Table S1. Mrnas in Naïve Cortical Axons Isolated After 13 Days in Culture (Listed in Descending Order of Expression Level). Pr

Total Page:16

File Type:pdf, Size:1020Kb

Table S1. Mrnas in Naïve Cortical Axons Isolated After 13 Days in Culture (Listed in Descending Order of Expression Level). Pr Table S1. mRNAs in naïve cortical axons isolated after 13 days in culture (listed in descending order of expression level). Probe Set ID Gene Symbol* Gene Name* RMA expr 1387890_AT RPS29 RIBOSOMAL PROTEIN S29 10651 1384548_AT RPL32 RIBOSOMAL PROTEIN L32 9120 1370242_AT RPS23 RIBOSOMAL PROTEIN S23 8875 1375219_A_AT RPS2 RIBOSOMAL PROTEIN S2 8524 1367565_A_AT FTH1 FERRITIN, HEAVY POLYPEPTIDE 1 7688 1388244_S_AT LAMR1 LAMININ RECEPTOR 1 (RIBOSOMAL PROTEIN SA) 6663 1370213_AT NSEP1 NUCLEASE SENSITIVE ELEMENT BINDING PROTEIN 1 6256 1398852_AT RPS21 RIBOSOMAL PROTEIN S21 5916 1398751_AT LOC497813 SIMILAR TO RIBOSOMAL PROTEIN S7 5882 1398774_AT RPL30 RIBOSOMAL PROTEIN L30 5685 1367583_AT TPT1 TUMOR PROTEIN, TRANSLATIONALLY-CONTROLLED 1 5540 1367634_AT RPL31 RIBOSOMAL PROTEIN L31 5277 1370866_AT RPL41 RIBOSOMAL PROTEIN L41 5186 1367630_AT RPS11 RIBOSOMAL PROTEIN S11 5011 1371307_AT RPLP1 RIBOSOMAL PROTEIN, LARGE, P1 4934 1367645_AT RPS17 RIBOSOMAL PROTEIN S17 4889 1367639_A_AT RPS2 RIBOSOMAL PROTEIN S2 4875 1398789_AT RPL37 RIBOSOMAL PROTEIN L37 4779 1388372_AT RPL35 RIBOSOMAL PROTEIN L35 4655 1367717_AT RPS27 RIBOSOMAL PROTEIN S27 4614 1398760_AT RPL35A RIBOSOMAL PROTEIN L35A 4612 1367606_AT RPS3A RIBOSOMAL PROTEIN S3A 4478 1367596_AT RPS26 RIBOSOMAL PROTEIN S26 4433 1371318_AT RPS16 RIBOSOMAL PROTEIN S16 4387 1367640_AT RPS12 RIBOSOMAL PROTEIN S12 4371 1375181_AT LOC499782 SIMILAR TO 60S RIBOSOMAL PROTEIN L12 4257 1371308_AT RPS4X RIBOSOMAL PROTEIN S4, X-LINKED 4214 1367560_AT ARBP ACIDIC RIBOSOMAL PHOSPHOPROTEIN P0 4173 1367610_AT RPL19 RIBOSOMAL PROTEIN L19 3949 1370238_AT USMG5 UPREGULATED DURING SKELETAL MUSCLE GROWTH 5 3901 1367561_AT RPL27 RIBOSOMAL PROTEIN L27 3765 1398324_AT MGC72957 SIMILAR TO 60S RIBOSOMAL PROTEIN L18A 3676 1367569_AT LAMR1 LAMININ RECEPTOR 1 (RIBOSOMAL PROTEIN SA) 3664 1368211_AT RPS14 RIBOSOMAL PROTEIN S14 3532 1398764_AT RPL21 RIBOSOMAL PROTEIN L21 3461 1370253_AT RPL22 RIBOSOMAL PROTEIN L22 3448 1398775_AT RPS15A RIBOSOMAL PROTEIN S15A 3352 1369410_AT GOSR1 GOLGI SNAP RECEPTOR COMPLEX MEMBER 1 3328 1367597_AT RPS8 RIBOSOMAL PROTEIN S8 3301 1367573_AT RPS6 RIBOSOMAL PROTEIN S6 3271 1371189_X_AT LAMR1 LAMININ RECEPTOR 1 (RIBOSOMAL PROTEIN SA) 3103 1398872_AT RPL13 RIBOSOMAL PROTEIN L13 3063 1398872_AT RPS13 RIBOSOMAL PROTEIN S13 3063 1367629_AT COX7A2 CYTOCHROME