Brunsvigia-Nectarinia Pollination Mutualisms: Sunbirds and Candelabra Plants

Total Page:16

File Type:pdf, Size:1020Kb

Brunsvigia-Nectarinia Pollination Mutualisms: Sunbirds and Candelabra Plants The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Variation in pollination across a fragmented landscape at the Cape of Africa Town Anton Pauw Cape of Thesis Presented for the Degree of Doctor of Philosophy Universityin the Department of Botany Science Faculty University of Cape Town April 2004 2 Statement The conception, planning, execution and writing of this thesis was entirely my own, except in the specific instance mentioned below. Chapter 7 describes a study conducted in collaboration with Dr. Julie Hawkins and Dr. Yvonne Charters. Their contributions were mainly through genetic laboratory work (Charters) and discussion on how to improve the manuscript (Hawkins). Town Cape of University 3 Acknowledgements I am grateful to my supervisor, William Bond, for sharing his insight into the natural world with me and for guiding my own enquiries. Steve Johnson and Julie Hawkins have been unofficial co-supervisors of this thesis. I am indebted to them for all that I continue to learn from them. Spencer Barrett directed my interest in stylar polymorphisms. Gabriela Demergasso is my Muse and proofreader. It is thanks to a group of passionate conservationists that anything at all remains of the Cape Lowland flora. The Darling Wildflower Society, and in particular Mark and John Duckitt, have been instrumental in saving some of the treasures ofthe Darling region from the plow. I am grateful to them for permission to Townwork on their farms. Farmer and conservationist, Neil McGregor, gave us access to his carefully guarded botanical treasures at Nieuwoudville. I am indebted to The Friends of Rondebosch Common, and in particular Betty Dwight, for sharingCape her knowledge of the flora of this small, urban conservation area. Dalton Gibbs and Clifford Dorse introduced me to the botanical rarities of the Rondevlei Natureof Reserve. lowe a special debt to the staff of the Botany Department of the University of Cape Town. Departmental Head, Jeremy Midgley, provided many stimulating conversations and fresh ideas, and commented on drafts of some chapters. Sandy Smuts made research possible by keeping the administrative machinery of the Botany DepartmentUniversity running smoothly. Terry Trinder-Smith, curator of the Bolus Herbarium, gave freely of his deep knowledge of the Cape Flora. Gonzalo Aguilar kept this tired computer going. I am indebted to Miranda Waldon of the Electron Microscope Unit for her patience and assistance. Kim Steiner, John Manning and Dee Snijman at the National Botanical Institute (Kirstenbosch) shared their deep knowledge of the Coryciinae, Iridaceae and Amaryllidaceae with me. For the difficult task of identifying insects I relied on the collections of the South African Museum and received assistance from Simon van Noort. Vin Whitehead helped me with the identification of Rediviva species. 4 Throughout this study I have been supported in many ways by the Botanical Society of South Africa, in particular Kristal Maze, Amrei von Hase and Mark Botha of the Cape Conservation Unit. The National Parks Board and Cape Nature Conservation provided permits and permissions. Tilla Raimondo, Anthony Roberts and CharI Pauw helped with the capture of sunbirds and the counting of seeds, and made fieldwork a pleasure. Yvonne Charters and Josephine Shockley did the genetics lab work for me. For statistical advice I am grateful to Frank Schurr and June Juritz. Amrei von Hase provided help with digital maps and geographical information of the study region. Bill Liltved provided invaluable locality information for orchid populations and provided some of the photographs presented here. The following herbaria are thanked for allowing me to rehydrate their ancient specimens: K, BM, BOL, NBG, SAM, GUTHRIE. This research was made possible by generous grants from the TownNational Research Foundation (South Africa), the Nuffield Foundation and the National Geographic Society. Cape of University I I 5 Abstract In this thesis I assessed the ability of established conservation areas to conserve plant-pollinator interactions. The study area was the species rich, but highly fragmented West Coast Lowlands of the Cape of Africa. I focused on the Nectarinia sunbird pollination system and the oil-collecting Rediviva bee pollination system. Before exploring the consequences of habitat fragmentation, it was necessary to study the natural history of the plant-pOllinator interactions. Among 16 conservation areas, I studied variation in the pOllination of Brunsvigia orientalis (Amaryllidaceae) by Nectarinia sunbirds. Pollen supplementation experiments and censuses of sunbirds showed that the observed failure of seed set could be attributed to the lack of sunbirds. Three factors: 1) the post-fire successional stage of the vegetation, 2) the number of flowering B. orientalis plants, and 3) the size ofTown the conservation area, explained 75 % of variation in seed set. Seed set failed in small conservation areas (22 - 30 ha), and was reduced in medium-sized conservation areas (811 - 1113 ha) compared with large conservation areas (> 15 000 ha). Among 27 conservation areas, I studied Capevariation in the pollination of an oil­ secreting orchid, Pterygodium catholicum, by the oil-collecting bee, Rediviva peringueyi. Variables that Significantly influenced the abilityof of nature reserves to conserve the orchid­ bee mutualism were: 1) the soil type, 2) the post-fire successional