site for spawning appears we are being accused of ‘sexing up’ our data in much reef fishes in Hong Kong and concerted efforts should be the same way the BBC have alleged that Tony Blair’s made to protect the site, especially during May and June new Government overstated the case to the British Parliament for moons.
Recommended publications
  • (Peracarida: Isopoda) Inferred from 18S Rdna and 16S Rdna Genes
    76 (1): 1 – 30 14.5.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes Regina Wetzer *, 1, Niel L. Bruce 2 & Marcos Pérez-Losada 3, 4, 5 1 Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 USA; Regina Wetzer * [[email protected]] — 2 Museum of Tropical Queensland, 70–102 Flinders Street, Townsville, 4810 Australia; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Niel L. Bruce [[email protected]] — 3 Computation Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA 20148, USA; Marcos Pérez-Losada [mlosada @gwu.edu] — 4 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal — 5 Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA — * Corresponding author Accepted 13.x.2017. Published online at www.senckenberg.de/arthropod-systematics on 30.iv.2018. Editors in charge: Stefan Richter & Klaus-Dieter Klass Abstract. The Sphaeromatidae has 100 genera and close to 700 species with a worldwide distribution. Most are abundant primarily in shallow (< 200 m) marine communities, but extend to 1.400 m, and are occasionally present in permanent freshwater habitats. They play an important role as prey for epibenthic fishes and are commensals and scavengers. Sphaeromatids’ impressive exploitation of diverse habitats, in combination with diversity in female life history strategies and elaborate male combat structures, has resulted in extraordinary levels of homoplasy.
    [Show full text]
  • Redescription of Dynoides Elegans (Boone, 1923) (Crustacea, Isopoda
    A peer-reviewed open-access journal ZooKeysRedescription 646: 1–16 (2017) of Dynoides elegans (Boone, 1923) (Crustacea, Isopoda, Sphaeromatidae)... 1 doi: 10.3897/zookeys.646.10626 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Redescription of Dynoides elegans (Boone, 1923) (Crustacea, Isopoda, Sphaeromatidae) from the north-eastern Pacific Regina Wetzer1, 2, Gracie Mowery2 1 Research and Collections Branch, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 USA 2 University of Southern California, Los Angeles, CA 90089 USA Corresponding author: Regina Wetzer ([email protected]) Academic editor: T. Horton | Received 26 September 2016 | Accepted 4 January 2017 | Published 17 January 2017 http://zoobank.org/942CE0AA-3BDB-45F5-AD7C-FDD95C88D557 Citation: Wetzer R, Mowery G (2017) Redescription of Dynoides elegans (Boone, 1923) (Crustacea, Isopoda, Sphaeromatidae) from the north-eastern Pacific. ZooKeys 646: 1–16.https://doi.org/10.3897/zookeys.646.10626 Abstract Dynoides elegans (Boone, 1923) from southern California is reviewed, redescribed, and figured. The origi- nal species description did not include figures, making it difficult to attribute individuals to the species. Dynoides saldanai Carvacho and Haasmann, 1984 and D. crenulatus Carvacho & Haasman, 1984 from the Pacific Coast of Mexico and D. brevicornis Kussakin & Malyutina, 1987, from Furugelm Island, Peter the Great Gulf in the Sea of Japan, appear morphologically more similar to each other than to western Pacific species. A large pleonal process is present in about half of theDynoides species, but is absent in this north-eastern Pacific clade and the north-western PacificD. brevicornis and D. brevispina. Dynoides den- tisinus Shen, 1929 possess a large pleonal spine.
    [Show full text]
  • The Crayfish
    :^mc mi- Mem. QdMus. 20(3): 447-53. [1982] THE GENUS Z)rA^0/Z)£5' BARNARD, 1914 (CRUSTACEA: ISOPODA: SPHAEROMATIDEA) FROM EASTERN AUSTRALIA, WITH DESCRIPTION OF NEW SPECIES. NiEL L. BRUCE, Department of Zoology, University of Queensland, St. Lucia, Queensland, 4067. ABSTRACT The type of material of Dynoides barnardi is redescribed and figures given together with figures from new non-type material. Dynoides viridis sp. nov. from the Great Barrier Reef is described. INTRODUCTION REMARKS. Bruce (1980) gave a diagnosis for the One of the major early contributors to genus, with which the present material agrees. knowledge of the Australian isopod fauna was Comparison of the species dealt with here to other W.H. Baker who published a series of papers members of the genus revealed that the dealing exclusively with the family Sphaeroma- appendages differ only in minor ways. tidae (Baker, 1908, 1910, 1911, 1926, 1928). In The similarity of the appendages between the last of these works he described the then species of the genus can be seen by comparison of second known species of the genus Dynoides, and the drawings given by Bruce (1980, and here), naming it after the founder of the genus K.H. Kussakin (1979), Loyola e Silva (1960) and Pillai Barnard called it Dynoides barnardi. Since that (1965). Separation of the males is best achieved time five other species have been described. Bruce by the differences in pleon and pleotelson (1980) lists these species and provided a current morphology. The separation of females is still description of the genus. problematic, but it seems likely that these may be The present paper describes a new species from most easily separated by differences in colouration Heron Island, Great Barrier Reef, and provides a (Bruce, 1980).
