The Next Giant Leap in Solar System Missions and Technologies

Total Page:16

File Type:pdf, Size:1020Kb

The Next Giant Leap in Solar System Missions and Technologies The Next Giant Leap in Solar System Missions and Technologies Michael Amato NASA GSFC Goddard Memorial Symposium Session March 19 2019 Michael Amato - Goddard Memorial Symposium 2019 Some slides are modifications and updates from NASA HQ PSD slides Current and Future Solar System Planetary Missions Missions coming in FORMULATION the next IMPLEMENTATION ~5 years NEOWISE PRIMARY OPS EXTENDED OPS LUCY BEPICOLOMBO (ESA) JUICE (ESA) OSIRIS-REX NEW HORIZONS PSYCHE MOON MARS JUNO CAESAR or Dragonfly EXOMARS 2016 MMX MARS EXPRESS MRO MAVEN (ESA) (JAXA) LUNAR MARS (ESA) RECONNAISSANCE ODYSSEY ORBITER Mars BERESHEET Sample (ISA, SPACE IL) Return? DART EXOMARS 2020 (ESA) CHANDRAYAAN-2 Rover (ISRO) CURIOSITY ROVER MARS 2020 ROVER EUROPA CLIPPER INSIGHT Europa Lander? 2 Michael Amato - Goddard Memorial Symposium 2019 Some slides are modifications and updates from NASA HQ PSD slides Future Solar System Planetary Missions - Moon and Mars Mars Sample Return 2026 ? Lunar Exploration Campaign Lunar instruments and small sats? Michael Amato - Goddard Memorial Symposium 2019 3 Some slides are modifications and updates from NASA HQ PSD slides The Planetary Science Decadal Drive the Next Big Steps The Planetary decadal process results drive the science goals and missions for the next big step in Solar System Exploration Current Decadal (2012-2022) • Prioritized goals which resulted in mission approaches – i.e. - Mars Sample Return, Europa Clipper, Icy Giants mission, Comet Sample return, Venus in situ, Lunar sample return, Trojan Asteroids, Life evidence missions, others. Next Decadal early work and studies • 2016 - CubeSat Mission review, Extended mission review; completed in 2016 • 2017 - R&A restructuring review, Searching for Life Study, Large Strategic Science missions, Sample Analysis Investment Strategy, first pre decadal study of icy Giants Mission; Completed in 2017 • 2018 - Decadal mid term Review, CAPS mid term study recommendation. Next Decadal process will drive the next big steps ( 2023 – 2033 ) • 2019 - Next set of Pre decadal studies being competed now for study later this year. • 2022 – Decadal panels will follow, with an eventual report and recommendations. Michael Amato - Goddard Memorial Symposium 2019 Some slides are modifications and updates from NASA HQ PSD slides Planetary Announcements of Opportunity Compete Some Next Steps Planetary Mission Concept Studies (pre decadal studies) • Proposals due 05/21/2019 Dragonfly Small Innovative Missions for Planetary Exploration (SIMPLEx) • Step-1 selection to be scheduled NET April 12, 2019 • Rolling AO open for next proposals New Frontiers #4 Down-selection CAESAR • Down-selection announcement still expected in July 2019 Discovery 2019 • Step-1 proposal due date rescheduled to July 1, 2019 Psyche Instrument AOs • NASA Provided Lunar Payloads and Lunar Surface Instrument and Technology Payloads (NPLP and LSITP) • Europa Lander (possibly) or other future ‘flagship’ Instrument AOs Technology Funding Programs and Competitions • Play in important role to help advance the needed instrument and subsystem Lucy technologies for the next big steps. Precursors for the next possible missions. • MatISSE, PICASSO, ColdTech, HotTech, ICEE, ICEE2. PSDS3, DALI, RPS, etc Michael Amato - Goddard Memorial Symposium 2019 Some slides are modifications and updates from NASA HQ PSD slides Discovery and New Frontiers have and will continue to be one path for big steps. Past Discovery Winners Past New Frontiers Winners Michael Amato - Goddard Memorial Symposium 2019 (DART, NEO Survey Mission?) Michael Amato - Goddard Memorial Symposium 2019 Some slides are modifications and updates from NASA HQ PSD slides.
