Amendment 10 to the Atlantic Mackerel, Squid, and Butterfish Fishery Management Plan

Total Page:16

File Type:pdf, Size:1020Kb

Amendment 10 to the Atlantic Mackerel, Squid, and Butterfish Fishery Management Plan AMENDMENT 10 TO THE ATLANTIC MACKEREL, SQUID, AND BUTTERFISH FISHERY MANAGEMENT PLAN Includes Final Supplemental Environmental Impact Statement (FSEIS) ----------------------June 2009 -------------------- Mid Atlantic Fishery Management Council (MAFMC) in cooperation with the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NOAA Fisheries) Draft adopted by MAFMC: 10/18/2007 Final adopted by MAFMC: 10/16/2008 Final approved by NOAA: A Publication of the Mid-Atlantic Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award No. NA57FC0002 1.0 EXECUTIVE SUMMARY 1.1 INTRODUCTION Amendment Purposes: The two purposes of Amendment 10 to the Atlantic Mackerel, Squid, and Atlantic Butterfish Fishery Management Plan (MSB FMP) are, per the requirements of the Magnuson-Stevens Fishery Conservation and Management Act (MSA), to: 1) develop a rebuilding program that allows the butterfish stock to rebuild in the shortest amount of time possible (but not to exceed ten years) and permanently protects the long-term health and stability of the rebuilt stock; and 2) generally minimize bycatch and the fishing mortality of unavoidable bycatch, to the extent practicable, in the squid, Atlantic mackerel, and butterfish (SMB) fisheries; Potential Management Actions: Four proposed management measures (each of which is a set of alternatives) address the purposes of Amendment 10. Because the Loligo fishery accounts for the majority of butterfish mortality (mainly from discards), and because within the SMB fisheries Loligo has the most discards in general, most of the proposed management actions are focused on reducing discards in the Loligo fishery. Since discarding is the primary source of butterfish fishing mortality, the two Amendment 10 purposes, rebuilding butterfish and general discard reduction, are closely linked. The proposed management actions, all of which could affect both purposes, are: • Measure 1: develop a butterfish mortality cap program for the Loligo fishery or institute a 3 inch minimum codend mesh requirement to allow the butterfish stock to rebuild to BMSY and protect the long-term health and stability of the rebuilt stock. In this document, anytime the language "mortality cap" is used, it refers to a butterfish mortality cap program for the Loligo fishery. • Measure 2: increase Loligo minimum codend mesh size to reduce discards of butterfish and other non-target fish; • Measure 3: eliminate some exemptions for Illex vessels from Loligo minimum codend mesh requirements to reduce discards of butterfish and other fish; • Measure 4: establish seasonal gear restricted areas (GRAs) to reduce the discarding of butterfish and other non-target fish. The Executive Summary next addresses: the two purposes of Amendment 10 (butterfish rebuilding- 1.2, and bycatch/bycatch mortality minimization- 1.3); the general approach of Amendment 10 (1.4); the management measures and related alternatives, and their impacts (1.5); concise summaries of the effects of the alternatives (alone and in combination) as related to the two purposes of Amendment 10 (1.6); initial areas of controversy (1.7); a list of actions considered but rejected (1.8); and a discussion of the regulatory basis for this Amendment (1.9). i 1.2 PURPOSE 1: BUTTERFISH REBUILDING Purpose The first purpose of Amendment 10 is to develop a rebuilding program that allows the butterfish stock to rebuild in the shortest amount of time possible (but not to exceed ten years) and permanently protects the long-term health and stability of the rebuilt stock per the MSA. The Mid-Atlantic Fishery Management Council (Council) was notified by the National Oceanic and Atmospheric Administration's (NOAA) National Marine Fisheries Service (NMFS) on February 11, 2005 that the butterfish stock was designated as overfished. Hence, the primary reason for the development of Amendment 10 is to establish a rebuilding program per the MSA rebuilding provisions, which will allow the butterfish stock to rebuild to BMSY (currently estimated to be 22,798 mt, i.e. the rebuilding target) in as short a time period as possible (taking into account the status and biology of any overfished