stage of the vegetation and 3) the interaction between reserve size and the nature of the surrounding land-use. A lack of pollinators led to reproductive failure in consecutive years in small conservation areas (4 - 385 ha) in an urban matrix. Correlated patterns of variation in seed capsule production suggested that the results obtained for P. catholicum could be extrapolated to several additional plant species which are also pollinated by R. peringueyi. Are these apparentUniversity anthropogenic declines in pollination real? Declines can only be detected with certainty by comparison with historical rates. I reconstructed the historical pollination landscape by detecting the genetic echo of past pollination, and by determining historical pollination rates from rehydrated herbarium specimens. Thus, I demonstrated that plant-pOllinator mutualisms have recently collapsed in small, urban conservation areas. Does a decline in pollination really matter? Patterns of variation in the composition of the community of oil-secreting plants suggest that the anthropogenic extirpation of oil­ collecting bees from small conservation areas has been followed by the extirpation of dependent plant species. Patterns of infraspecific variation in the floral traits in sunbird and oil-bee pollinated plants suggest an alternative to extinction. Pollinator loss may ultimately result in the evolution floral traits that decrease dependence on the absent pollinator. 6 Table of Contents Statement ...................................................................................................................... 2 Acknowledgements ...................................................................................................... 3 Abstract ........................................................................................................................ 5 Introduction ............................................................................................................... 11 Conventions and nomenclature ................................................................................ 14 SECTION 1 The Brunsvigia-Nectarinia pollination mutualisms: sunbirds and candelabra plants ........................................................................ 15 1 Reproductive dependence of Brunsvigia orientalis (Amaryllidaceae) on Nectarinia sunbirds (Nectarinidae) .................................................................. 16 Materials and methods .......................................................................................Town 16 Study species ................................................................................................... 16 Study sites ....................................................................................................... 17 Flower morphology, nectar characteristics and phenology ............................. 17 Breeding system .............................................................................................. 17 Alternative modes of reproduction ..................................................................Cape 18 Pollinators ........................................................................................................ 18 Results ................................................................................................................of 20 Functional floral morphology and phenology ................................................. 20 Breeding system .............................................................................................. 22 Alternative modes of reproduction .................................................................. 22 Pollinators and flower visitors ......................................................................... 22 Discussion .........................................................................................................
Recommended publications
  • Subgeneric Classification of the Bee Genus Rediviva Friese (Hymenoptera: Apiformes: Melittidae)
    Zootaxa 4790 (2): 318–328 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4790.2.7 http://zoobank.org/urn:lsid:zoobank.org:pub:F4AB5797-F519-4656-AB17-DFE1E6CC213E Subgeneric classification of the bee genus Rediviva Friese (Hymenoptera: Apiformes: Melittidae) MICHAEL KUHLMANN1,*, LEA-SOPHIE JÜRGENSEN1,2 & DENIS MICHEZ3 1Zoological Museum of Kiel University, Hegewischstr. 3, D-24105 Kiel, Germany 2 �[email protected]; http://orcid.org/0000-0001-9549-1233 3University of Mons, Laboratory of Zoology, Place du parc, 20, 7000 Mons, Belgium �[email protected]; http://orcid.org/0000-0001-8880-1838 *Corresponding author. �[email protected]; http://orcid.org/0000-0003-3664-6922 Abstract For the first time a subgeneric classification of the oil-collecting bee genus Rediviva is presented. Five subgenera comprising 33 species are recognized based on morphological characters. Three of them are described as new: Deriviva subgen. nov., Albiviva subgen. nov. and Gigaviva subgen. nov.. The genus Redivivoides rendered Rediviva paraphyletic and is downgraded to subgenus level. A key is provided to enable the identification of subgenera. Key words: South Africa, oil-collecting bees, new subgenera, Rediviva, Redivivoides, classification, taxonomy Introduction The genus Rediviva is an iconic group of bees because females have close evolutionary relationships with their host plants and six species have extremely elongate forelegs (sometimes longer than the bees´ body) for collect- ing oil from floral spurs that is used for larval nourishment (Kuhlmann & Hollens 2015) and for brood cell lining (Kuhlmann 2015).