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]
  • Supplement to the 2002 Catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004
    Museum Victoria Science Reports 7: 1–15 (2005) ISSN 0 7311-7253 1 (Print) 0 7311-7260 4 (On-line) http://www.museum.vic.gov.au/sciencereports/ Supplement to the 2002 catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004 GARY C. B. POORE Museum Victoria, GPO Box 666E, Melbourne, Victoria 3001, Australia ([email protected]) Abstract Poore, G.C.B. 2005. Supplement to the 2002 catalogue of Australian Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004. Museum Victoria Science Reports 7: 1–15. Publications in the period 2002 to 2004 dealing with Australian Syncarida and Peracarida have been reviewed and new taxa, new combinations and significant papers listed. Eighty species in 28 genera and seven families of Isopoda, seven new species in four genera and two families of Tanaidacea, and one new species of Spelaeogriphacea have been newly reported for Australia in the 3-year period. No publications dealing with Syncarida, Mictacea or Thermosbaenacea were found. This report does not deal with Amphipoda, Mysidacea or Cumacea. These updates have been made to the Zoological Catalogue of Australia Volume 19.2A on the Australian Biological Resources Study website. Introduction New taxa are listed in bold. Parentheses enclose the names of taxa no longer recognised in the Australian fauna. Other taxa are listed only when they have been referred to in the Volume 19.2A of the Zoological Catalogue of Australia recent literature. Subheadings following each taxon are more (Poore, 2002) dealt with all taxa of malacostracan Crustacea or less are in the style used in the original catalogue.
    [Show full text]
  • 5/L^^/^6^I^ -Toc:>X
    5/l^^/^6^i^ -toc:>X <M J. Mar. Biol. Ass. U.K. (2002), 82, 51-6 Printed in the United Kiiigdem Revision of the isopod crustacean genus Campecopea Flabellifera: Sphaeromatidae) with discussion of the phylogenetic significance of dorsal processes Niel L. Bruce* and David M. Holdich^ *Zoologisk Museum, University of Copenhagen, Universitetsparken 15, Copenhagen 0, DK 2100, Denmark. Present address: Marine Biodiversity and Systematics, National Institute of Atmospheric and Water Research, PO Box 14-901, Kilbirnie, Wellington, New Zealand. E-mail; [email protected] School of Life and Environmental Sciences, University of Nottingham, Nottingham, NG7 2RD. E-mail: [email protected] The sphaeromatid crustacean isopod genus Campecopea is revised, a new diagnosis given and the genus Anoplocopea Racovitza, 1907, is placed in synonymy; the type species Campecopea hirsuta is redescribed and Campecopea lusitanica comb. nov. is recorded from the Canary Islands and Azores. The four species of Campecopea diifer from each other principally in the presence or absence of a prominent posteriorly directed dorsal process on the male pereonite 6, the ornamentation of the posterior pereonites, the shape of the uropods and also the fine details of the dactylus accessory spine (smooth or serrate). The phylogenetic significance of dorsal process is re-evaluated here, and the character discussed in rela­ tion to Campecopea, Dynoida and Clianella, and several other sphaeromatid genera. It is regarded that the interpretation of this character as being of intrinsic generic merit has resulted in the over splitting of several genera and also the creation of paraphyletic genera. It is suggested that reappraisal of sphaeromatid generic characters in cladistic terms is a necessary first step in terms of establishing the monophyly of many sphaeromatid genera.