stocks, the needs of fishing communities, recommendations by international organizations in which the United States participates, and the interaction of the overfished stock of fish within the marine ecosystem), but not to exceed ten years. Status of Butterfish In 2004 the 38th Northeast Regional Stock Assessment Workshop (38th SAW) Stock Assessment Review Committee (SARC) (available at: http://www.nefsc.noaa.gov/nefsc/publications/crd/crd0403/) provided estimates of butterfish fishing mortality and stock biomass estimates through 2002, and determined that butterfish was overfished in 2002 (NEFSC 2004; see Appendix i). Although assessment stock size estimates are highly imprecise (80% confidence interval ranged from 2,600 mt to 10,900 mt), the overfished determination was based on the fact that the 2002 biomass estimate for butterfish (7,800 mt) fell below the threshold level defining the stock as overfished (1/2 Bmsy=11,400 mt). Butterfish discards are estimated to equal twice the annual landings (NEFSC 2004). Analyses have shown that the primary source of butterfish discards is the Loligo fishery because it uses small-mesh, diamond-mesh codends (as small as 1 7/8 inches minimum mesh size) and because butterfish and Loligo co-occur year round. The truncated age distribution of the butterfish stock is also problematic. Historically, the stock was characterized by a broader age distribution and the maximum age was six years. The average observed lifespan is now three years (NEFSC 2004). The truncated age structure results in reduced egg production and the reduced lifespan artificially reduces the mean generation time required to rebuild the stock. Because of the overfished determination, the MSA obligates the Council to develop and implement a stock rebuilding plan. There is no peer reviewed information available on butterfish abundance in 2008. The NEFSC 2007 spring survey indices for butterfish were the second highest by number and the third highest by weight in the 40 year history of the survey time series (but should be interpreted with caution due to the influence of a single very large tow). However the fall 2007 survey indices were the lowest on record. Spring 2008 indices were down from spring 2007 but still historically high. It should be noted that while abundance indices ii are certainly one component of assessments, such indices alone do not provide a point estimate of stock size or status determination. It should also be noted that, historically, the spring and fall survey indices have not tracked each other. Regardless, the 2004 SAW/SARC report is the authoritative reference for stock status and current federal law obligates the Council to develop and implement a stock rebuilding plan until a peer reviewed butterfish stock assessment determines the stock is rebuilt to the Bmsy level (the next butterfish assessment is scheduled for 2010). Also, even if butterfish abundance levels increased after higher recruitment events, the expected level of discard mortality would also increase under the no action alternative. Therefore, while temporary stock recovery could theoretically occur, the stock could quickly return to an overfished status in the absence of measures to control fishing mortality, especially mortality due to discarding. 1.3 Purpose 2: General Bycatch/Bycatch Mortality Minimization Purpose The second purpose of Amendment 10 is to minimize bycatch and the fishing mortality of unavoidable bycatch, to the extent practicable, in Squid, Mackerel, and Butterfish (SMB) fisheries per the MSA. Amendment 8 to the Atlantic Mackerel, Squid and Butterfish Fishery Management Plan was found to be deficient relative to National Standard 9 and, a result, Amendment 9 to the FMP was developed (in part) to address these deficiencies. Amendment 10 had three measures that were transferred from Amendment 9 (i.e., Loligo minimum codend mesh size, eliminating exemptions from Loligo minimum mesh requirements for Illex vessels, seasonal gear restricted areas to reduce butterfish discards) which were intended to reduce bycatch and discarding of target and non-target species in the SMB fisheries and bring the FMP into compliance with MSA bycatch requirements. At its June 2007 meeting, the Council chose to remove these three measures from Amendment 9 and incorporate them into Amendment 10. Therefore, each