    [Show full text]
  • Playing with Extremes Origins and Evolution of Exaggerated Female
    Molecular Phylogenetics and Evolution 115 (2017) 95–105 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Playing with extremes: Origins and evolution of exaggerated female forelegs MARK in South African Rediviva bees ⁎ Belinda Kahnta,b, , Graham A. Montgomeryc, Elizabeth Murrayc, Michael Kuhlmannd,e, Anton Pauwf, Denis Michezg, Robert J. Paxtona,b, Bryan N. Danforthc a Institute of Biology/General Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany c Department of Entomology, Cornell University, 3124 Comstock Hall, Ithaca, NY 14853-2601, USA d Zoological Museum, Kiel University, Hegewischstr. 3, 24105 Kiel, Germany e Dept. of Life Sciences, Natural History Museum, Cromwell Rd., London SW7 5BD, UK f Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa g Laboratoire de Zoologie, Research institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ARTICLE INFO ABSTRACT Keywords: Despite close ecological interactions between plants and their pollinators, only some highly specialised polli- Molecular phylogenetics nators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution Plant-pollinator interaction of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in Ecological adaptation which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Greater cape floristic region Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred Trait evolution an origin of Rediviva at around 29 MYA (95% HPD = 19.2–40.5), concurrent with the origin and radiation of the Melittidae Succulent Karoo flora.
    [Show full text]
  • Evolução Cromossômica Em Plantas De Inselbergues Com Ênfase Na Família Apocynaceae Juss. Angeline Maria Da Silva Santos
    UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos AREIA - PB AGOSTO 2017 UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos Orientador: Prof. Dr. Leonardo Pessoa Felix Tese apresentada ao Programa de Pós-Graduação em Agronomia, Universidade Federal da Paraíba, Centro de Ciências Agrárias, Campus II Areia-PB, como parte integrante dos requisitos para obtenção do título de Doutor em Agronomia. AREIA - PB AGOSTO 2017 Catalogação na publicação Seção de Catalogação e Classificação S237e Santos, Angeline Maria da Silva. Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. / Angeline Maria da Silva Santos. - Areia, 2017. 137 f. : il. Orientação: Leonardo Pessoa Felix. Tese (Doutorado) - UFPB/CCA. 1. Afloramentos. 2. Angiospermas. 3. Citogenética. 4. CMA/DAPI. 5. Ploidia. I. Felix, Leonardo Pessoa. II. Título. UFPB/CCA-AREIA A Deus, pela presença em todos os momentos da minha vida, guiando-me a cada passo dado. À minha família Dedico esta conquista aos meus pais Maria Geovânia da Silva Santos e Antonio Belarmino dos Santos (In Memoriam), irmãos Aline Santos e Risomar Nascimento, tios Josimar e Evania Oliveira, primos Mayara Oliveira e Francisco Favaro, namorado José Lourivaldo pelo amor a mim concedido e por me proporcionarem paz na alma e felicidade na vida. Em especial à minha mãe e irmãos por terem me ensinado a descobrir o valor da disciplina, da persistência e da responsabilidade, indispensáveis para a construção e conquista do meu projeto de vida.