    [Show full text]
  • LE GENRE DYNOIDES BARNARD: UNE MISE AU POINT (ISOPODA, SPHAEROMATIDAE) Peu De Groupes D'isopodes Ont Été Plus Intensivement É
    Cruslaceana 48 (2) 1985, E. J. Brill, Leiden LE GENRE DYNOIDES BARNARD: UNE MISE AU POINT (ISOPODA, SPHAEROMATIDAE) PAR ALBERTO CARVACHO Centro de Investigaciôn Cientffica y de Education Superior de Ensenada, (C.I.C.E.S.E.), Apartado Postal No. 2732, Ensenada, B. Cfa., Me'xico Peu de groupes d'Isopodes ont été plus intensivement étudiés et sont pour­ tant aussi mal connus que les Sphaeromatidés. Une raison importante semble être la méconnaisance de leur biologie et le fait qu'ils présentent souvent un remarquable dimorphisme sexuel à l'état adulte. La première révision systématique complète de la famille a été faite par Hansen (1905). Il y reconnaît trois sous-familles: les Sphaerominae (qui cor­ respondent aux actuels Sphaeromatidae), les Limnoriinae et les Plakarthrii- nae, ces deux derniers groupes étant actuellement séparés de la famille. Récemment Iverson (1982) a publié une mise au point où il retrace l'histoire du groupe et propose quelques nouveaux noms, tout en respectant le caractère fondamental reconnu par Hansen, la structure des pléopodes. Cette caractéris­ tique avait permit de reconnaître trois "groupes" à l'intérieur de la sous famille Sphaerominae: les Eubranchiata, les Hemibranchiata et les Platybran- chiata (Hansen, 1905). Rien de mieux pour montrer la confusion existant en ce qui concerne la systématique de la famille, que de transcrire ici une opinion de Menzies & Glynn (1968: 52): "It will be of interest to see whether an eubran- chiate passes through a hemibranchiate and platybranchiate stage in early life story and vice versa. It is possible, however, that the young émerge from the parent brood pouch in one of the three stages and remain at this stage through life.
    [Show full text]
  • Phylogenetic Relationships of the Family Sphaeromatidae Latreille, 1825 (Crustacea: Peracarida: Isopoda) Within Sphaeromatidea Based on 18S-Rdna Molecular Data
    Zootaxa 3599 (2): 161–177 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://zoobank.org/urn:lsid:zoobank.org:pub:4B7326CD-82CD-444D-BB3E-893F7E821A0F Phylogenetic relationships of the family Sphaeromatidae Latreille, 1825 (Crustacea: Peracarida: Isopoda) within Sphaeromatidea based on 18S-rDNA molecular data REGINA WETZER*,1, MARCOS PÉREZ-LOSADA2 & NIEL L. BRUCE3 1 Research and Collections Branch, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, Califor- nia 90007, USA [[email protected]] 2 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal [[email protected]] 3 Museum of Tropical Queensland and School of Marine and Tropical Biology, James Cook University; 70-102 Flinders Street, Towns- ville, 4810 Australia; Department of Zoology, University of Johannesburg, Auckland Park, 2006 South Africa [[email protected]] *Corresponding author Abstract Based on 18S-rDNA sequences of 97 isopods including 18 Sphaeromatidea, we show Sphaeromatidae, Valvifera, Serolidae, and Ancinidae is a well supported clade. The within clade relationships of these taxa are not as definitively demonstrated because taxon sampling for some groups is still limited. In our analyses the Sphaeromatidae are shown to be unequivocally monophyletic. This is contrary to the morphology-based analysis by A. Brandt and G. Poore in 2003, which included only five Sphaeromatidae and found the family to be paraphyletic. The Ancinidae are also upheld, and the Valvifera is the sister taxon to Serolidae. Surprisingly Plakarthrium (Plakarthiidae) is nested within the Sphaeromatidae in most analyses.
    [Show full text]
  • Title DYNOIDELLA CONCHICOLA, GEN. ET SP. NOV
    DYNOIDELLA CONCHICOLA, GEN. ET SP. NOV. (ISOPODA, SPHAEROMATIDAE), FROM JAPAN, WITH A Title NOTE ON ITS ASSOCIATION WITH INTERTIDAL SNAILS Author(s) Nishimura, Saburo PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1976), 23(3-5): 275-282 Issue Date 1976-10-30 URL http://hdl.handle.net/2433/175936 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University DYNOIDELLA CONCH/COLA, GEN. ET SP. NOV. (ISOPODA, SPHAEROMATIDAE), FROM JAPAN, WITH A NOTE ON 1 ITS ASSOCIATION WITH INTERTIDAL SNAILS ) SABURO NISHIMURA Seto Marine Biological Laboratory, Sirahama With Text-figures 1-19 While instances of parasitism are well known in the isopod crustaceans, especially among the epicarideans and cirolanids, relatively little information has hitherto been documented on their commensal relationships with other invertebrate animals (cf. Patton 1967), though such relationships are actually noticed by no means rarely in nature. One of such commensal relationships rather commonly observed is that between sphaeromatid isopods and certain groups of mollusks, and recently Glynn (1968) made an intensive study on the association of a sphaeromatid Dynamenella peiforata (Moore, 1901) with the chitons Acanthopleura granulata and Chiton tuberculata in Puerto Rico. For some years, the writer has been aware of the occurrence of a sphaeromatid species which is found frequently in association with certain intertidal snails in the vicinity of the Seto Marine Biological Laboratory. The crustacean lives beneath the snails attached to the rock surface, being hidden along the pallial grooves or around the foot of the host animals. Examining a lot of specimens available to him, the writer has been led to a conclusion that the crustacean in question represents a new species and further necessitates the establishment of a new genus.