C OXIDASE, SUBUNIT VIIA 2 3047 1371316_AT FAU FINKEL-BISKIS-REILLY MURINE SARCOMA VIRUSUBIQUITOUSLY EXPRESSED 3037 1370284_AT ATP5E ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL F1 COMPLEX, EPSILON SUBUNIT 3002 1371295_AT RPS20 RIBOSOMAL PROTEIN S20 2984 1398871_AT RPL17 RIBOSOMAL PROTEIN L17 2981 1368042_A_AT HMGB1 HIGH MOBILITY GROUP BOX 1 2850 1398315_AT RPL15 RIBOSOMAL PROTEIN L15 2754 1398917_AT RPL7 RIBOSOMAL PROTEIN L7 2748 1398754_AT UBA52 UBIQUITIN A-52 RESIDUE RIBOSOMAL PROTEIN FUSION PRODUCT 1 2707 1398761_AT RPL5 RIBOSOMAL PROTEIN L5 2605 1374329_AT MCF2L MCF.2 TRANSFORMING SEQUENCE-LIKE 2583 1386874_AT RPS15 RIBOSOMAL PROTEIN S15 2542 1398839_AT TXN1 THIOREDOXIN 1 2462 1398801_AT CDK105 CDK105 PROTEIN 2419 1367559_AT FTL1 FERRITIN LIGHT CHAIN 1 2357 1367588_A_AT RPL13A RIBOSOMAL PROTEIN L13A 2354 1367625_AT RPL10 RIBOSOMAL PROTEIN L10 2339 1367582_AT RPL29 RIBOSOMAL PROTEIN L29 2309 1398885_AT RPL23 RIBOSOMAL PROTEIN L23 2275 1370442_AT TMSBL1 THYMOSIN BETA-LIKE PROTEIN 1 2268 1398830_AT RPL28 RIBOSOMAL PROTEIN L28 2100 1371299_AT RPS3 RIBOSOMAL PROTEIN S3 2030 1386868_AT RPS10 RIBOSOMAL PROTEIN S10 2008 1388297_AT EEF1G EUKARYOTIC TRANSLATION ELONGATION FACTOR 1 GAMMA 1970 1367757_AT COX6C CYTOCHROME C OXIDASE, SUBUNIT VIC 1926 1367618_A_AT DLG5_PREDICTED DISCS, LARGE HOMOLOG 5 (DROSOPHILA) (PREDICTED) 1909 1369966_A_AT RPS24 RIBOSOMAL PROTEIN S24 1763 1398831_AT PSMB4 PROTEASOME (PROSOME, MACROPAIN) SUBUNIT, BETA TYPE 4 1756 1398882_AT RPS5 RIBOSOMAL PROTEIN S5 1752 1367685_AT RPS27A RIBOSOMAL PROTEIN S27A 1711 1370861_AT COX6A1 CYTOCHROME C OXIDASE, SUBUNIT VIA, POLYPEPTIDE 1 1652 1398749_AT RPL4 RIBOSOMAL PROTEIN L4 1509 1367580_AT RPL10A RIBOSOMAL PROTEIN L10A 1499 1371415_AT UQCRH UBIQUINOL-CYTOCHROME C REDUCTASE HINGE PROTEIN 1496 1388110_AT EEF1A1 EUKARYOTIC TRANSLATION ELONGATION FACTOR 1 ALPHA 1 1484 1388113_AT COX8A CYTOCHROME C OXIDASE, SUBUNIT VIIIA 1481 1370745_AT LOC498015 SIMILAR TO SPLICING VARIANT OF RETINAL DEGENERATION B BETA 1468 1387888_AT RPS9 RIBOSOMAL PROTEIN S9 1459 1376629_AT APC ADENOMATOSIS POLYPOSIS COLI 1455 1388390_AT EIF3S3 EUKARYOTIC TRANSLATION INITIATION FACTOR 3, SUBUNIT 3 GAMMA 1362 1370888_AT COX5A CYTOCHROME C OXIDASE, SUBUNIT VA 1362 1386887_AT COX5B CYTOCHROME C OXIDASE SUBUNIT VB 1362 1387927_A_AT OLFM1 OLFACTOMEDIN 1 1286 1371300_AT RPL3 RIBOSOMAL PROTEIN L3 1279 1371340_AT RPLP2 RIBOSOMAL PROTEIN, LARGE P2 1265 1370281_AT FABP5 FATTY ACID BINDING PROTEIN 5, EPIDERMAL 1261 1386852_X_AT UBB POLYUBIQUITIN 1257 1370274_AT UBB POLYUBIQUITIN 1222 1367623_AT RPL18 RIBOSOMAL PROTEIN L18 1203 1397579_X_AT RGD1359127 SIMILAR