Keiji Iwasaki Institute for Natural Science, Nara University

Total Page:16

File Type:pdf, Size:1020Kb

Keiji Iwasaki Institute for Natural Science, Nara University enthos Research Vol. 51, No. 2 : 21- 32 (1996) BENTHOS RESEARCH The Japanese Association of Benthology Vertical Distribution and Life Cycle of Two Isopod Crustaceans within Intertidal Mussel Beds Keiji Iwasaki Institute for Natural Science, Nara University ABSTRACT The vertical distribution and life cycle of two isopod crustaceans, Dynoides dentisinus Shen and Cirolana harf oldi japonica Thielemann, were studied at Shirahama, Wakayama Prefec- ture, central Japan, where two mytilids Septif er virgatus (Wiegmann) and Hormomya mutabilis (Gould) formed vertically contiguous mussel beds. The abundance of the isopods tended to increase downshore within the S. virgatus bed in the upper and middle intertidal zones but decreased abruptly within the H. mutabilis bed in the lower intertidal zone. Very few individuals were found within the H. mutabilis bed throughout the year. The size struc- ture of both species of isopods did not differ greatly among five shore levels within the S. virgatus bed. Multiple linear regression analyses against density of D. dentisinus revealed that the amount of sediment within the mussel beds tended to be negatively correlated while the density and volume of mussels both tended to be positively correlated. Both species re- produced twice a year. However, seasonal changes in size structure suggested that the lon- gevity of the two generations born during the year differed between the species: spring- autumn and autumn-spring generations for D, dentisinus, and spring-next spring and autumn-next autumn generations for C. h. japonica. The association between isopods and mussels is discussed with a focus on the presence or absence of sediment within mussel beds. Key words: intertidal isopods, life cycle, mussel beds, vertical distribution INTRODUCTION Salemaa 1979, 1987; Healy & O'Neill 1984; Tuomi et al. 1988; Kroer 1989) and supralittoral Isopod crustaceans are common in a broad isopods of the family Ligiidae (e. g., Willows range of marine habitats, from supralittoral 1987a, b) . However, relatively few studies have shores to deep-sea environments (e.g., been conducted on the ecology of other rocky Harrison 1988; Brown & Odendaal 1994) . Infor- shore species belonging to the Cirolanidae and mation on their biology and the important roles Sphaeromatidae (Wieser 1962, 1963; Glynn they play in demersal communities has been 1965; Holdich 1968, 1970, 1971, 1976; Johnson gathered progressively (e.g., Shafir & Field 1976). 1980; Stepien & Brusca 1985; Brown & Odendaal In Japan, activity rhythms and behaviour 1994) . In particular, on rocky shores there have been investigated for some supralittoral have been a great number of ecological studies isopods of the genera Tylos and Ligia (e. g., on boreal isopods of the genus Idotea (e. g., Ondo 1958a, b, 1959; Ondo & Mori 1956; Imaf uku 1976) . However, information on the Received November 2, 1995 : Accepted April 10, 1996 distribution and ecology of isopods, par- 21 Vol. 51, No. 2 Benthos Research November, 1996 ticularly cirolanids and sphaeromatids, has bed, and the shore heights of the sampling sites been fragmental and scanty (Sekiguchi 1982, were noted (mean height for the replicates: 1985; Sekiguchi et al. 1981, 1982; Mori & Tanaka +65, +38, + 9 and - 6 cm within the S. virgatus 1989; Iwasaki 1995a), and there have been no bed, - 29 and - 56 cm within the H. mutabilis quantitative studies on the life history or popu- bed) . Mussels, isopods, other invertebrates lation dynamics of intertidal isopods. and sediment within the quadrats were all col- Two isopod crustaceans, Dynoides dentisinus lected. In 1994, sampling was conducted at five Shen (Sphaeromatidae) [Japanese name: levels in the S. virgatus bed and two levels in the Shiriken-umisemi] and Cirolana harf ordi ja- H. mutabilis bed. Triplicate samples were ob- ponica Thielemann (Cirolanidae) [Nise- tained at each level (mean height for the repli- sunahorimushi] , are common species on the cates: +67, +48, +26, +7, -10 cm within the S. intertidal shores of Japan and have been re- virgatus bed, - 31 and - 59 cm within the H. ported to occur abundantly within mussel beds mutabilis bed) . In the laboratory the mussels, (Tsuchiya 1979; Tsuchiya & Nishihira 1985, isopods, other invertebrates, and sediment 1986; Iwasaki 1995a) and among barnacles were separated from one another. Surface (Mori & Tanaka 1989) . The present paper re- water was blotted from the mussels, and their ports the vertical distribution and life cycle of volume was measured by putting them into a the two species inhabiting mussel beds graduated cylinder with sea water. All animals consisting of Septif er virgatus (wiegmann) were counted and weighed, and the size of all [Murasaki-inkogai] and Hormomya mutabilis isopods (width of 1st pereonite) was measured (Gould) [Hibarigai-modoki] . Information