Unexpected Decompression Arielle Filiberti MD UCSF Fresno Wilderness Fellow WMS Winter Conference: GME Mini-Lectures a Brief History of Decompression Illness (DCI)

Total Page:16

File Type:pdf, Size:1020Kb

Unexpected Decompression Arielle Filiberti MD UCSF Fresno Wilderness Fellow WMS Winter Conference: GME Mini-Lectures a Brief History of Decompression Illness (DCI) Unexpected Decompression Arielle Filiberti MD UCSF Fresno Wilderness Fellow WMS Winter Conference: GME Mini-Lectures A Brief History of Decompression Illness (DCI) • New technology: the Caisson • Developed in 1792 • Compressed air used to force out water and debris • Allowed construction of the Brooklyn Bridge and Eads Bridge A Brief History of DCI • The Bends • Musculoskeletal • The Chokes • Respiratory • The Staggers • Neurologic Cliffs Notes: Decompression Illness 1. Barotrauma • Air spaces do not equilibrate to pressure changes • Volume of air contracts or expands • Can occur with ascent or descent • Ear, sinus, and dental • Pulmonary • Arterial gas embolism 2. Decompression Sickness • As ambient pressure decreases, gas bubbles form • Pain, pruritis • Venous gas embolism and ischemia • Increased risk flying after a “dive” or other event Modern Compressed Air Workers (CAW’s) • CAW’s regulated by OSHA • Tunnel building • Nuclear power plants • Plane inspectors • CDC claims decompression guidelines are inadequate • CAW’s are left at risk In-Flight Decompression Illness • Cabins pressurized equivalent 7,000-8,000’ • Failure to pressurize during ascent • Unanticipated loss of cabin pressure • Large cabins provide “buffer” • Small cabins can decompress in <0.5 second Military Training • Depressurization training to simulate hypoxia and unanticipated loss of cabin pressure • Sudden loss of pressure from 4,000 to 18,000 ft • Increased risk with commercial flight after this training • Case report of 3 trainees requiring hyperbaric chamber after a commercial flight home Ground Level Cabin Malfunction • 4 case reports of uncontrolled cabin pressurization while grounded • Can result in severe DCI needing hyperbaric chamber Take-home Points 1. Consider DCI in any situation where pressure differentials exist 2. Patients can present distant from where the decompression happened 3. Treatment is the same regardless of etiology • IV fluids • Oxygen • Hyperbaric chamber 4. Call DAN! References Allan GM, Kenny D. High-altitude decompression illness: case report and discussion [published correction appears in CMAJ. 2003 Nov 25;169(11):1149]. CMAJ. 2003;169(8):803-807. Andersen HL. Decompression sickness during construction of the Great Belt Tunnel, Denmark. Undersea Hyperb Med. 2002;29(3):172-188. Butler WP. Caisson disease during the construction of the Eads and Brooklyn Bridges: A review. Undersea Hyperb Med. 2004;31(4):445-459. Centers for Disease Control and Prevention (CDC). Decompression Sickness and Tunnel Workers: Limitations of the Current OSHA Decompression Tables. https://www.cdc.gov/niosh/topics/decompression/limitations.html. Updated on June 18, 2012. Accessed on November 27, 2020. Lee KJ, Sanou AZ. Decompression Sickness in the F/A-18C After Atypical Cabin Pressure Fluctuations. Aerosp Med Hum Perform. 2018;89(5):478-482. doi:10.3357/AMHP.5027.2018 ONeill OJ, Haftel A, Murphy-Lavoie HM. Hyperbaric Treatment Of Compressed Air Workers, Caissons, Tunneling, Bounce Diving, and Saturation Diving. In: StatPearls. Treasure Island (FL): StatPearls Publishing; September 14, 2020. Pilmanis AA, Sears WJ. Physiological hazards of flight at high altitude. Lancet. 2003;362 Suppl:s16-s17. doi:10.1016/s0140- 6736(03)15059-3 Skybrary. Pressurisation Problems: Guidance for Controllers. https://www.skybrary.aero/index.php/Pressurisation_Problems:_Guidance_for_Controllers#Accidents_.26_Incidents. Updated on March 14, 2020. Accessed on December 1, 2020. Weinhouse GL, Chandy D. Complications of SCUBA diving. In: Post TW, ed. UpToDate. Waltham, MA: UpToDate Inc. https://www.uptodate.com/contents/complications-of-scuba-diving. Accessed February 11, 2021. Zhang JX, Berry JR, Beckstrand DP. Explosive Decompression with Resultant Air Gas Embolism in a Fourth Generation Fighter at Ground Level. Aerosp Med Hum Perform. 2016;87(11):963-967. doi:10.3357/AMHP.4632.2016.
