Ph.D Thesis Muhammad Rafiq Microbiology 2016.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales
Polar Biol DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes. Eukaryotic We highlight the known diversity of psychrophilic algae algae and cyanobacteria are the dominant photosynthetic and the unique qualities that allow them to thrive in severe primary producers in cold habitats, thriving in a surprising ecosystems where life exists at the edge. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
A Metagenomic Approach to Understand Stand Failure in Bromus Tectorum
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2019-06-01 A Metagenomic Approach to Understand Stand Failure in Bromus tectorum Nathan Joseph Ricks Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Ricks, Nathan Joseph, "A Metagenomic Approach to Understand Stand Failure in Bromus tectorum" (2019). Theses and Dissertations. 8549. https://scholarsarchive.byu.edu/etd/8549 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A Metagenomic Approach to Understand Stand Failure in Bromus tectorum Nathan Joseph Ricks A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Craig Coleman, Chair John Chaston Susan Meyer Department of Plant and Wildlife Sciences Brigham Young University Copyright © 2019 Nathan Joseph Ricks All Rights Reserved ABSTACT A Metagenomic Approach to Understand Stand Failure in Bromus tectorum Nathan Joseph Ricks Department of Plant and Wildlife Sciences, BYU Master of Science Bromus tectorum (cheatgrass) is an invasive annual grass that has colonized large portions of the Intermountain west. Cheatgrass stand failures have been observed throughout the invaded region, the cause of which may be related to the presence of several species of pathogenic fungi in the soil or surface litter. In this study, metagenomics was used to better understand and compare the fungal communities between sites that have and have not experienced stand failure. -
Alternaria Alternata
Published on INSPQ (https://www.inspq.qc.ca) Home > Compendium sur les moisissures > Fiches sur les moisissures > Alternaria alternata Alternaria alternata Alternaria alternata [1] [2] [3] [4] [5] [6] Introduction Laboratoire Métabolites Problèmes de santé Milieux Diagnostic Bibliographie Introduction Alternaria est un genre comportant approximativement 50 espèces {813, 816, 3318}. A. alternata est l’espèce la plus fréquemment rencontrée et un des mycètes les plus communs de la flore fongique aéroportée {989, 813}. Alternaria spp. est connu mondialement à la fois comme organisme phytopathogène courant et comme allergène aéroporté; plus particulièrement, l’A. alternata est reconnu comme l’espèce aéroallergène type, et, dans une majorité de cas, les problèmes de santé chez les humains et les animaux ont été associés à cette espèce. Taxonomie Règne Fungi Famille Pleosporaceae Phylum Ascomycota Genre Alternaria Classe Euascomycetes (ou Dothideomycetes) Espèce alternata Ordre Pleosporales Le Comoclathris permunda est la forme sexuée ou télémorphe del’Alternaria alternata et le Lewia sp. est la forme parfaite de plusieurs autres Alternaria sp. {3842}; d’autres genres télémorphes comprennent le Graphyllium et le Pleospora. Le genre comporte 44 espèces bien étudiées et dont l’identification est établie, mais il se peut qu’il en existe des centaines de plus; de fait, la banque de données universelle de l’Universal Protein Resource (UniProt) rapporte 95 espèces nommées parmi les 433 souches enregistrées {3318}. Certains taxonomistes suggèrent également que l’A. alternata est une espèce représentative d’un complexe d’espèces plutôt qu’une espèce unique, et ce groupe pourrait comprendre plusieurs espèces hétérogènes {816}. Écologie Les espèces d’Alternaria sont des mycètes dématiacés cosmopolites fréquemment isolés d’échantillons de plantes, de terre, de nourriture et d’air intérieur. -
157-21(5-20-00) Red Snow, Green Snow: It's Truly Spring When Those