    [Show full text]
  • Scanning Electron Microscopy of the Leaf Epicuticular Waxes of the Genus Gethyllis L
    Soulh Afnc.1n Journal 01 Bol811Y 2001 67 333-343 Copynghl €I NISC Ply LId Pnmed In South Alnca - All ngills leserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254- 5299 Scanning electron microscopy of the leaf epicuticular waxes of the genus Gethyllis L. (Amaryllidaceae) and prospects for a further subdivision C Weiglin Technische Universitat Berlin, Herbarium BTU, Sekr. FR I- I, Franklinstrasse 28-29, 0-10587 Berlin, Germany e-mail: [email protected] Recei ved 23 August 2000, accepled in revised form 19 January 2001 The leaf epicuticular wax ultrastructure of 32 species of ridged rodlets is conspicuous and is interpreted as the genus Gethyllis are for the first time investigated being convergent. In three species wax dimorphism was and discussed. Non-entire platelets were observed in discovered, six species show a somewhat rosette-like 12 species, entire platelets with transitions to granules orientation of non-entire or entire platelets and in four in seven species, membranous platelets in nine species a tendency to parallel orientation of non-entire species and smooth layers in eight species, Only or entire platelets was evident. It seems that Gethyllis, GethyJlis transkarooica is distinguished by its trans­ from its wax morphology, is highly diverse and versely ridged rodlets. The occurrence of transversely deserves further subdivision. Introduction The outer epidermal cell walls of nearly all land plants are gle species among larger taxa, cu ltivated plants , varieties covered by a cuticle cons isting mainly of cutin, an insoluble and mutants (Juniper 1960, Leigh and Matthews 1963, Hall lipid pOlyester of substituted aliphatic acids and long chain et al.
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • Kim E. Steiner 2,5,7 , Roman Kaiser 3,6 , and Stefan D Ö Tterl 4
    American Journal of Botany 98(10): 1663–1679. 2011. S TRONG PHYLOGENETIC EFFECTS ON FLORAL SCENT VARIATION 1 OF OIL-SECRETING ORCHIDS IN SOUTH AFRICA Kim E. Steiner 2,5,7 , Roman Kaiser 3,6 , and Stefan D ö tterl 4 2 Botany Department, California Academy of Sciences, San Francisco, California 94118 USA; 3 Givaudan Schweiz AG, Ü berlandstrasse 138, CH-8600, D ü bendorf, Switzerland; 4 Department of Plant Systematics, University of Bayreuth, Bayreuth 95440 Germany • Premise of the study: Evolution involves the interplay between natural selection and phylogenetic constraint. This is particu- larly evident among the fl owering plants where form and diversity of fl owers attest to the importance of both pollinator-medi- ated selection and phylogenetic constraint. Although this has been studied mostly using visible fl oral characters, invisible volatile chemicals emitted by the fl owers should be subject to these same evolutionary forces. Unfortunately, most analyses of fl oral volatiles have over-emphasized the importance of natural selection and underplayed phylogenetic constraint without quantifying their respective roles in the evolution and composition of fl oral scents. • Methods: We used multivariate analyses to test the relative importance of pollinators vs. phylogeny in determining the composition of fl oral scents among oil-secreting orchids in southern Africa. Floral scents of 42 oil-secreting taxa/ecotypes distributed among 12 subclades in the tribe Diseae were sampled using headspace adsorption and gas chromatography-mass spectroscopy. • Key results: We identifi ed 257 scent compounds distributed over nine different compound classes, with the majority of scents dominated by aliphatic or benzenoid compounds.
    [Show full text]
  • 2004 Spring Flower Bulbs Catalog
    44440077 TToowwnn VVuu RRooaadd !! BBeennttoonnvviillllee,,, AArrkkaannssaass !! 7722771122 EE---mmaaiill::: BBuulllbbmmeeiiisstteerr@@BBuulllbbmmeeiiisstteerr...CCOOMM TTeelleepphhoonnee::: 447799---336666---99446688 Offers good through June 5, 2004 or Until Supplies Last! Flower Bulb Price List Spring 2004 - Introduction WELCOME! This price list is available January through May and is geared toward the gardener who seeks less common, unusual, or old favorite flower bulbs, especially species. Please read the agreement following so you will fully understand payment guidelines and shipping schedules. OFFERS FROM THIS LIST ARE SUBJECT TO AVAILABILITY, AND WILL SHIP MID-MARCH, AT THE EARLIEST. Order Early and SAVE! Automatically save 20% through January 31st, 15% through February 15th, 10% through February 29th, and 5% through March 15th, 2004. Discounts will be automatically applied during the checkout process. Agreement Before purchasing from this list, you must understand and agree to the following: 1. This offer is NOT A PROMISE of availability, but of probability. If payment has been made on an unavailable item, a refund, not a substitution (unless requested otherwise), will be provided. 2. If you select the "Mailing Payment" or "PayPal" options during checkout, payment must be paid or postmarked within 10 days of ordering. 3. Credit cards will NOT be charged, NOR checks/money orders deposited UNTIL SHIPPING SEASON. 4. Shipping will not occur until mid-March through May/June, depending on your USDA Hardiness Zone. Many of the offered bulbs are frost tender, so shipment needs to occur when the risk of freezing in transit is minimal. Bulbmeister.COM guarantees the bulbs to be as described and in the best condition available.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
    THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae.