Recommended publications
  • Dysbarism - Barotrauma
    DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA.
    [Show full text]
  • Introducing the 787 - Effect on Major Investigations - and Interesting Tidbits
    Introducing the 787 - Effect on Major Investigations - And Interesting Tidbits Tom Dodt Chief Engineer – Air Safety Investigation ISASI September, 2011 COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 1 787 Size Comparison 767-400 787-8 777-300 ~Pax 3-Class 245 250 368 ~Span 170 ft 197 ft 200 ft ~Length 201 ft 186 ft 242 ft ~MTGW 450,000 lbs 500,000 lbs 660,000 lbs ~Range 5,600 NM 7,650 NM 6,000 NM Cruise Mach 0.80 0.85 0.84 COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 2 By weight 787 777 - Composites 50% 12% Composite Structure - Aluminum 20% 50% Other Carbon laminate Steel 5% Carbon sandwich 10% Fiberglass Titanium 15% Composites Aluminum 50% Aluminum/steel/titanium pylons Aluminum 20% COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 3 COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 4 787 Wing Flex - On-Ground On-Ground 0 ft COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 5 787 Wing Flex - 1G Flight 1G Flight ~12 ft On-Ground 0 ft 1G Flight COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 6 787 Wing Flex Ultimate-Load ~26 ft 1G Flight ~12 ft On-Ground 0 ft Max-Load COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 7 787 Static Load Test @ Ultimate Load COPYRIGHT © 2010 THE BOEING COMPANY Smith, 7-April-2011, ESASI-Lisbon | 8 Investigations with Composite Materials • Terms: Composites Aluminum disbond fatigue delaminate beach marks inter-laminar shear striation counts water absorbsion corrosion fiber architecture metallurgical prop.
    [Show full text]
  • Limitations of Spacecraft Redundancy: a Case Study Analysis
    44th International Conference on Environmental Systems Paper Number 13-17 July 2014, Tucson, Arizona Limitations of Spacecraft Redundancy: A Case Study Analysis Robert P. Ocampo1 University of Colorado Boulder, Boulder, CO, 80309 Redundancy can increase spacecraft safety by providing the crew or ground with multiple means of achieving a given function. However, redundancy can also decrease spacecraft safety by 1) adding additional failure modes to the system, 2) increasing design “opaqueness”, 3) encouraging operational risk, and 4) masking or “normalizing” design flaws. Two Loss of Crew (LOC) events—Soyuz 11 and Challenger STS 51-L—are presented as examples of these limitations. Together, these case studies suggest that redundancy is not necessarily a fail-safe means of improving spacecraft safety. I. Introduction A redundant system is one that can achieve its intended function through multiple independent pathways or Aelements 1,2. In crewed spacecraft, redundancy is typically applied to systems that are critical for safety and/or mission success3,4. Since no piece of hardware can be made perfectly reliable, redundancy—in theory—allows for the benign (e.g. non-catastrophic) failure of critical elements. Redundant elements can be 1) similar or dissimilar to each other, 2) activated automatically (“hot spare”) or manually (“cold spare”), and 3) located together or separated geographically5-7. U.S. spacecraft have employed redundancy on virtually all levels of spacecraft design, from component to subsystem7,8. Redundancy has a successful history of precluding critical and catastrophic failures during human spaceflight. A review of NASA mission reports, from Mercury to Space Shuttle, indicates that redundancy has saved the crew or extended the mission over 160 times, or roughly once per flight9.