Recommended publications
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • OPAG Update to the Planetary Science Advisory Committee (PAC)
    OPAG Update to the Planetary Science Advisory Committee (PAC) ? Linda Spilker OPAG Vice-Chair, JPL PAC Meeting September 24, 2019 Large KBOs: Outer Planets Assessment Group (OPAG) Charter https://www.lpi.usra.edu/opag/ • NASA's community-based forum to provide science input for planning and prioritizing outer planet exploration activities for the next several decades • Evaluates outer solar system exploration goals, objectives, investigations and required measurements on the basis of the widest possible community outreach • Meets twice per year, summer and winter – Next meeting: Feb. 3-4, 2020, LPI, Houston, TX • OPAG documents are inputs to the Decadal Surveys • OPAG and Small Bodies Assessment Group (SBAG) have Joint custody of Pluto system and other planets among Kuiper Belt Objects KBO planets OPAG Steering Committee Jeff Moore Linda Spilker OPAG Chair OPAG Vice-Chair * =New Member Ames Research Center Jet Propulsion Lab Alfred McEwen Lynnae Quick* Kathleen Mandt* University of Arizona NASA Goddard Applied Physics Laboratory OPAG Steering Committee Scott Edgington Amanda Hendrix Mark Hofstadter Jet Propulsion Lab Planetary Science Institute Jet Propulsion Lab Terry Hurford Carol Paty Goddard Space Flight Center Georgia Institute of Technology OPAG Steering Committee Morgan Cable* Britney Schmidt Kunio Sayanagi Jet Propulsion Lab Georgia Institute of Technology Hampton University * =New Member Tom Spilker* Abigail Rymer* Consultant Applied Physics Lab Recent and Upcoming OPAG-related Meetings • OPAG Subsurface Needs for Ocean Worlds
    [Show full text]
  • From Hayabusa to Hayabusa2: Present Status and Plans for Sample Curations of Asteroidal Sample Return Missions by Jaxa
    81st Annual Meeting of The Meteoritical Society 2018 (LPI Contrib. No. 2067) 6117.pdf FROM HAYABUSA TO HAYABUSA2: PRESENT STATUS AND PLANS FOR SAMPLE CURATIONS OF ASTEROIDAL SAMPLE RETURN MISSIONS BY JAXA. T. Yada1, K. Sakamoto1, M. Yoshitake1, K. Kumagai2, M. Nishimura2, Y. Nakano1, S. Furuya1, M. Abe1, T. Okada1, S. Tachibana3, H. Yurimoto1,4, and M. Fujimoto1,5, 1Astromat. Sci. Res. Group, Inst. Space Astronaut. Sci., Japan Aerosp. Explor. Agnecy, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210, Japan ([email protected]), 2 Marine Works Japan Ltd., 3-54-1 Oppamahigashi, Yokosuka 237-0063 Japan, 3Dept. Earth Planet. Sci., Grad. Sch. Science, Univ. Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan, 4Dept. Earth Science, Grad. Sch. Science, Hokkaido Univ., Kita 8, Nishi 5, Kita, Sapporo, Hokkaido 060-0808, Japan, 5Earth-Life Sci. Inst., Tokyo Inst. Tech., 2-12-1-1E-1 Ookayama, Meguro, Tokyo 152-8550, Japan. Introduction: The new era of sample return missions had started since the Stardust returned samples from com- et 81P/Wild 2 in 2006 [1], followed by the Hayabusa spacecraft from the near-Earth S-type asteroid 25143 Itokawa in 2010 [2,3]. In this year, Hayabusa2 will reach its target body, the near-Earth C-type asteroid 162173 Ryugu [4], and also OSIRIS-REx toward the near-Earth B-type asteroid 101955 Bennu [5]. Additionally, several other sample return missions have been planned recently, such as the Martian Moons eXplorer (MMX) for the Phobos and/or Deimos [6], the CAESAR for 67P/Churyumov-Gerasimenko [7], and the HELACLES for the the Moon [8].