on to the nearest 0.05 mm. Accurate and prompt the breeding season and brood size of gravid measurements of body lengths in both isopod females is also given and compared with that species were difficult because specimens fixed for other rocky shore isopods. in formaldehyde solution were rolled up. Since the width of the 1st pereonite was highly corre- STUDY STITE AND METHODS lated with body length for both species (April 1994; D. dentisinus: BL (body length) = 2.152 The study site was a sandstone rocky reef on a Pw (1st pereonite width) -0.045, r - 0.988, p < moderately wave-exposed shore near the Seto 0.001, n = 50, C. h. japonica: BL = 2.977 Pw - Marine Biological Laboratory, Kyoto Univer- 0.139, r = 0.967, p < 0.001, n- 50), the former sity, wakayama Prefecture (33° 42'N,135° 21'E). could represent body size adequately. Addi- The rocky reef had a very smooth, flat surface tionally, males and females were discriminated which sloped gently from the upper intertidal from each other and from juveniles by the pres- (80 cm above mean tide level) to subtidal zones ence of penes and oostegites (or oostegite with ca. 5° inclination. Shore height is hereafter buds), respectively. Males of D. dentisinus expressed in cm preceded by + or -, indicating have a median process on the dorsal surface of above or below mean tide level. The tidal range the pleons, and the lengths of these processes at this site extends from +110 to -110 cm. The were measured because the length relative to mussel S. virgatus formed a bed from the upper body size changed seasonally, supposedly re- to middle intertidal zone, and H. mutabilis in flecting their reproductive maturity. Eggs or the lower intertidal zone. The two mussel beds juveniles within the marsupia of mature females were vertically contiguous with a very narrow were counted. Sediment was dried under the zone of overlap. A detailed map of this study sun for two days and weighed after sifting out site and the zonal distribution of mussels and mussel shell fragments with a sieve with 1 mm other sessile organisms are given in Iwasaki mesh openings. (1994: site B). Monthly sampling was carried out at the Cross-shore sampling was carried out in late middle levels of the respective mussel beds April of 1982 and 1994. In 1982, two quadrats of (+35 cm for S. virgatus, - 40 cm for H. 50 cm2 each were haphazardly tossed onto the mutabilis) from early April, 1982, to early mussel bed at each of four levels in the S. April, 1983, and afterwards, sampling was con- virgatus bed and two levels in the H, mutabilis tinued at four-month intervals until early April, 22 Life cycle of intertidal isopods 1985. The same sampling method as for cross- zone are shown in Table 1. In April, 1982, no shore sampling was employed, and duplicate predictor variable was correlated significantly samples were obtained in each mussel bed. In with the density of D. dentisinus. The coeffi- the laboratory, the same procedures as those in cient of multiple determination was also not the cross-shore samplings were followed. significant. In April, 1994, however, sediment To detect factors affecting the vertical distri- weight was negatively correlated, and density bution of isopods, multiple linear regression and volume of mussels positively correlated, analyses were made for isopod densities in 12 with the density of D. dentisinus. The coeffi- quadrats at six shore levels in April, 1982, and cient of multiple determination was also signifi- in 21 quadrats at seven shore levels in April, cant. The amount of sediment also tended to be 1994. Predictor variables were shore height, negatively correlated with the density of C. h. volume and number of mussels, amount of sedi- japonica, although the correlation was not sig- ment, and density of the predatory polychaetes nificant on either survey date. Arabella iricolor (Montagu) and Nereis To examine the relationship between the den- nichollsi Kott. sities of the two isopod species in April, 1994, residuals of the regressions of the density of D. RESULTS dentisinus on the amount of sediment and den- sity and volume of mussels were calculated (see Vertical change in abundance and size struc- Table 1) , and the correlation between the re- ture siduals and the raw densities for C. h. japonica Figures 1 & 2 show the vertical density pro- were analysed within the S. virgatus bed. No files of D, dentisinus and C. h. japonica. In significant correlation was detected between April, 1982, and April, 1994, densities of both the values ( r = 0.238, n = 15, p > 0.05), so no species tended to increase with decreasing specific association between the distributions shore height within the S. virgatus bed, but a of the two species is indicated. Isopod densities significant negative correlation was detected in April, 1982, could not be analysed in this way only for D, dentisinus in April, 1994 ( r = 0.623, because of the small number of samples. p < 0.05) . Within the H, mutabilis bed, very few The size structure of D.