of these measures is given full consideration in this action. National Standard 9 of the MSA requires that conservation and management measures, to the extent practicable, minimize bycatch, and to the extent that bycatch cannot be avoided, minimize the mortality of such bycatch. Both NMFS online guide to the 1996 Amendments to the MSA (available at: http://www.nmfs.noaa.gov/sfa/sfaguide/) and responses to comments in the National Standard Guidelines Final Rule published in the Federal Register in 1998 (available at: http://www.epa.gov/fedrgstr/EPA- GENERAL/1998/May/Day-01/g11471.htm) note that there is legislative history suggesting that for the sole purpose of bycatch/bycatch mortality minimization, this provision was intended so that Councils make reasonable efforts to reduce discards, but was neither intended to ban a type of fishing gear nor to ban a type of fishing or impose costs on fishermen and processors that cannot be reasonably met. Note this "reasonable efforts"
Recommended publications
  • Ecography ECOG-03961 Flanagan, P
    Ecography ECOG-03961 Flanagan, P. H., Jensen, O. P., Morley, J. W. and Pinsky, M. L. 2019. Response of marine communities to local temperature changes. – Ecography doi: 10.1111/ ecog.03961 Supplementary material Appendix 1 2 3 4 5 6 Figure A1. Boxplots of annual survey sampling days per year in spring (a) and fall (b), bottom 7 temperature measurements per year in spring (c) and fall (d), and bottom temperatures per day of 8 year in spring (e) and fall (f) time series. Black bars indicate mean, gray boxes include 95% of 9 range, and whiskers include entire range of data points. 10 1 11 12 Figure A2. Histogram of Species Thermal Index values for the 246 demersal fish and invertebrate 13 species found in the Northeast U.S. Continental Shelf ecosystem and used in this study. 2 14 15 16 Figure A3. Maps of the difference in slopes of long-term trends (bottom temperature slope minus 17 CTI slope) in (a) spring and (b) fall strata. 3 18 19 Figure A4. Model II major axis linear regression between change in temperature-only model CTI 20 and change in observed CTI in spring (a) and fall (b) communities. Spring slope = 0.88, r2 = 21 0.066, P = 0.0223; fall slope = 0.465, r2 = 0.062, P = 0.026. 4 22 23 24 25 Figure A5. Pearson’s correlations between interannual values of bottom temperature or null 26 model CTI and observed CTI in each stratum and season. (a) Histogram of r values between 27 bottom temperature and observed CTI, with dashed line denoting mean (n = 160, mean r = 28 0.381).
    [Show full text]
  • Citharichthys Uhleri Jordan in Jordan and Goss, 1889 Cyclopsetta Fimbriata
    click for previous page Pleuronectiformes: Paralichthyidae 1917 Citharichthys uhleri Jordan in Jordan and Goss, 1889 En - Voodoo whiff. Maximum size to 11 cm standard length. Poorly known species. Similar to other Citharichthys. Visually orient- ing ambush predator feeding on various invertebrates and small fishes. Apparently rare. Taxonomic status needs further investigation. Sourthern Gulf of Mexico to Costa Rica; Haiti. from Gutherz, 1967 Cyclopsetta fimbriata (Goode and Bean, 1885) En - Spotfin flounder; Fr - Perpeire à queue tachetée; Sp - Lenguado rabo manchado. Maximum size 33 cm, commonly to 25 cm. Soft bottom habitats between 20 to 230 m. Taken as bycatch in in- dustrial trawl fisheries for shrimps. Marketed fresh. Continental shelf off Atlantic and Gulf coasts of the USA from North Carolina to Yucatán, Mexico; Greater Antilles; Caribbean Sea from Mexico to Trinidad; Atlantic coast of South America to Ilha dos Búzios, São Paulo, Brazil. Etropus crossotus Jordan and Gilbert, 1882 UCO En - Fringed flounder; Fr - Rombou petite gueule; Sp - Lenguado boca chica. Maximum size 20 cm, commonly to 15 cm total length. On very shallow, soft bottoms, from the coastline to depths of 30 m, occasionally to 65 m. Caught with beach seines. Artisanal fishery; of minor commercial impor- tance because of its small average size. Virginia to Gulf of Mexico, Caribbean Islands and Atlantic and Pacific coasts of Central America; Tobago; to Tramandí, Rio Grande do Sul, Brazil. Etropus intermedius Norman, 1933 is a junior synonym of E. crossotus. 1918 Bony Fishes Etropus cyclosquamus Leslie and Stewart, 1986 En - Shelf flounder. Maximum size to about 10 cm standard length, commonly 5 to 8 cm standard length.