May 20, 2000 BROWSE BROWSE TABLE OF BY YEAR 2000 ISSUES CONTENTS 2000 Vol. 157 No. 21 p. 328 Red Snow, Green Snow It’s truly spring when those last white drifts go technicolor By SUSAN MILIUS Microbiologist Brian Duval hates this part, so let’s just deal with the snickering up front. Yes, he studies yellow snow. He also studies red, green, and orange snow and would love to examine other colors if he were lucky enough to dis- cover them. His palette comes from springtime blooms of algae that live only in deep, persistent snowfields. And yes, even a professional sometimes gets fooled. “I was outside a penguin rookery in Antarctica, and I thought I was collecting this greenish-yellow algae,” recalls the microbiologist now at the Massachusetts Department of Environmental Protection in Worcester. “I was saying, ‘Yeah, yeah, this looks like the stuff.’” When he checked his trea- sures under a microscope, however, he diagnosed the obvious nonalgal origin. “It gets embarrassing,” he admits. Despite the yellow-snow raillery, Duval and his colleagues stay with their studies of snow algae because of the marvels of the chilly lifestyle. Somehow the 350 species of snow algae thrive in the near- freezing, nutrient-poor, acidic, sun-blasted slush of melting snowfields around the world. The algae support a food web in the snow—a world of tiny, wormy, crawly beings as odd as Spielberg-movie creatures. Duval Algal life cycles combine the drama of salmon runs and No, it’s not a murder scene. A the nightmare of icebound explorers. -
A Molecular and Morphological Reassessment of Diademaceae
Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 675348, 11 pages http://dx.doi.org/10.1155/2014/675348 Research Article A Molecular and Morphological Reassessment of Diademaceae Hiran A. Ariyawansa,1,2,3 Rungtiwa Phookamsak,2,3 Saowaluck Tibpromma,2,3 Ji-Chuan Kang,1 and Kevin D. Hyde2,3 1 The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou 550025, China 2 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Correspondence should be addressed to Ji-Chuan Kang; [email protected] and Kevin D. Hyde; [email protected] Received 6 August 2013; Accepted 8 October 2013; Published 12 January 2014 Academic Editors: R. Jeewon and S. J. Suh Copyright © 2014 Hiran A. Ariyawansa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We revisit the family Diademaceae based on available sequence data and morphology. Diademaceae is characterized by ascomata opening with a flat circular lid and fissitunicate, short orbicular frequently cylindrical, pedicellate asci. Ascospores are frequently circular in section but narrowing to one end with three or more transverse septa, without longitudinal septa, and mostly with a thick sheath. In recent treatments Clathrospora, Comoclathris, Diadema, Diademosa,andGraphyllium were placed in the family. Following molecular and morphological study, Clathrospora, Comoclathris,andDiademosa, are excluded from the family and referred to Pleosporaceae. -
Proposed Generic Names for Dothideomycetes
Naming and outline of Dothideomycetes–2014 Nalin N. Wijayawardene1, 2, Pedro W. Crous3, Paul M. Kirk4, David L. Hawksworth4, 5, 6, Dongqin Dai1, 2, Eric Boehm7, Saranyaphat Boonmee1, 2, Uwe Braun8, Putarak Chomnunti1, 2, , Melvina J. D'souza1, 2, Paul Diederich9, Asha Dissanayake1, 2, 10, Mingkhuan Doilom1, 2, Francesco Doveri11, Singang Hongsanan1, 2, E.B. Gareth Jones12, 13, Johannes Z. Groenewald3, Ruvishika Jayawardena1, 2, 10, James D. Lawrey14, Yan Mei Li15, 16, Yong Xiang Liu17, Robert Lücking18, Hugo Madrid3, Dimuthu S. Manamgoda1, 2, Jutamart Monkai1, 2, Lucia Muggia19, 20, Matthew P. Nelsen18, 21, Ka-Lai Pang22, Rungtiwa Phookamsak1, 2, Indunil Senanayake1, 2, Carol A. Shearer23, Satinee Suetrong24, Kazuaki Tanaka25, Kasun M. Thambugala1, 2, 17, Saowanee Wikee1, 2, Hai-Xia Wu15, 16, Ying Zhang26, Begoña Aguirre-Hudson5, Siti A. Alias27, André Aptroot28, Ali H. Bahkali29, Jose L. Bezerra30, Jayarama D. Bhat1, 2, 31, Ekachai Chukeatirote1, 2, Cécile Gueidan5, Kazuyuki Hirayama25, G. Sybren De Hoog3, Ji Chuan Kang32, Kerry Knudsen33, Wen Jing Li1, 2, Xinghong Li10, ZouYi Liu17, Ausana Mapook1, 2, Eric H.C. McKenzie34, Andrew N. Miller35, Peter E. Mortimer36, 37, Dhanushka Nadeeshan1, 2, Alan J.L. Phillips38, Huzefa A. Raja39, Christian Scheuer19, Felix Schumm40, Joanne E. Taylor41, Qing Tian1, 2, Saowaluck Tibpromma1, 2, Yong Wang42, Jianchu Xu3, 4, Jiye Yan10, Supalak Yacharoen1, 2, Min Zhang15, 16, Joyce Woudenberg3 and K. D. Hyde1, 2, 37, 38 1Institute of Excellence in Fungal Research and 2School of Science, Mae Fah Luang University, -