Recommended publications
  • (Peracarida: Isopoda) Inferred from 18S Rdna and 16S Rdna Genes
    76 (1): 1 – 30 14.5.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes Regina Wetzer *, 1, Niel L. Bruce 2 & Marcos Pérez-Losada 3, 4, 5 1 Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 USA; Regina Wetzer * [[email protected]] — 2 Museum of Tropical Queensland, 70–102 Flinders Street, Townsville, 4810 Australia; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Niel L. Bruce [[email protected]] — 3 Computation Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA 20148, USA; Marcos Pérez-Losada [mlosada @gwu.edu] — 4 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal — 5 Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA — * Corresponding author Accepted 13.x.2017. Published online at www.senckenberg.de/arthropod-systematics on 30.iv.2018. Editors in charge: Stefan Richter & Klaus-Dieter Klass Abstract. The Sphaeromatidae has 100 genera and close to 700 species with a worldwide distribution. Most are abundant primarily in shallow (< 200 m) marine communities, but extend to 1.400 m, and are occasionally present in permanent freshwater habitats. They play an important role as prey for epibenthic fishes and are commensals and scavengers. Sphaeromatids’ impressive exploitation of diverse habitats, in combination with diversity in female life history strategies and elaborate male combat structures, has resulted in extraordinary levels of homoplasy.
    [Show full text]
  • Redescription of Dynoides Elegans (Boone, 1923) (Crustacea, Isopoda
    A peer-reviewed open-access journal ZooKeysRedescription 646: 1–16 (2017) of Dynoides elegans (Boone, 1923) (Crustacea, Isopoda, Sphaeromatidae)... 1 doi: 10.3897/zookeys.646.10626 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Redescription of Dynoides elegans (Boone, 1923) (Crustacea, Isopoda, Sphaeromatidae) from the north-eastern Pacific Regina Wetzer1, 2, Gracie Mowery2 1 Research and Collections Branch, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 USA 2 University of Southern California, Los Angeles, CA 90089 USA Corresponding author: Regina Wetzer ([email protected]) Academic editor: T. Horton | Received 26 September 2016 | Accepted 4 January 2017 | Published 17 January 2017 http://zoobank.org/942CE0AA-3BDB-45F5-AD7C-FDD95C88D557 Citation: Wetzer R, Mowery G (2017) Redescription of Dynoides elegans (Boone, 1923) (Crustacea, Isopoda, Sphaeromatidae) from the north-eastern Pacific. ZooKeys 646: 1–16.https://doi.org/10.3897/zookeys.646.10626 Abstract Dynoides elegans (Boone, 1923) from southern California is reviewed, redescribed, and figured. The origi- nal species description did not include figures, making it difficult to attribute individuals to the species. Dynoides saldanai Carvacho and Haasmann, 1984 and D. crenulatus Carvacho & Haasman, 1984 from the Pacific Coast of Mexico and D. brevicornis Kussakin & Malyutina, 1987, from Furugelm Island, Peter the Great Gulf in the Sea of Japan, appear morphologically more similar to each other than to western Pacific species. A large pleonal process is present in about half of theDynoides species, but is absent in this north-eastern Pacific clade and the north-western PacificD. brevicornis and D. brevispina. Dynoides den- tisinus Shen, 1929 possess a large pleonal spine.