    [Show full text]
  • An Evidenced-Based Approach for Estimating Decompression Sickness Risk in Aircraft Operations
    https://ntrs.nasa.gov/search.jsp?R=19990062137 2020-06-15T21:35:43+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server NASA/TM--1999-209374 An Evidenced-Based Approach for Estimating Decompression Sickness Risk in Aircraft Operations Ronald R. Robinson Joseph P. Dervay Lyndon B. Johnson Space Center Houston, Texas 77058 Johnny Conkin National Space Biomedical Research Institute Houston, Texas 77030-3498 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058-4406 July 1999 Acknowledgments The authors wish to acknowledge Stephen Feaster and Charies Justiz, NASA Aircraft Operations Directorate, and Col. Bernard Burklund, Jr., Vice Commander, Headquarters Air Force Safety Center, for their assistance with aircraft operational data, and Dr. Alan Feiveson, NASA/Johnson Space Center, for his assistance with statistical analysis. Available from: NASA Center for AeroSpace Information National Technical Information Service 7121 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 301-621-0390 703-605-6000 This report is also available in electronic form at http://techreports.larc.nasa.gov/cgi-bin/NTRS Contents Contents ...................................................................................................................................... iii Introduction ................................................................................................................................ 1 Methods
    [Show full text]
  • II.I. High Altitude Operations
    Nicoletta Fala Last modified: 02/24/18 II.I. High Altitude Operations Objectives The student should develop knowledge of the elements related to high altitude operations be able to explain the necessary elements as required in the PTS. Key Elements Regulations Aviator’s oxygen Decompression and hypoxia Elements Regulatory requirements Physiological factors Pressurization Oxygen systems Aviator’s breathing oxygen Care and storage of high-pressure oxygen bottles Rapid decompression problems and their solutions Schedule 1. Discuss objectives 2. Review material 3. Development 4. Conclusion Equipment White board Markers References Instructor’s 1. Discuss lesson objectives Actions 2. Present lecture 3. Questions 4. Homework Student’s Participate in discussion Actions Take notes Completion The student understands and can explain the elements involve in high Standards altitude operations. II-I-1 Nicoletta Fala Last modified: 02/24/18 References 14 CFR Part 91 AC 61-107B, Aircraft Operations at Altitudes Above 25,000 ft MSL or Mach Numbers Greater than .75 FAA-H-8083-25B, Pilot’s Handbook of Aeronautical Knowledge (Chapter 7, Chapter 17) POH/AFM AIM II-I-2 Nicoletta Fala Last modified: 02/24/18 Instructor Notes Introduction Overview—review objectives and key ideas. Why—advantages of high altitude flight: more efficient, can avoid weather/turbulence. Many modern GA airplanes are designed to operate higher. Pilots need to be familiar with at least the basic operating principles. Regulatory 1. No person may operate a US-registered civil aircraft at cabin requirements pressure altitudes above: A. 12,500’ MSL up to/including 14,000’ unless the required minimum flight crew is provided with and uses supplemental oxygen for the part of the flight at those altitudes that is over 30 min.
    [Show full text]
  • Medical Aspects of Harsh Environments, Volume 2, Chapter
    Medical Aspects of Harsh Environments, Volume 2 Chapter 32 PRESSURE CHANGES AND HYPOXIA IN AVIATION R. M. HARDING, BSC, MB BS, PHD* INTRODUCTION THE ATMOSPHERE Structure Composition THE PHYSIOLOGICAL CONSEQUENCES OF RAPID ASCENT TO ALTITUDE Hypoxia Hyperventilation Barotrauma: The Direct Effects of Pressure Change Altitude Decompression Sickness LIFE-SUPPORT SYSTEMS FOR FLIGHT AT HIGH ALTITUDE Cabin Pressurization Systems Loss of Cabin Pressurization Personal Oxygen Equipment SUMMARY *Principal Consultant, Biodynamic Research Corporation, 9901 IH-10 West, Suite 1000, San Antonio, Texas 78230; formerly, Royal Air Force Consultant in Aviation Medicine and Head of Aircrew Systems Division, Department of Aeromedicine and Neuroscience of the UK Centre for Human Science, Farnborough, Hampshire, United Kingdom 984 Pressure Changes and Hypoxia in Aviation INTRODUCTION The physiological consequences of rapid ascent and life-support engineers has established reliable to high altitude are a core problem in the field of techniques for safe flight at high altitudes, as demon- aerospace medicine. Those who live and work in strated by current atmospheric flight in all its forms, mountain terrain experience a limited range of al- military and civilian, from balloon flights to sail planes titudes and have time to adapt to the hypoxia ex- to supersonic aircraft and spacecraft. Although reli- perienced at high terrestrial elevations. In contrast, able cabin pressurization and oxygen delivery systems flyers may be exposed to abrupt changes in baro- have greatly reduced incidents and accidents due to metric pressure and to acute, life-threatening hy- hypoxia in flight, constant vigilance is required for poxia (see also Chapter 28, Introduction to Special their prevention.