Multi-Locus Phylogeny of Pleosporales: a Taxonomic, Ecological and Evolutionary Re-Evaluation
available online at www.studiesinmycology.org StudieS in Mycology 64: 85–102. 2009. doi:10.3114/sim.2009.64.04 Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation Y. Zhang1, C.L. Schoch2, J. Fournier3, P.W. Crous4, J. de Gruyter4, 5, J.H.C. Woudenberg4, K. Hirayama6, K. Tanaka6, S.B. Pointing1, J.W. Spatafora7 and K.D. Hyde8, 9* 1Division of Microbiology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China; 2National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 3Las Muros, Rimont, Ariège, F 09420, France; 4CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands; 5Plant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan; 7Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 93133, U.S.A.; 8School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand; 9International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, P.R. China 650034 *Correspondence: Kevin D. Hyde, [email protected] Abstract: Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification ofPleosporales . The suborder Pleosporineae is emended to include four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. -
Study on Snowmelt and Algal Growth in the Antarctic Peninsula Using
RESEARCH COMMUNICATIONS Study on snowmelt and algal growth during February 2020 due to algal growth. Scientists from Ukraine have explained that due to red colour, snow in the Antarctic Peninsula using spatial reflects less sunlight and melts at a faster rate producing approach more bright algae7. Red snow was discovered by John Ross in 1818 at M. Geetha Priya1,*, N. Varshini2, G. Chandhana2, Crimson cliff in Baffin’s bay near the Arctic region. Later Robert Brown reported that the red colour was caused by G. Deeksha2, K. Supriya2 and D. Krishnaveni2 algae. At the beginning of the 20th century, Johan Nordal 1 School of Electronics Engineering, Vellore Institute of Technology, Fischer-Wille proved that the red colour of snow was due Chennai 600 127, India 2Centre for Incubation, Innovation, Research and Consultancy and to algae that he named Chlamydomonas nivalis (photo- 8,9 Department of ECE, Jyothy Institute of Technology, Thataguni, synthetic green algae) . Green algae grow in snowfields Bengaluru 560 082, India of the Alps and polar regions which consist of red carote- noid pigment that is responsible for the red colour pro- In recent times, global warming across the world is tecting it from UV radiation10,11. The present study is an one of the major factors that triggers surface snow immediate response to observations on the effect of rise melting. According to the reports, climate change in temperature on snow cover of Eagle Island and the across the globe has a major impact on the poles, change in snow reflectance due to red algal growth which which has resulted in rapid snowmelt and red- has been reported by polar researchers in February 2020. -
A New Genus and Three New Species of Hysteriaceous Ascomycetes from the Semiarid Region of Brazil
Phytotaxa 176 (1): 298–308 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.176.1.28 A new genus and three new species of hysteriaceous ascomycetes from the semiarid region of Brazil DAVI AUGUSTO CARNEIRO DE ALMEIDA1, LUÍS FERNANDO PASCHOLATI GUSMÃO1 & ANDREW NICHOLAS MILLER2 1 Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900. Feira de Santana, BA, Brazil. 