TO RIKEN CDNA 2310011J03 1198 1398350_AT BASP1 BRAIN ABUNDANT, MEMBRANE ATTACHED SIGNAL PROTEIN 1 1177 1367930_AT GAP43 GROWTH ASSOCIATED PROTEIN 43 1159 1398837_AT TCEB2 TRANSCRIPTION ELONGATION FACTOR B (SIII), POLYPEPTIDE 2 1148 1370179_AT DNCL2A DYNEIN, CYTOPLASMIC, LIGHT CHAIN 2A 1135 1371387_AT COX7B CYTOCHROME C OXIDASE SUBUNIT VIIB 1132 1398794_AT TCEB1 TRANSCRIPTION ELONGATION FACTOR B (SIII), POLYPEPTIDE 1 1075 1373675_AT GLRX2 GLUTAREDOXIN 2 (THIOLTRANSFERASE) 1050 1386858_AT RPL13 RIBOSOMAL PROTEIN L13 1035 1367808_AT TIMM8B TRANSLOCASE OF INNER MITOCHONDRIAL MEMBRANE 8 HOMOLOG B (YEAST) 1030 1369897_S_AT GNAS GNAS COMPLEX LOCUS 1025 1369897_S_AT XLAS XLAS PROTEIN 1025 1367567_AT RPL6 RIBOSOMAL PROTEIN L6 1002 1367861_AT EVL ENA-VASODILATOR STIMULATED PHOSPHOPROTEIN 994 1395461_AT RGD1359127 SIMILAR TO RIKEN CDNA 2310011J03 992 1387617_AT TPM3 TROPOMYOSIN 3, GAMMA 976 1373470_AT CTNNB1 CATENIN (CADHERIN ASSOCIATED PROTEIN), BETA 1, 88KDA 945 1368157_AT STMN3 STATHMIN-LIKE 3 941 1367766_AT NME2 EXPRESSED IN NON-METASTATIC CELLS 2 850 1388313_AT RPS25 RIBOSOMAL PROTEIN S25 822 1398860_AT NEDD8 NEURAL PRECURSOR CELL EXPRESSED, DEVELOPMENTALLY DOWN-REGULATED GENE 8 818 1368145_AT PCP4 PURKINJE CELL PROTEIN 4 814 1386898_AT HSPE1 HEAT SHOCK 10 KDA PROTEIN 1 805 1398854_AT RPL24 RIBOSOMAL PROTEIN L24 785 1398903_AT ESD_MAPPED ESTERASE D/FORMYLGLUTATHIONE HYDROLASE (MAPPED) 772 1375517_AT TRP53INP2 TUMOR PROTEIN P53 INDUCIBLE NUCLEAR PROTEIN 2 769 1375788_AT RPL7 RIBOSOMAL PROTEIN L7 767 1370006_AT NDUFS6 NADH DEHYDROGENASE (UBIQUINONE) FE-S PROTEIN 6 766 1370042_AT STMN2 STATHMIN-LIKE 2 717 1367706_AT VDAC1 VOLTAGE-DEPENDENT ANION CHANNEL 1 699 1373187_AT KIF5A KINESIN FAMILY MEMBER 5A 698 1371600_AT PKIG PROTEIN KINASE INHIBITOR, GAMMA 697 1370109_S_AT EEF1A1 EUKARYOTIC TRANSLATION ELONGATION FACTOR 1 ALPHA 1 691 1386891_AT PBP PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN 678 1375612_AT HNRPA1 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 675 1370276_AT ATP5O ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL F1 COMPLEX, O SUBUNIT 661 1368097_A_AT RTN1 RETICULON 1 651 1371348_AT PSMB5 PROTEASOME (PROSOME, MACROPAIN) SUBUNIT, BETA TYPE 5 647 1392140_AT CDH11 CADHERIN 11 637 1373067_AT CTNNB1 CATENIN (CADHERIN ASSOCIATED PROTEIN), BETA 1, 88KDA 631 1370246_AT CALM1 CALMODULIN 1 621 1374307_AT CAMK2N1 CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II INHIBITOR 1 620 1386973_A_AT MAPK8IP MITOGEN ACTIVATED PROTEIN KINASE 8 INTERACTING PROTEIN 617 1373048_AT ACTR10 ARP10 ACTIN-RELATED PROTEIN 10 HOMOLOG (S. CEREVISIAE) 605 1369990_AT TOP2A