    [Show full text]
  • The Crayfish
    :^mc mi- Mem. QdMus. 20(3): 447-53. [1982] THE GENUS Z)rA^0/Z)£5' BARNARD, 1914 (CRUSTACEA: ISOPODA: SPHAEROMATIDEA) FROM EASTERN AUSTRALIA, WITH DESCRIPTION OF NEW SPECIES. NiEL L. BRUCE, Department of Zoology, University of Queensland, St. Lucia, Queensland, 4067. ABSTRACT The type of material of Dynoides barnardi is redescribed and figures given together with figures from new non-type material. Dynoides viridis sp. nov. from the Great Barrier Reef is described. INTRODUCTION REMARKS. Bruce (1980) gave a diagnosis for the One of the major early contributors to genus, with which the present material agrees. knowledge of the Australian isopod fauna was Comparison of the species dealt with here to other W.H. Baker who published a series of papers members of the genus revealed that the dealing exclusively with the family Sphaeroma- appendages differ only in minor ways. tidae (Baker, 1908, 1910, 1911, 1926, 1928). In The similarity of the appendages between the last of these works he described the then species of the genus can be seen by comparison of second known species of the genus Dynoides, and the drawings given by Bruce (1980, and here), naming it after the founder of the genus K.H. Kussakin (1979), Loyola e Silva (1960) and Pillai Barnard called it Dynoides barnardi. Since that (1965). Separation of the males is best achieved time five other species have been described. Bruce by the differences in pleon and pleotelson (1980) lists these species and provided a current morphology. The separation of females is still description of the genus. problematic, but it seems likely that these may be The present paper describes a new species from most easily separated by differences in colouration Heron Island, Great Barrier Reef, and provides a (Bruce, 1980).
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]
  • Supplement to the 2002 Catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004
    Museum Victoria Science Reports 7: 1–15 (2005) ISSN 0 7311-7253 1 (Print) 0 7311-7260 4 (On-line) http://www.museum.vic.gov.au/sciencereports/ Supplement to the 2002 catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004 GARY C. B. POORE Museum Victoria, GPO Box 666E, Melbourne, Victoria 3001, Australia ([email protected]) Abstract Poore, G.C.B. 2005. Supplement to the 2002 catalogue of Australian Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004. Museum Victoria Science Reports 7: 1–15. Publications in the period 2002 to 2004 dealing with Australian Syncarida and Peracarida have been reviewed and new taxa, new combinations and significant papers listed. Eighty species in 28 genera and seven families of Isopoda, seven new species in four genera and two families of Tanaidacea, and one new species of Spelaeogriphacea have been newly reported for Australia in the 3-year period. No publications dealing with Syncarida, Mictacea or Thermosbaenacea were found. This report does not deal with Amphipoda, Mysidacea or Cumacea. These updates have been made to the Zoological Catalogue of Australia Volume 19.2A on the Australian Biological Resources Study website. Introduction New taxa are listed in bold. Parentheses enclose the names of taxa no longer recognised in the Australian fauna. Other taxa are listed only when they have been referred to in the Volume 19.2A of the Zoological Catalogue of Australia recent literature. Subheadings following each taxon are more (Poore, 2002) dealt with all taxa of malacostracan Crustacea or less are in the style used in the original catalogue.