2 Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL 61820 * email: [email protected] Abstract During an inventory of ascomycetes in the semi-arid region of Brazil, one new genus and three new species of hysteriaceous ascomycetes were found. Maximum likelihood and Bayesian phylogenetic analyses of the nuclear ribosomal 28S large subunit were performed to investigate the placement of the new taxa within the class Dothideomycetes. Anteaglonium brasiliense is described as a new species within the order Pleosporales, and Graphyllium caracolinense is described as a new species nested inside Hysteriales. Morphological and molecular data support Hysterodifractum as a new monotypic genus in the Hysteriaceae. The type species, H. partisporum, is characterized by navicular, carbonaceous, gregarious hysterothecia and pigmented, fusiform ascospores that disarticulate into 16 ovoid or obovoid, septate, part-spores. This is the first report of a hysteriaceous fungus producing part-spores. Key words: Dothideomycetes, LSU, phylogeny, Pleosporomycetidae, taxonomy, tropical microfungi Introduction Hysteriaceous ascoloculares ascomycetes produce navicular, carbonaceous, persistent ascomata that are superficial or erumpent and dehisce through a longitudinal slit (Boehm et al. -
Morphological and Physicochemical Diversity of Snow Algae from Alaska Marta J
www.nature.com/scientificreports OPEN Morphological and physicochemical diversity of snow algae from Alaska Marta J. Fiołka1*, Nozomu Takeuchi2, Weronika Sofńska‑Chmiel3, Sylwia Mieszawska1 & Izabela Treska1 Snow algae are photosynthetic microbes growing in thawing snow. They usually show various morphological cell types. The aim of this study was to carry out microscopic and spectroscopic analysis of diferent forms of cells of snow algae collected on glaciers in Alaska. Four diferent shapes of algal cells were observed with the use of bright feld LM (Light Microscopy), DIC (Diferential Interference Contrast), EDF (Extended Depth Focus), fuorescence microscopy, and SEM (Scanning Electron Microscopy). The cells exhibited the strongest autofuorescence after the exposure to 365‑nm excitation light, and the intensity difered among the cell types. Zygotes (cysts) showed the most intense fuorescence. Acridine orange staining revealed the acid nature of the algal cells. The use of Congo red and Calcofuor white fuorochromes indicated diferences in the structure of polysaccharides in the cell wall in the individual types of algal cells. FTIR (Fourier‑Transform Infrared Spectroscopy) analyses showed the presence of polysaccharides not only in the algal cells but also in the fxative solution. The presence of polysaccharides in the extracellular algal fraction was confrmed by X‑ray dispersion spectroscopy (EDS), X‑ray photoelectron spectroscopy (XPS), and scanning electron microscopy imaging (SEM). The diferences observed in the structure of the cell wall of the diferent forms of red snow algae prompt further analysis of this structure. Te red or pink color of snow caused by blooms of snow algae is commonly observed during summer in alpine and coastal polar regions. -
Biological Albedo Reduction on Ice Sheets, Glaciers, and Snowfields
Biological albedo reduction on ice sheets, glaciers, and snowfields Scott Hotaling1, Stefanie Lutz2, Roman J. Dial3, Alexandre M. Anesio4, Liane G. Benning2,5, Andrew G. Fountain6, Joanna L. Kelley1, Jenine McCutcheon7, S. McKenzie Skiles8, Nozomu Takeuchi9, and Trinity L. Hamilton10 Affiliations: 1 School of Biological Sciences, Washington State University, Pullman, WA, USA 2 GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 3 Institute of Culture and Environment, Alaska Pacific University, Anchorage, AK, USA 4 Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark 5 Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany 6 Departments of Geology and Geography, Portland State University, Portland, OR, USA 7 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada 8 Department of Geography, University of Utah, Salt Lake City, UT, USA 9 Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan 10 Department of Plant and Microbial Biology and The BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA Correspondence: Scott Hotaling, School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA; Email: [email protected]; Phone: (828) 507-9950; ORCID: 0000-0002-5965- 0986 Trinity Hamilton, Department of Plant and Microbial Biology and the BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA; Email: [email protected]; Phone: (612) 625- 6372; ORCID: 0000-0002-2282-4655 Note: This article is a non-peer reviewed preprint submitted to EarthArXiv. It was submitted for peer review to Earth-Science Reviews in January 2021. 1 Abstract: 2 The global cryosphere, Earth’s frozen water, is in precipitous decline.