    [Show full text]
  • A New Species of Dynoides (Crustacea: Isopoda: Sphaeromatidae) from the Cape D’Aguilar Marine Reserve, Hong Kong
    © Copyright Australian Museum, 2000 Records of the Australian Museum (2000) Vol. 52: 137–149. ISSN 0067-1975 A New Species of Dynoides (Crustacea: Isopoda: Sphaeromatidae) from the Cape d’Aguilar Marine Reserve, Hong Kong LI LI The Swire Institute of Marine Science, Department of Ecology and Biodiversity, The University of Hong Kong, Cape d’Aguilar, Shek O, Hong Kong [email protected] ABSTRACT. A new species of sphaeromatid isopod, Dynoides daguilarensis n.sp., is described from intertidal black mussel (Septifer virgatus) beds in the Cape d’Aguilar Marine Reserve, Hong Kong. This species has been previously misidentified as D. serratisinus and D. dentisinus. It is characterized by a pleotelsonic apex with an open, sub-parallel slit, both edges of which are serrated from the bottom to the two sides of the apex; uropod endopods which are sub-apically notched externally; and a tubercle on the ventral side of the pleonal process. The composition of Dynoides and its relationships to Clianella are reviewed. A revised composition of Dynoides with a key to the species is provided. LI, LI, 2000. A new species of Dynoides (Crustacea: Isopoda: Sphaeromatidae) from the Cape d’Aguilar Marine Reserve, Hong Kong. Records of the Australian Museum 52(2): 137–149. In this paper, Dynoides daguilarensis n.sp. is described from Dynoides Barnard, 1914 the Cape d’Aguilar Marine Reserve, Hong Kong. The new Dynoides Barnard, 1914: 407; Nierstrasz, 1931: 198; Pillai, 1954: species is common in the intertidal beds of the black mussel, 11; Loyola e Silva, 1960: 91; Pillai, 1965: 79, 80; Bruce, 1980: Septifer virgatus.
    [Show full text]
  • Biodiversity of Marine Invertebrates on Rocky Shores of Dokdo, Korea
    Zoological Studies 51(5): 710-726 (2012) Biodiversity of Marine Invertebrates on Rocky Shores of Dokdo, Korea Shi-Hyun Ryu1, Kuem-Hee Jang1,2, Eun-Hwa Choi1,2, Sang-Ki Kim1,2, Sung-Joon Song1,3, Hyun-Jin Cho1, Ju-Sun Ryu1, Youn-Mi Kim1, Jin Sagong1, Jin-Hee Lee1,2, Mi-Young Yeo1, So-Yeong Bahn1, Hae-Min Kim1,2, Gil-Seong Lee2, Don-Hwa Lee2, Yeon-Sik Choo2, Jae-Hong Pak2, Jin-Soon Park4, Jong-Seong Ryu5, Jong-Seong Khim4, and Ui-Wook Hwang1,2,* 1Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National Univ., Daegu 702-701, Republic of Korea 2School of Life Science, Graduate School and Institute for Ullengdo and Dokdo, Kyungpook National Univ. Daegu 702-701, Republic of Korea 3Marine Research Center, National Park Research Institute, Sacheon 664-701, Republic of Korea 4Division of Environmental Science and Ecological Engineering, Korea Univ., Seoul 136-713, Republic of Korea 5Department of Marine Biotechnology, Anyang Univ., Ganghwagun, Incheon 417-833, Republic of Korea (Accepted February 8, 2012) Shi-Hyun Ryu, Kuem-Hee Jang, Eun-Hwa Choi, Sang-Ki Kim, Sung-Joon Song, Hyun-Jin Cho, Ju-Sun Ryu, Youn-Mi Kim, Jin Sagong, Jin-Hee Lee, Mi-Young Yeo, So-Yeong Bahn, Hae-Min Kim, Gil-Seong Lee, Don-Hwa Lee, Yeon-Sik Choo, Jae-Hong Pak, Jin-Soon Park, Jong-Seong Ryu, Jong-Seong Khim, and Ui-Wook Hwang (2012) Biodiversity of marine invertebrates on rocky shores of Dokdo, Korea. Zoological Studies 51(5): 710-726. Benthic fauna were collected from the intertidal rocky shores of Dokdo Is., Republic of Korea.
    [Show full text]