    [Show full text]
  • Since Nitrogen Is at Least 5 Times More Soluble in Fat Than In
    STUDIES ON DYSBARISM I. DEVELOPMENT OF DECOMPRESSION SYNDROME IN GENETICALLY OBESE MICE WILLIAM ANTOPOL, M.D.; JOHN KALBERER, JR., M.S.; SAMUEL KOOPERSTEIN, M.D.; STEPHEN SUGAAR, M.D., AND CHRYSSANTHOS CHRYSSANTHOU, M.D. From the Joseph and Helen Yeamans Levy Laboratories, Beth Israel Hospital, and the Medical Department of the Port of New York Authority, New York, N.Y. Since nitrogen is at least 5 times more soluble in fat than in other tissues,l" the proportion of adipose tissue in the body influences the amount and rate of nitrogen released into the bloodstream after rapid decompression from high atmospheric pressure.5 It was the purpose of this investigation to find a modality in which the decompression syndrome could be produced regularly in small ani- mals, so that a great number of them could be exposed simultaneously to pressure. In view of the influence of adipose tissue in the decompres- sion syndrome, genetically obese mice were employed in these studies. Decompression illness ("bends") could be produced in the obese mice but not in their normal nonobese siblings or other strains of normal mice. These facts are especially significant in the light of recent reports cor- relating air crew obesity with fatal cases of dysbarism.8 MATERIAL AND METHODS Hereditary obese hyperglycemic mice of both sexes, 3 to 6 months of age were used. There were 2 weight ranges, 2I to 38 gm. (average 32 gm.) and 38 to 65 gm. (average 54 gm.), and, in addition, corresponding thin siblings weighing I7 to 27 gm. (average I9 gm.). The mice were obtained from the Roscoe B.
    [Show full text]
  • The Mars Project: Avoiding Decompression Sickness on a Distant Planet
    NASA/TM--2000-210188 The Mars Project: Avoiding Decompression Sickness on a Distant Planet Johnny Conkin, Ph.D. National Space Biomedical Research Institute Houston, Texas 77030-3498 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058-3696 May 2000 Acknowledgments The following people provided helpful comments and suggestions: Amrapali M. Shah, Hugh D. Van Liew, James M. Waligora, Joseph P. Dervay, R. Srini Srinivasan, Michael R. Powell, Micheal L. Gernhardt, Karin C. Loftin, and Michael N. Rouen. The National Aeronautics and Space Administration supported part of this work through the NASA Cooperative Agreement NCC 9-58 with the National Space Biomedical Research Institute. The views expressed by the author do not represent official views of the National Aeronautics and Space Administration. Available from: NASA Center for AeroSpace Information National Technical Information Service 7121StandardDrive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 301-621-0390 703-605-6000 This report is also available in electronic form at http://techreports.larc.nasa.gov/cgi-bin/NTRS Contents Page Acronyms and Nomenclature ................................................................................................ vi Abstract ................................................................................................................................. vii Introduction ..........................................................................................................................
    [Show full text]
  • Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133
    Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133 A GLOSSARY OF TERMS Aerodynamics: The study of the properties of moving air, particularly of the interaction between the air and solid bodies moving through it. Afterburner: An auxiliary burner fitted to the exhaust system of a turbojet engine to increase thrust. Airfoil: A structure with curved surfaces designed to give the most favorable ratio of lift to drag in flight, used as the basic form of the wings, fins and horizontal stabilizer of most aircraft. Armstrong limit: The altitude that produces an atmospheric pressure so low (0.0618 atmosphere or 6.3 kPa [1.9 in Hg]) that water boils at the normal temperature of the human body: 37°C (98.6°F). The saliva in your mouth would boil if you were not wearing a pressure suit at this altitude. Death would occur within minutes from exposure to the vacuum. Autothrottle: The autopilot function that increases or decreases engine power,typically on larger aircraft. Avatar: An icon or figure representing a particular person in computer games, Internet forums, etc. Aerospace: The branch of technology and industry concerned with both aviation and space flight. Carbon fiber: Thin, strong, crystalline filaments of carbon, used as a strengthening material, especially in resins and ceramics. Ceres: A dwarf planet that orbits within the asteroid belt and the largest asteroid in the solar system. Chinook: The Boeing CH-47 Chinook is an American twin-engine, tandem-rotor heavy-lift helicopter. CST-100: The crew capsule spacecraft designed by Boeing in collaboration with Bigelow Aerospace for NASA's Commercial Crew Development program.