    [Show full text]
  • 5/L^^/^6^I^ -Toc:>X
    5/l^^/^6^i^ -toc:>X <M J. Mar. Biol. Ass. U.K. (2002), 82, 51-6 Printed in the United Kiiigdem Revision of the isopod crustacean genus Campecopea Flabellifera: Sphaeromatidae) with discussion of the phylogenetic significance of dorsal processes Niel L. Bruce* and David M. Holdich^ *Zoologisk Museum, University of Copenhagen, Universitetsparken 15, Copenhagen 0, DK 2100, Denmark. Present address: Marine Biodiversity and Systematics, National Institute of Atmospheric and Water Research, PO Box 14-901, Kilbirnie, Wellington, New Zealand. E-mail; [email protected] School of Life and Environmental Sciences, University of Nottingham, Nottingham, NG7 2RD. E-mail: [email protected] The sphaeromatid crustacean isopod genus Campecopea is revised, a new diagnosis given and the genus Anoplocopea Racovitza, 1907, is placed in synonymy; the type species Campecopea hirsuta is redescribed and Campecopea lusitanica comb. nov. is recorded from the Canary Islands and Azores. The four species of Campecopea diifer from each other principally in the presence or absence of a prominent posteriorly directed dorsal process on the male pereonite 6, the ornamentation of the posterior pereonites, the shape of the uropods and also the fine details of the dactylus accessory spine (smooth or serrate). The phylogenetic significance of dorsal process is re-evaluated here, and the character discussed in rela­ tion to Campecopea, Dynoida and Clianella, and several other sphaeromatid genera. It is regarded that the interpretation of this character as being of intrinsic generic merit has resulted in the over splitting of several genera and also the creation of paraphyletic genera. It is suggested that reappraisal of sphaeromatid generic characters in cladistic terms is a necessary first step in terms of establishing the monophyly of many sphaeromatid genera.
    [Show full text]
  • LE GENRE DYNOIDES BARNARD: UNE MISE AU POINT (ISOPODA, SPHAEROMATIDAE) Peu De Groupes D'isopodes Ont Été Plus Intensivement É
    Cruslaceana 48 (2) 1985, E. J. Brill, Leiden LE GENRE DYNOIDES BARNARD: UNE MISE AU POINT (ISOPODA, SPHAEROMATIDAE) PAR ALBERTO CARVACHO Centro de Investigaciôn Cientffica y de Education Superior de Ensenada, (C.I.C.E.S.E.), Apartado Postal No. 2732, Ensenada, B. Cfa., Me'xico Peu de groupes d'Isopodes ont été plus intensivement étudiés et sont pour­ tant aussi mal connus que les Sphaeromatidés. Une raison importante semble être la méconnaisance de leur biologie et le fait qu'ils présentent souvent un remarquable dimorphisme sexuel à l'état adulte. La première révision systématique complète de la famille a été faite par Hansen (1905). Il y reconnaît trois sous-familles: les Sphaerominae (qui cor­ respondent aux actuels Sphaeromatidae), les Limnoriinae et les Plakarthrii- nae, ces deux derniers groupes étant actuellement séparés de la famille. Récemment Iverson (1982) a publié une mise au point où il retrace l'histoire du groupe et propose quelques nouveaux noms, tout en respectant le caractère fondamental reconnu par Hansen, la structure des pléopodes. Cette caractéris­ tique avait permit de reconnaître trois "groupes" à l'intérieur de la sous famille Sphaerominae: les Eubranchiata, les Hemibranchiata et les Platybran- chiata (Hansen, 1905). Rien de mieux pour montrer la confusion existant en ce qui concerne la systématique de la famille, que de transcrire ici une opinion de Menzies & Glynn (1968: 52): "It will be of interest to see whether an eubran- chiate passes through a hemibranchiate and platybranchiate stage in early life story and vice versa. It is possible, however, that the young émerge from the parent brood pouch in one of the three stages and remain at this stage through life.
    [Show full text]
  • A Manual of Previously Recorded Non-Indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States
    A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States NOAA Technical Memorandum NOS NCCOS 77 ii Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Citation for this report: Megan O’Connor, Christopher Hawkins and David K. Loomis. 2008. A Manual of Previously Recorded Non-indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. NOAA Technical Memorandum NOS NCCOS 77, 82 pp. iii A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. Megan O’Connor, Christopher Hawkins and David K. Loomis. Human Dimensions Research Unit Department of Natural Resources Conservation University of Massachusetts-Amherst Amherst, MA 01003 NOAA Technical Memorandum NOS NCCOS 77 June 2008 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M. Gutierrez Conrad C. Lautenbacher, Jr. John H. Dunnigan Secretary Administrator Assistant Administrator i TABLE OF CONTENTS SECTION PAGE Manual Description ii A List of Websites Providing Extensive 1 Information on Aquatic Invasive Species Major Taxonomic Groups of Invasive 4 Exotic and Native Transplanted Species, And General Socio-Economic Impacts Caused By Their Invasion Non-Indigenous and Native Transplanted 7 Species by Geographic Region: Description of Tables Table 1. Invasive Aquatic Animals Located 10 In The Great Lakes Region Table 2. Invasive Marine and Estuarine 19 Aquatic Animals Located From Maine To Virginia Table 3. Invasive Marine and Estuarine 23 Aquatic Animals Located From North Carolina to Texas Table 4.