    [Show full text]
  • 1 the Diversity and Evolution of Pollination Systems in Large Plant Clades
    ORE Open Research Exeter TITLE The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study AUTHORS Ollerton, J; Liede-Schumann, S; Endress, ME; et al. JOURNAL Annals Of Botany DEPOSITED IN ORE 14 August 2018 This version available at http://hdl.handle.net/10871/33733 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Accepted MS 10 July 2018 Annals of Botany doi: 10.1093/aob/mcy127 1 The diversity and evolution of pollination systems in large plant clades: 2 Apocynaceae as a case study 3 4 Jeff Ollerton1*, Sigrid Liede-Schumann2, Mary E. Endress3, Ulrich Meve2, Andre 5 Rodrigo Rech4, Adam Shuttleworth5, Héctor A Keller6, Mark Fishbein7, Leonardo O. 6 Alvarado-Cárdenas8, Felipe W. Amorim9, Peter Bernhardt10, Ferhat Celep11, Yolanda 7 Chirango12, Fidel Chiriboga-Arroyo13, Laure Civeyrel14, Andrea Cocucci15, Louise 8 Cranmer1, Inara Carolina da Silva-Batista16, Linde de Jager17, Mariana Scaramussa 9 Deprá18, Arthur Domingos-Melo19, Courtney Dvorsky10, Kayna Agostini20, Leandro 10 Freitas21, Maria Cristina Gaglianone18, Leo Galetto22, Mike Gilbert23, Ixchel 11 González-Ramirez8, Pablo Gorostiague24, David Goyder23, Leandro Hachuy-Filho9, 12 Annemarie Heiduk25, Aaron Howard26, Gretchen Ionta27, Sofia C Islas-Hernández8, 13 Steven D Johnson5, Lize Joubert17,
    [Show full text]
  • Melittidae: Rediviva)
    ORIGINAL ARTICLE doi:10.1111/evo.14144 Allometric relationships shape foreleg evolution of long-legged oil bees (Melittidae: Rediviva) Annalie Melin,1,2,3 Res Altwegg,4 John C. Manning,1,5 and Jonathan F. Colville4 1Compton Herbarium, South African National Biodiversity Institute, Claremont, South Africa 2African Centre for Coastal Palaeoscience, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa 3E-mail: [email protected] 4Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa 5Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa Received February 11, 2020 Accepted November 25, 2020 Exaggerated traits of pollinators have fascinated biologists for centuries. To understand their evolution, and their role in coevo- lutionary relationships, an essential first step is to understand how traits scale allometrically with body size, which mayreveal underlying developmental constraints. Few pollination studies have examined how traits can adaptively diverge despite allomet- ric constraints. Here, we present a comparative study of narrow-sense static and evolutionary allometry on foreleg length and body size of oil-collecting bees. Concurrently, we assess the relationship between scaling parameters and spur lengths of oil-secreting host flowers. Across species and populations, we found low variation in static slopes (nearlyall <1), possibly related to stabilizing selection, but the static intercept varied substantially generating an evolutionary allometry steeper than static allometry. Variation in static intercepts was explained by changes in body size (∼28% species; ∼68% populations) and spur length (remaining variance: ∼36% species; ∼94% populations). The intercept–spur length relationship on the arithmetic scale was positive but forelegs did not track spur length perfectly in a one-to-one relationship.
    [Show full text]
  • Wasps and Bees in Southern Africa
    SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI.
    [Show full text]