    [Show full text]
  • NOAA Technical Report NMFS SSRF-691
    % ,^tH^ °^Co NOAA Technical Report NMFS SSRF-691 Seasonal Distributions of Larval Flatfishes (Pleuronectiformes) on the Continental Shelf Between Cape Cod, Massachusetts, and Cape Lookout, North Carolina, 1965-66 W. G. SMITH, J. D. SIBUNKA, and A. WELLS SEATTLE, WA June 1975 ATMOSPHERIC ADMINISTRATION / Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Special Scientific Report—Fisheries Series The majnr responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through- marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The Special Scientific Report—Fisheries series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NMFS. or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used as a medium for the publica- tion of bibliographies of a specialized scientific nature. NOAA Technical Reports NMFS SSRF are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences.
    [Show full text]
  • Temporal and Spatial Management Tools for Marine Ecosystems: Case Studies from Northern Brazil and Northeastern United States
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2019 TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES Beatriz dos Santos Dias University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation dos Santos Dias, Beatriz, "TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES" (2019). Doctoral Dissertations. 1714. https://doi.org/10.7275/15232062 https://scholarworks.umass.edu/dissertations_2/1714 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES A Dissertation Presented by BEATRIZ DOS SANTOS DIAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment Of the requirement for the degree of DOCTOR OF PHILOSOPHY September 2019 Department of Environmental Conservation Wildlife, Fish, and Conservation Biology © Copyright by Beatriz dos Santos Dias 2019 All Rights Reserved TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES A Dissertation Presented By BEATRIZ DOS SANTOS DIAS Approved as to style and content by: ____________________________________________ Adrian Jordaan, Chair ____________________________________________ John T. Finn, Member ____________________________________________ Michael G.
    [Show full text]
  • Ichthyoplankton Distribution and Assemblage Within and Around the As Co River Plume Tracey Bauer University of New England
    University of New England DUNE: DigitalUNE All Theses And Dissertations Theses and Dissertations 8-1-2015 Ichthyoplankton Distribution And Assemblage Within And Around The aS co River Plume Tracey Bauer University of New England Follow this and additional works at: http://dune.une.edu/theses Part of the Biodiversity Commons, Marine Biology Commons, and the Systems Biology Commons © 2015 Tracey Bauer Preferred Citation Bauer, Tracey, "Ichthyoplankton Distribution And Assemblage Within And Around The aS co River Plume" (2015). All Theses And Dissertations. 34. http://dune.une.edu/theses/34 This Thesis is brought to you for free and open access by the Theses and Dissertations at DUNE: DigitalUNE. It has been accepted for inclusion in All Theses And Dissertations by an authorized administrator of DUNE: DigitalUNE. For more information, please contact [email protected]. ICHTHYOPLANKTON DISTRIBUTION AND ASSEMBLAGE WITHIN AND AROUND THE SACO RIVER PLUME BY Tracey Calleen Bauer B.S. University of North Carolina Wilmington, 2013 THESIS Submitted to the University of New England in Partial Fulfillment of the Requirements for the Degree of Master of Science In Marine Sciences August, 2015 i © 2015 Tracey Bauer All Rights Reserved ii iii Acknowledgements This Master’s thesis would not have been possible without the help and support from many different people here at University of New England. I want to thank the Marine Science Center Staff, especially Marian Reagan, Tim Arienti and Shaun Gill. In addition, I want to thank my advisor, Dr. James Sulikowski, for providing direction and support throughout the course of this study, and helping me improve my skills as scientist and researcher.