    [Show full text]
  • ICEE-2) Program Mitch Schulte, Discipline ScienSt Planetary Science Division NASA Headquarters Europa Lander SDT – Science Trace Matrix
    Instrument Concepts for Europa Exploraon (ICEE-2) Program Mitch Schulte, Discipline Scien3st Planetary Science Division NASA Headquarters Europa Lander SDT – Science Trace Matrix Instrument classes: organic compound analysis (oca), microscope for life detection (mld), vibrational spectrometer (vs), context remote sensing imager (crsi), geophysical sounding system (gss), lander infrastructure sensors for science (liss). LISS not called in ICEE-2. Note: Goal 1 has been rescoped to focus on searching for biosignatures. Europa Lander SDT – Model payload ICEE-2 Program NRA* released: 17 May 2018 Step 1 Proposals due: 22 June 2018 Change in POC: 18 July 2018 Step 2 Proposals due: 24 August 2018 Submitted Proposals: 44 Step 2 Proposals were submitted, 43 of which were compliant and reviewed Government Shutdown: 22 December 2018-25 January 2019 Awards announced: 8 February 2019 *Reminder: This was an NRA, not an AO. ICEE-2 Program • The Instrument Concepts for Europa Exploration (ICEE) 2 program supports the development of instruments and sample transfer mechanism(s) for Europa surface exploration. The goal of the program is to advance both the technical readiness and spacecraft accommodation of instruments and the sampling system for a potential future Europa lander mission. • All awardees required to collaborate with the pre-project NASA-JPL spacecraft team and potentially other awardees. • The ICEE 2 program also seeks to mature the accommodation of instruments on the lander, especially regarding the sampling system. • While specific technology readiness levels (TRL) are not prescribed for the ICEE 2 program, instrument concepts must be at TRL 6 in the 2021/2022 timeframe. ICEE-2 Program • Proposal Information Package (PIP) and Environmental Requirements Document (ERD) provided by JPL team.
    [Show full text]
  • 7'Tie;T;E ~;&H ~ T,#T1tmftllsieotog
    7'tie;T;e ~;&H ~ t,#t1tMftllSieotOg, UCLA VOLUME 3 1986 EDITORIAL BOARD Mark E. Forry Anne Rasmussen Daniel Atesh Sonneborn Jane Sugarman Elizabeth Tolbert The Pacific Review of Ethnomusicology is an annual publication of the UCLA Ethnomusicology Students Association and is funded in part by the UCLA Graduate Student Association. Single issues are available for $6.00 (individuals) or $8.00 (institutions). Please address correspondence to: Pacific Review of Ethnomusicology Department of Music Schoenberg Hall University of California Los Angeles, CA 90024 USA Standing orders and agencies receive a 20% discount. Subscribers residing outside the U.S.A., Canada, and Mexico, please add $2.00 per order. Orders are payable in US dollars. Copyright © 1986 by the Regents of the University of California VOLUME 3 1986 CONTENTS Articles Ethnomusicologists Vis-a-Vis the Fallacies of Contemporary Musical Life ........................................ Stephen Blum 1 Responses to Blum................. ....................................... 20 The Construction, Technique, and Image of the Central Javanese Rebab in Relation to its Role in the Gamelan ... ................... Colin Quigley 42 Research Models in Ethnomusicology Applied to the RadifPhenomenon in Iranian Classical Music........................ Hafez Modir 63 New Theory for Traditional Music in Banyumas, West Central Java ......... R. Anderson Sutton 79 An Ethnomusicological Index to The New Grove Dictionary of Music and Musicians, Part Two ............ Kenneth Culley 102 Review Irene V. Jackson. More Than Drumming: Essays on African and Afro-Latin American Music and Musicians ....................... Norman Weinstein 126 Briefly Noted Echology ..................................................................... 129 Contributors to this Issue From the Editors The third issue of the Pacific Review of Ethnomusicology continues the tradition of representing the diversity inherent in our field.