TOPOISOMERASE (DNA) 2 ALPHA 581 1369952_AT PABPC1 POLY(A) BINDING PROTEIN, CYTOPLASMIC 1 573 1375189_AT EDF1_PREDICTED ENDOTHELIAL DIFFERENTIATION-RELATED FACTOR 1 (PREDICTED) 572 1373499_AT GAS5 GROWTH ARREST SPECIFIC 5 546 1386890_AT S100A10 S100 CALCIUM BINDING PROTEIN A10 (CALPACTIN) 539 1371694_AT DPYSL2 DIHYDROPYRIMIDINASE-LIKE 2 537 1371384_AT BTF3 BASIC TRANSCRIPTION FACTOR 3 531 1398781_AT ATP6V1F ATPASE, H+ TRANSPORTING, V1 SUBUNIT F 527 1369939_AT CYCS CYTOCHROME C, SOMATIC 521 1386857_AT STMN1 STATHMIN 1 513 1367690_AT SSR4 SIGNAL SEQUENCE RECEPTOR 4 512 1369976_AT DNCLC1 DYNEIN, CYTOPLASMIC, LIGHT CHAIN 1 506 1370295_AT NME1 EXPRESSED IN NON-METASTATIC CELLS 1 502 1398812_AT PSMB1 PROTEASOME (PROSOME, MACROPAIN) SUBUNIT, BETA TYPE 1 501 1372571_AT RGD1306395 SIMILAR TO 9530046H09RIK PROTEIN 493 1369999_A_AT NNAT NEURONATIN 487 1375127_AT COX5A CYTOCHROME C OXIDASE, SUBUNIT VA 486 1376337_AT SMARCA2 SWI/SNF RELATED, MATRIX ASSOCIATED, ACTIN DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY A, MEMBER 2 485 1372444_AT KIF5B KINESIN FAMILY MEMBER 5B 481 1374571_AT RGD1307289 SIMILAR TO HYPOTHETICAL PROTEIN FLJ20522 479 1367622_AT ATP5H ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL F0 COMPLEX, SUBUNIT D 474 1398240_AT HSPA8 HEAT SHOCK PROTEIN 8 470 1370803_AT ZWINT ZW10 INTERACTOR 469 1370315_A_AT STMN4 STATHMIN-LIKE 4 467 1386921_AT CPE CARBOXYPEPTIDASE E 463 1383204_AT NA NA 463 1371682_AT MAP1LC3A MICROTUBULE-ASSOCIATED PROTEIN 1 LIGHT CHAIN 3 ALPHA 456 1370886_A_AT KNS2 KINESIN 2 453 1367641_AT SOD1 SUPEROXIDE DISMUTASE 1 451 1367620_AT ATP5G3 ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL F0 COMPLEX, SUBUNIT C (SUBUNIT 9) ISOFORM 3 449 1373773_AT GPM6A GLYCOPROTEIN M6A 447 1367557_S_AT GAPDH GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE 447 1370918_A_AT ATP5C1 ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL F1 COMPLEX, GAMMA POLYPEPTIDE 1 447 1368566_A_AT NDUFV3L NADH DEHYDROGENASE (UBIQUINONE) FLAVOPROTEIN 3-LIKE 441 1367578_AT PRDX2 PEROXIREDOXIN 2 438 1370965_AT TCF8 TRANSCRIPTION FACTOR 8 437 1371642_AT EIF4A2 EUKARYOTIC TRANSLATION INITIATION FACTOR
Recommended publications
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs of this journey. iv EPIGRAPH It is foolish to tear one's hair in grief, as though sorrow would be made less by baldness. ~Cicero v TABLE OF CONTENTS Signature Page .............................................................................................................. iii Dedication ....................................................................................................................