    [Show full text]
  • 2009-2010 Sweep Efficiency Studies: Update
    2009-2010 sweep efficiency studies: update Northeast Fisheries Science Center January 16, 2018 Study 2009 Twin-trawl 2009-10 Paired trawl F/V Mary K Vessel(s) F/V Karen Elizabeth F/V Moragh K F/V Endurance Trawl type Twin Paired Net 3 bridle, 4-seam standard survey bottom trawl Sweeps Rockhopper sweep, Cookie sweep (3” discs) Restrictor Yes No cables To ws Standard NEFSC survey tows (20 min, 3 knots) Season(s) Fall Spring and Fall Southern New England, Region(s) Southern New England Georges Bank, Gulf of Maine Target spp Flatfish, skates, monkfish Status of work 2009 Twin-trawl study Analysis: Calculation of catch ratios – COMPLETE Sweep relative efficiency – not conducted Report: Draft report - COMPLETE 2009-2010 Paired trawl study Analysis: Calculation of catch ratios – COMPLETE Sweep relative efficiency - COMPLETE Report: Draft report - COMPLETE Number of paired tows 2009 Twin-trawl study SNE 2009 Fall Total 100 In analysis 86 Day 47 Night 39 2009-2010 Paired trawl study SNE GB GOM 2010 2009 2010 2010 2010 2010 Spring Fall Spring Fall Spring Fall Total Total 85 61 66 65 92 63 432 In analysis 78 51 61 54 71 55 370 Day 46 29 34 25 42 25 201 Night 32 22 27 29 29 30 169 Tow locations 2009 Twin-trawls 2009-2010 Paired trawls Catch and catch ratios 2009 Twin-trawl study 10 species caught: • Primarily little skate, winter skate • Winter flounder and yellowtail were most prominent flatfish caught Generally larger catch with cookie sweep • Most catch ratios (cookie/rockhopper) > 1.00 • Precision (CV) variable • Apparent day/night effect for
    [Show full text]
  • Sand Flounder (Family Paralichthyidae) Diversity in North Carolina by the Ncfishes.Com Team
    Sand Flounder (Family Paralichthyidae) Diversity in North Carolina By the NCFishes.com Team Along North Carolina’s shore there are four families of flatfish comprising 36 species having eyes on the left side of their body facing upward when lying in or atop the substrate (NCFishes.com; Table 1; Figure 1). The families and species can be confusing to tell apart. The key characteristics provided for in Table 1 should enable one to differentiate between the four families and this document will aid you in the identification of the species in the Family Paralichthyidae in North Carolina. Table 1. The four families of left-facing flounders found along and off the coast of North Carolina. Family Common Name Key Characteristics (adapted from Munroe 2002) No. Species Preopercle exposed, its posterior margin free and visible, not hidden by skin or scales. Dorsal fin long, originating above, lateral to, or anterior to upper eye. Dorsal and anal fins not attached to caudal fin. Both pectoral Paralichthyidae Sand Flounders fins present. Both pelvic fins present, with 5 or 6 rays. 20 Margin of preopercle not free (hidden beneath skin and scales). Pectoral fins absent in adults. Lateral line absent on both sides of body. Cynoglossidae Tonguefishes Dorsal and anal fins joined to caudal fin. No branched caudal-fin rays. 9 Lateral line absent or poorly developed on blind side; lateral line absent below lower eye. Lateral line of eyed side with high arch over pectoral Bothidae Lefteye Flounders fin. Pelvic fin of eyed side on midventral line. 6 Both pelvic fins elongate, placed close to midline and extending forward to urohyal.