    [Show full text]
  • Outer Planets Assessment Group (OPAG) View of Decadal Survey
    Outer Solar System: Many Worlds to Explore Outer Planets Assessment Group (OPAG) View of Decadal Survey Progress May 2017 Alfred McEwen, OPAG Chair LPL, University of Arizona This presentation will address (relevant to OPAG): • 1. Most important new discoveries 2011-2017 – (V&V writing was completed in late 2010) • 2. Progress made in implementing Decadal advice – Flight investigations • Flagship Missions • New Frontiers – R&A and infrastructure – Technology • 3. Other issues relevant to the committee’s statement of task – Smallsats for Outer Planet Exploration – How to make the Discovery Program useful for Outer Planets – Europa Lander – Coordination with ESA JUICE mission – Adding Ocean Worlds to New Frontiers 4 – Future mission studies to prepare for next Decadal • 4. Summary grade recommendations on Decadal progress • 5. OPAG top recommendations to mid-term review 1. Most Important New Discoveries 2011-present • Jupiter system: – Europa plate tectonics (Prockter et al., 2014) – Europa cryovolcanism (Quick et al., 2017; Prockter et al., 2017) – Europa plumes (Roth et al., 2014; Sparks et al., 2017) – Confirmation of subsurface ocean in Ganymede (Saur et al., 2015) – Evidence for extensive melt in Io’s mantle (Khurana et al., 2011; Tyler et al., 2015) – Fabulous results from Juno (papers submitted) • Saturn System: – MUCH from Cassini—see upcoming slides • Uranus and Neptune systems: – Standard interior models do not fit observations; Uranus and Neptune may be quite different (Nettelmann et al. 2013) – Intense auroras seen at Uranus (Lamy et al., 2012, 2017) – Weather on Uranus and Neptune confined to a “thin” layer (<1,000 km) (Kaspi et al. 2013) – Ice Giant growing around nearby TW Hydra (Rapson et al., 2015) – Triton’s tidal heating and possible subsurface ocean (Gaeman et al., 2012; Nimmo and Spencer, 2015) • Pluto system—lots of results from New Horizons – The Pluto system is complex in the variety of its landscapes, activity, and range of surface ages.
    [Show full text]
  • Volume 16 –Number 3 National Park Service • U.S
    PARKARK P CIENCECIENCE SS Integrating Research and Resource Management Volume 16 –Number 3 National Park Service • U.S. Department of the Interior Summer 1996 THE NATURAL RESOURCE TRAINEE PROGRAM: PROFESSIONALIZATION TRIUMPH OF THE 1980S AND EARLY 1990S Who are they and where are they now? See the key on page 17 to identify these participants of the first Natural Resource Trainee Program and learn what they are up to now. BY THE EDITOR imparting the skills. Regional office funding allowed parks to HE NEED TO ESTABLISH AND PROFES- send staff to the training and backfill behind them to take care sionalize science and resource management func- of unfinished park work. Other superintendents soon heard tions and apply them in the management of na- about the training opportunity and wanted to be a part of it. tional parks was recognized as early as the 1930s. Wauer then prioritized individual park needs, opting for placing Then, biologist George Wright published several resource management trainees at parks that formerly didn’t have Tpapers on wildlife management and made the clear connection any resource management expertise. between science and informed park resource management ac- The program went national in the early 1980s following pub- tivities. Yet, for the next 5 decades, resource management work lication of two different conservation organization reports on continued to be done mostly by park rangers who were trained threats to national parks and a response by the National Park primarily in law enforcement and other operational areas, not Service in the form of a state-of-the-parks report.
    [Show full text]
  • An Approach to Magnetic Cleanliness for the Psyche Mission M
    An Approach to Magnetic Cleanliness for the Psyche Mission M. de Soria-Santacruz J. Ream K. Ascrizzi ([email protected]), ([email protected]), ([email protected]) M. Soriano R. Oran University of Michigan Ann Arbor ([email protected]), ([email protected]), 500 S State St O. Quintero B. P. Weiss Ann Arbor, MI 48109 ([email protected]), ([email protected]) F. Wong Department of Earth, Atmospheric, ([email protected]), and Planetary Sciences S. Hart Massachusetts Institute of Technology ([email protected]), 77 Massachusetts Avenue M. Kokorowski Cambridge, MA 02139 ([email protected]) B. Bone ([email protected]), B. Solish ([email protected]), D. Trofimov ([email protected]), E. Bradford ([email protected]), C. Raymond ([email protected]), P. Narvaez ([email protected]) Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 C. Keys C. Russell L. Elkins-Tanton ([email protected]), ([email protected]), ([email protected]) P. Lord University of California Los Angeles Arizona State University ([email protected]) 405 Hilgard Avenue PO Box 871404 Maxar Technologies Inc. Los Angeles, CA 90095 Tempe, AZ 85287 3825 Fabian Avenue Palo Alto, CA 94303 Abstract— Psyche is a Discovery mission that will visit the fields. Limiting and characterizing spacecraft-generated asteroid (16) Psyche to determine if it is the metallic core of a magnetic fields is therefore essential to the mission. This is the once larger differentiated body or otherwise was formed from objective of the Psyche’s magnetics control program described accretion of unmelted metal-rich material.