    [Show full text]
  • Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
    Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the
    [Show full text]
  • Injury by Mechanical Ventilation Gene Transcription and Promotion Of
    Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation This information is current as William A. Altemeier, Gustavo Matute-Bello, Sina A. of September 29, 2021. Gharib, Robb W. Glenny, Thomas R. Martin and W. Conrad Liles J Immunol 2005; 175:3369-3376; ; doi: 10.4049/jimmunol.175.5.3369 http://www.jimmunol.org/content/175/5/3369 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2005/08/23/175.5.3369.DC1 Material http://www.jimmunol.org/ References This article cites 37 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/175/5/3369.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation1 William A.
    [Show full text]
  • Blimp1 Regulates the Transition of Neonatal to Adult Intestinal Epithelium
    UCLA UCLA Previously Published Works Title Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Permalink https://escholarship.org/uc/item/01x184nd Journal Nature communications, 2(1) ISSN 2041-1723 Authors Muncan, Vanesa Heijmans, Jarom Krasinski, Stephen D et al. Publication Date 2011-08-30 DOI 10.1038/ncomms1463 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 11 May 2011 | Accepted 28 Jul 2011 | Published 30 Aug 2011 DOI: 10.1038/ncomms1463 Blimp1 regulates the transition of neonatal to adult intestinal epithelium Vanesa Muncan1,2,3, Jarom Heijmans1,2,3, Stephen D. Krasinski4, Nikè V. Büller1,2,3, Manon E. Wildenberg1,2,3, Sander Meisner1, Marijana Radonjic5, Kelly A. Stapleton4, Wout H. Lamers1, Izak Biemond3, Marius A. van den Bergh Weerman6, Dónal O’Carroll7, James C. Hardwick3, Daniel W. Hommes3 & Gijs R. van den Brink1,2,3 In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mother’s milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • An Automated Pipeline for Inferring Variant-Driven Gene
    www.nature.com/scientificreports OPEN MAGPEL: an autoMated pipeline for inferring vAriant‑driven Gene PanEls from the full‑length biomedical literature Nafseh Saberian1, Adib Shaf 1, Azam Peyvandipour1 & Sorin Draghici 1,2* In spite of the eforts in developing and maintaining accurate variant databases, a large number of disease‑associated variants are still hidden in the biomedical literature. Curation of the biomedical literature in an efort to extract this information is a challenging task due to: (i) the complexity of natural language processing, (ii) inconsistent use of standard recommendations for variant description, and (iii) the lack of clarity and consistency in describing the variant-genotype-phenotype associations in the biomedical literature. In this article, we employ text mining and word cloud analysis techniques to address these challenges. The proposed framework extracts the variant- gene‑disease associations from the full‑length biomedical literature and designs an evidence‑based variant-driven gene panel for a given condition. We validate the identifed genes by showing their diagnostic abilities to predict the patients’ clinical outcome on several independent validation cohorts. As representative examples, we present our results for acute myeloid leukemia (AML), breast cancer and prostate cancer. We compare these panels with other variant‑driven gene panels obtained from Clinvar, Mastermind and others from literature, as well as with a panel identifed with a classical diferentially expressed genes (DEGs) approach. The results show that the panels obtained by the proposed framework yield better results than the other gene panels currently available in the literature. One crucial step in understanding the biological mechanism underlying a disease condition is to capture the relationship between the variants and the disease risk1.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Mitochondrial Reprogramming Via ATP5H Loss Promotes Multimodal Cancer Therapy Resistance
    Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance Kwon-Ho Song, … , T.C. Wu, Tae Woo Kim J Clin Invest. 2018;128(9):4098-4114. https://doi.org/10.1172/JCI96804. Research Article Immunology Oncology The host immune system plays a pivotal role in the emergence of tumor cells that are refractory to multiple clinical interventions including immunotherapy, chemotherapy, and radiotherapy. Here, we examined the molecular mechanisms by which the immune system triggers cross-resistance to these interventions. By examining the biological changes in murine and tumor cells subjected to sequential rounds of in vitro or in vivo immune selection via cognate cytotoxic T lymphocytes, we found that multimodality resistance arises through a core metabolic reprogramming pathway instigated by epigenetic loss of the ATP synthase subunit ATP5H, which leads to ROS accumulation and HIF-1α stabilization under normoxia. Furthermore, this pathway confers to tumor cells a stem-like and invasive phenotype. In vivo delivery of antioxidants reverses these phenotypic changes and resensitizes tumor cells to therapy. ATP5H loss in the tumor is strongly linked to failure of therapy, disease progression, and poor survival in patients with cancer. Collectively, our results reveal a mechanism underlying immune-driven multimodality resistance to cancer therapy and demonstrate that rational targeting of mitochondrial metabolic reprogramming in tumor cells may overcome this resistance. We believe these results hold important implications for the clinical management of cancer. Find the latest version: https://jci.me/96804/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance Kwon-Ho Song,1,2,3 Jae-Hoon Kim,4 Young-Ho Lee,1,2,3 Hyun Cheol Bae,5 Hyo-Jung Lee,1,2,3 Seon Rang Woo,1,2,3 Se Jin Oh,1,2,3 Kyung-Mi Lee,1,2 Cassian Yee,6 Bo Wook Kim,7 Hanbyoul Cho,4 Eun Joo Chung,8 Joon-Yong Chung,9 Stephen M.
    [Show full text]
  • The Importance of Eukaryotic Ferritins in Iron Handling and Cytoprotection
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Brescia Biochem. J. (2015) 472, 1–15 doi:10.1042/BJ20150787 1 REVIEW ARTICLE The importance of eukaryotic ferritins in iron handling and cytoprotection Paolo Arosio*1, Fernando Carmona*, Raffaella Gozzelino†, Federica Maccarinelli* and Maura Poli* *Laboratory of Molecular Biology, Department of Molecular and Translational Medicine (DMMT), University of Brescia, Brescia, Italy †Inflammation and Neurodegeneration Laboratory, Chronic Disease Research Centre (CEDOC)/FCM, NOVA Medical School, Lisbon, Portugal Ferritins, the main intracellular iron storage proteins, have been structure is highly conserved among different phyla. It exerts an studied for over 60 years, mainly focusing on the mammalian important cytoprotective function against oxidative damage and ones. This allowed the elucidation of the structure of these proteins plays a role in innate immunity, where it also contributes to prevent and the mechanisms regulating their iron incorporation and parenchymal tissue from the cytotoxicity of pro-inflammatory mineralization. However, ferritin is present in most, although not agonists released by the activation of the immune response all, eukaryotic cells, comprising monocellular and multicellular activation. Less clear are the properties of the secretory ferritins invertebrates and vertebrates. The aim of this review is to provide expressed by insects and molluscs, which may be important for an update on the general properties of ferritins that are common to understanding the role played by serum ferritin in mammals. various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]