    [Show full text]
  • Feeding Behaviour and Daily Ration of the Spotted Flounder Citharus
    Scientia Marina 74(4) December 2010, 659-667, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.2010.74n4659 Feeding behaviour and daily ration of the spotted flounder Citharus linguatula (Osteichthyes: Pleuronectiformes) in the central Tyrrhenian Sea PAOLO CARPENTIERI, TIZIANA CANTARELLI, FRANCESCO COLLOCA, ALESSANDRO CRISCOLI and GIANDOMENICO ARDIZZONE Animal and Human Biology Department, University of Rome “La Sapienza”, Viale dell’Università 32, 00185 Rome, Italy. E-mail: [email protected] SUMMARY: Spotted flounder Citharus linguatula (Linnaeus, 1758) is one of the most abundant species within demersal fish assemblages next to the continental shelf (up to 200 m depth) of the Mediterranean Sea. In spite of the ecological impor- tance of this species in the central Tyrrhenian Sea, many aspects of its biology (e.g. feeding behaviour) are poorly described. In order to analyze how feeding habits are related to the ontogenetic changes in this species, 2636 specimens (between 9 and 26 cm of total length TL) were collected from November 2000 to January 2002. During ontogenetic development spotted flounder occupied different trophic levels: diet shifted from mysids, predominantly in the smaller spotted flounder (<11 cm TL), towards fish in the larger individuals (>19 cm TL). Before the transition to the icthyophagous phase, a more generalist foraging behaviour including decapods (Processa sp., Alpheus glaber), molluscs (Turitella sp.) and benthic fish (Lesuerigobius spp., Gobius niger, Callionymus spp., Arnoglossus laterna) dominated the diet. Seasonal analysis of the diet showed an increase in the presence of mysids in summer and autumn, and of decapods in summer and spring. Teleosteans are present throughout the year without significant variations.
    [Show full text]
  • Sharks, Skates, Rays, Bony Fish [PDF]
    Fish species (182) known to occur in North Inlet Estuary, 1978-2015. Appendix from Simpson, R.G., D.M. Allen, S.A. Sherman, and K.F. Edwards. 2015. Fishes of the North Inlet Estuary: A guide to their identification and ecology. Belle W. Baruch Institute Special Publication. University of South Carolina. 143 pp. Originally compiled by D.M. Allen and updated January 2015. AFS Common Name is the American Fisheries Society designated official common name for each species (Nelson et al 2004, AFS). Scientific Name AFS Common Name Carcharhinidae - requiem sharks Carcharhinus isodon Finetooth Shark Carcharhinus acronotus Blacknose Shark Carcharhinus leucas Bull Shark Carcharhinus limbatus Blacktip Shark Carcharhinus plumbeus Sandbar Shark Carcharhinus obscurus Dusky Shark Galeocerdo cuvier Tiger Shark Negaprion brevirostris Lemon Shark Rhizoprionodon terraenovae Atlantic Sharpnose Shark Squalidae - dogfish sharks Mustelus canis Dusky Smooth-hound Triakidae - houndsharks Squalus acanthias Spiny Dogfish Sphyrnidae - hammerhead sharks Sphyrna lewini or S. gilberti Scalloped Hammerhead Sphyrna tiburo Bonnethead Rajidae - rays or skates Raja eglanteria Clearnose Skate Dasyatidae - stingrays Dasyatis americana Southern Stingray Dasyatis centroura Roughtail Stingray Dasyatis sabina Atlantic Stingray Dasyatis say Bluntnose Stingray Scientific Name AFS Common Name Gymnuridae - butterfly rays Gymnura micrura Smooth Butterfly Ray Myliobatidae - eagle rays Aetobatus narinari Spotted Eagle Ray Rhinoptera bonasus Cownose Ray Acipenseridae - sturgeons Acipenser
    [Show full text]
  • Osteología De Hippoglossina Macrops (Pleuronectiformes, Paralichthyidae)
    Revista de Biología Marina y Oceanografía Vol. 45, S1: 547-563, diciembre 2010 Artículo Osteología de Hippoglossina macrops (Pleuronectiformes, Paralichthyidae) Osteology of Hippoglossina macrops (Pleuronectiformes, Paralichthyidae) Héctor Flores1 y Eduardo de la Hoz2† 1 Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Casilla 117, Coquimbo, Chile. [email protected] 2 Laboratorio de Morfología Funcional Animal, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile Abstract.