    [Show full text]
  • The Introduction of the Asian Isopod Ianiropsis Serricaudis Gurjanova (Crustacea: Peracarida) to North America and Europe
    Aquatic Invasions (2015) Volume 10 in press Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article CORRECTED PROOF Going global: The introduction of the Asian isopod Ianiropsis serricaudis Gurjanova (Crustacea: Peracarida) to North America and Europe Niels-Viggo Hobbs1, Eric Lazo-Wasem2, Marco Faasse3, Jeffery R. Cordell4, John W. Chapman5, Carter S. Smith6, Robert Prezant6, Rebecca Shell6 and James T. Carlton7* 1Biological Sciences Department, University of Rhode Island, Kingston, Rhode Island 02881 USA 2Division of Invertebrate Zoology, Yale Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut 06520 USA 3eCOAST Marine Research, P.O. Box 149, 4330 AC Middelburg, and Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands 4School of Aquatic and Fishery Sciences, 1122 Boat Street, Box 355020, University of Washington, Seattle, Washington 98195 USA 5Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, Oregon 97366 USA 6Department of Biology and Molecular Biology, Montclair State University, 07042 New Jersey USA 7Maritime Studies Program, Williams College - Mystic Seaport, 75 Greenmanville Avenue, P.O. Box 6000, Mystic, Connecticut 06355 USA E-mail: [email protected] (NVH), [email protected] (ELW), [email protected] (MF), [email protected] (JRC), [email protected] (JWC), [email protected] (CS), [email protected] (RP),
    [Show full text]
  • The Genetics of Invertebrate Species Associated with Japanese Tsunami Marine Debris
    The effects of marine debris caused by the Great Japan Tsunami of 2011 Item Type monograph Publisher North Pacific Marine Science Organization (PICES) Download date 10/10/2021 04:38:40 Link to Item http://hdl.handle.net/1834/41144 PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp.
    [Show full text]
  • The Introduction of the Asian Isopod Ianiropsis Serricaudis Gurjanova (Crustacea: Peracarida) to North America and Europe
    Aquatic Invasions (2015) Volume 10, Issue 2: 177–187 doi: http://dx.doi.org/10.3391/ai.2015.10.2.06 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Going global: the introduction of the Asian isopod Ianiropsis serricaudis Gurjanova (Crustacea: Peracarida) to North America and Europe Niels-Viggo Hobbs1, Eric Lazo-Wasem2, Marco Faasse3, Jeffery R. Cordell4, John W. Chapman5, Carter S. Smith6, Robert Prezant6, Rebecca Shell6 and James T. Carlton7* 1Biological Sciences Department, University of Rhode Island, Kingston, Rhode Island 02881, USA 2Division of Invertebrate Zoology, Yale Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut 06520, USA 3eCOAST Marine Research, P.O. Box 149, 4330 AC Middelburg, and Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands 4School of Aquatic and Fishery Sciences, 1122 Boat Street, Box 355020, University of Washington, Seattle, Washington 98195, USA 5Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, Oregon 97366, USA 6Department of Biology and Molecular Biology, Montclair State University, 07042 New Jersey, USA 7Maritime Studies Program, Williams College - Mystic Seaport, 75 Greenmanville Avenue, P.O. Box 6000, Mystic, Connecticut 06355, USA E-mail: [email protected] (NVH), [email protected] (ELW), [email protected] (MF), [email protected] (JRC), [email protected] (JWC), [email protected]
    [Show full text]