    [Show full text]
  • Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites
    Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Tk_35-Tk_38, 2010 Topics Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites 1) 2) 2) 2) 3) By Sho SASAKI , Masaki FUJIMOTO , Takeshi TAKASHIMA , Hajime YANO , Yasumasa KASABA , 4) 4) 2) 2) Yukihiro TAKAHASHI , Jun KIMURA , Tatsuaki OKADA , Yasuhiro KAWAKATSU , 2) 2) 2) 2) 2) Yuichi TSUDA , Jun-ichiro KAWAGUCHI , Ryu FUNASE , Osamu MORI , Mutsuko MORIMOTO , 5) 6) 7) Masahiro IKOMA , Takeshi NAGANUMA , Atsushi YAMAJI , 8) 9) Hauke HUSSMANN , Kei KURITA and JUPITER WORKING GROUP 1)National Astronomical Observatory of Japan, Oshu, Japan 2)The Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 3)Tohoku University, Sendai, Japan 4)Hokkaido University, Sapporo, Japan 5)Tokyo Institute of Technology, Tokyo, Japan 6)Hiroshima University, Higashi-Hiroshima, Japan 7)Kyoto University, Kyoto, Japan 8)German Aerospace Center, Berlin, Germany 9)Earthquake Research Institute, The University of Tokyo, Tokyo, Japan (Received July 16th, 2009) EJSM (Europa Jupiter System Mission) is a planned Jovian system mission with three spacecraft aiming at coordinated observations of the Jovian satellites especially Europa and the magnetosphere, atmosphere and interior of Jupiter. It was formerly called "Laplace" mission. In October 2007, it was selected as one of future ESA scientific missions Cosmic Vision (2015-2025). From the beginning, Japanese group is participating in the discussion process of the mission. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetosphere Orbiter). On the other hand, ESA will take charge of JGO (Jupiter Ganymede Orbiter) and NASA will be responsible for JEO (Jupiter Europa Orbiter).
    [Show full text]
  • Valuing Life Detection Missions Edwin S
    Valuing life detection missions Edwin S. Kite* (University of Chicago), Eric Gaidos (University of Hawaii), Tullis C. Onstott (Princeton University). * [email protected] Recent discoveries imply that Early Mars was habitable for life-as-we-know-it (Grotzinger et al. 2014); that Enceladus might be habitable (Waite et al. 2017); and that many stars have Earth- sized exoplanets whose insolation favors surface liquid water (Dressing & Charbonneau 2013, Gaidos 2013). These exciting discoveries make it more likely that spacecraft now under construction – Mars 2020, ExoMars rover, JWST, Europa Clipper – will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources ($10bn/decade for the US1), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework (Fig. 1) for comparing the value of different life detection missions: Scientific value = (Reach × grasp × certainty × payoff) / $ (1) After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable. Should the US fly more life detection missions? Once a habitable environment has been found and characterized, life detection missions are a logical next step. Are we ready to do this? The case for emphasizing habitable environments, not life detection: Our one attempt to detect life, Viking, is viewed in hindsight as premature or at best uncertain. In-space life detection experiments are expensive.
    [Show full text]
  • Gao-21-306, Nasa
    United States Government Accountability Office Report to Congressional Committees May 2021 NASA Assessments of Major Projects GAO-21-306 May 2021 NASA Assessments of Major Projects Highlights of GAO-21-306, a report to congressional committees Why GAO Did This Study What GAO Found This report provides a snapshot of how The National Aeronautics and Space Administration’s (NASA) portfolio of major well NASA is planning and executing projects in the development stage of the acquisition process continues to its major projects, which are those with experience cost increases and schedule delays. This marks the fifth year in a row costs of over $250 million. NASA plans that cumulative cost and schedule performance deteriorated (see figure). The to invest at least $69 billion in its major cumulative cost growth is currently $9.6 billion, driven by nine projects; however, projects to continue exploring Earth $7.1 billion of this cost growth stems from two projects—the James Webb Space and the solar system. Telescope and the Space Launch System. These two projects account for about Congressional conferees included a half of the cumulative schedule delays. The portfolio also continues to grow, with provision for GAO to prepare status more projects expected to reach development in the next year. reports on selected large-scale NASA programs, projects, and activities. This Cumulative Cost and Schedule Performance for NASA’s Major Projects in Development is GAO’s 13th annual assessment. This report assesses (1) the cost and schedule performance of NASA’s major projects, including the effects of COVID-19; and (2) the development and maturity of technologies and progress in achieving design stability.
    [Show full text]