– An osteological description of Hippoglossina macrops, a flounder found in the Southeast Pacific, is presented. Specimens between 11 and 32 cm of total length, captured in the area of Valparaíso and Tomé (Chile) were analyzed. Observations were carried out from dissected specimens previously preserved in formalin and cleared and stained specimens for bone and cartilage. The osteological features of those specimens were then compared to H. montemaris. In general, the Hippoglossina macrops osteology have the features given for the suborder Pleuronectoidei, showing diagnostic characters of Paralichthyidae, such as a supra occipital crest inclined towards the nadiral side; metapterygoid related to the upper edge of the quadrate by cartilage and to the rear end by the hyosimplectic cartilage; subopercle with a subsequent upward extension presenting on their sides not ossified surfaces which give uniformity to the bone; fourth abdominal bone in its portion shows a fusion of the first two anal pterygiophores, are among the most important ones. Within the Paralicthyidae family, H. macrops it shares characteristics with Pseudorhombus and Paralichthys. H. montemaris specimens do not show morphological differences with H. macrops, which questioned the validity of the species.
    [Show full text]
  • Chapter 2 Ecology of the Ocean SAMP Region Table of Contents
    Ocean Special Area Management Plan Chapter 2 Ecology of the Ocean SAMP Region Table of Contents List of Figures................................................................................................................................. 3 List of Tables .................................................................................................................................. 7 Section 200. Introduction............................................................................................................... 8 Section 210. Geological Oceanography....................................................................................... 13 Section 220. Meteorology............................................................................................................. 21 220.1. Wind............................................................................................................................... 21 220.2. Storms......................................................................................................................... 23 Section 230. Physical Oceanography............................................................................................ 25 230.1. Waves ......................................................................................................................... 28 230.2. Tides and Tidal Processes .............................................................................................. 28 230.3. Hydrography..................................................................................................................
    [Show full text]
  • PARALICHTHYIDAE Sand Flounders by T.A
    click for previous page 1898 Bony Fishes PARALICHTHYIDAE Sand flounders by T.A. Munroe, National Marine Fisheries Service, National Museum of Natural History, Washington D.C., USA iagnostic characters: Most species with eyes on left side of head, reversals frequent in some species D(right-eyed individuals nearly as common as left-eyed in some species occurring outside the Atlantic). No spines present in fins. Mouth protractile, asymmetrical, lower jaw moderately prominent; teeth in jaws some- times canine-like; no teeth on vomer. Preopercle exposed, its posterior margin free and visible, not hid- den by skin or scales. Urinary papilla on ocular side (Paralichthys group) or blind side (Cyclopsetta group), not attached to first anal-fin ray. Dorsal fin long, originating above, lateral to, or anterior to upper eye. Dorsal and anal fins not attached to caudal fin. Both pectoral fins present. Both pelvic fins present, with 5 or 6 rays (6 rays in nearly all species); base of pelvic fin of ocular side on midventral line (Cyclopsetta group), or pelvic fins symmetrically or nearly symmetrically placed on either side of midventral line (base of neither pelvic fin on midventral line) (Paralichthys group). Caudal fin with 17 or 18 rays, 10 to 13 rays branched (usually 11 or 13, rarely 10 or 12).Lateral line present and obvious on both sides of body; lateral line with (Paralichthys group) or without (Cyclopsetta group) high arch over pectoral fin; lateral line present (Paralichthys group) or absent (Cyclopsetta group) below lower eye. Some species of the Cyclopsetta group (some species of Syacium, Citharichthys, and possibly Etropus in this area) show sexual dimorphism in interorbital width, length of the pectoral fin on the ocular side, length of the anterior dorsal-fin rays, and color- ation.
    [Show full text]