    [Show full text]
  • Issue No. 4, Oct-Dec
    VOL. 6, NO. 4, OCTOBER - DECEMBER 1979 t l"i ~ ; •• , - --;j..,,,,,,1:: ~ '<• I '5t--A SERVt(;E P\JBLICATtON Of: t.OCKH EE:O-G EORGlA COt.'PAfllV A 01Vt$10,.. or t.OCKHEEOCOAf'ORATION A SERVICE PUBLICATION OF LOCKHEED-GEORGIA COMPANY The C-130 and Special Projects Engineering A DIVISION OF Division is pleased to welcome you to a LOCKHEED CORPORATION special “Meet the Hercules” edition of Service News magazine. This issue is de- Editor voted entirely to a description of the sys- Don H. Hungate tems and features of the current production models of the Hercules aircraft, the Ad- Associate Editors Charles 1. Gale vanced C-130H, and the L-100-30. Our James A. Loftin primary purpose is to better acquaint you with these two most recently updated Arch McCleskey members of Lockheed’s distinguished family Patricia A. Thomas of Hercules airlifters, but first we’d like to say a few words about the engineering or- Art Direction & Production ganization that stands behind them. Anne G. Anderson We in the Project Design organization have the responsibility for the configuration and Vol. 6, No. 4, October-December 1979 systems operation of all new or modified CONTENTS C-130 or L-100 aircraft. During the past 26 years, we have been intimately involved with all facets of Hercules design and maintenance. Our goal 2 Focal Point is to keep the Lockheed Hercules the most efficient and versatile cargo aircraft in the world. We 0. C. Brockington, C-130 encourage our customers to communicate their field experiences and recommendations to us so that Engineering Program Manager we can pass along information which will be useful to all operators, and act on those items that would benefit from engineeringattention.
    [Show full text]
  • Space Medicine in Project Mercury
    NASA SP-4u03 RECE~VED SEP 29 1965 AED LIBRARY NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA SP-4003 SPACE MEDICINE IN PROJECT MERCURY By Mae Mills Link OFFICE OF MANNED SPACE FLIGHT Scientific anJ Technical Information Division 1 9 6 5 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C.. 20402 - Price $1.00 Foreword OR CENTURIES MAN HAS DREAMED of exploring .the universe. FFinally an expanding rocket technology brought with it a rea­ sonable expectation of achieving this dream, and man was quick to accept the challenge. Project Mercury was an organized expres­ sion of man's willingness to face the risks invol ved in exploring the new frontier of space, and of his confidence in our Nation's ability to support him technically and professionally in this ex­ citing adventure. Project Mercury is now legend. The story of its many activi­ ties is an important chapter in the history of our times. Its spot­ less record of successes is a tribute to all those who made up the Mercury team. Not the least of the groups composing the Mercury team was that charged with responsibility for the health of the astronauts. This select biomedical group discharged ,dtll near perfection a variety of tasks involved in choosing and training our Nation's first space voyagers, monitoring their medical status during each flight, and finally assessing their condition after the flight. In this volume the author sets forth a chronological account of a unique medical support program.
    [Show full text]
  • Go-Around Decision Delayed Wing Tip Struck the Runway Before the Descent Was Arrested
    ONRecord Go-Around Decision Delayed Wing tip struck the runway before the descent was arrested. BY MARK LACAGNINA The following information provides an aware- above the MDA [minimum descent altitude] ness of problems in the hope that they can be and 3 mi [5 km] from the field,” the captain said. avoided in the future. The information is based “I pointed out Runway 19R.” on final reports by official investigative authori- The report said that the airplane was left ties on aircraft accidents and incidents. of the centerline when it crossed the approach end of Runway 19R, and the first officer applied JETS right aileron control to correct the misalign- ment. “The captain then gave the order to go Airplane Was Not Aligned With the Runway around, and takeoff engine power was ap- McDonnell Douglas MD-83. Minor damage. No injuries. plied, but the airplane’s descent continued, and he flight was inbound with 140 passengers the right wing struck the runway as the main from Anchorage, Alaska, U.S., to Fairbanks, landing gear wheels contacted the runway,” the Twhere reported weather conditions in- report said. cluded a 2,300-ft broken ceiling, 10 mi (16 km) The pilots were not aware that the wing had visibility and surface winds from 250 degrees at struck the runway until they were informed by a 6 kt the afternoon of May 18, 2006. The flight flight attendant seated in the rear of the airplane. crew was cleared by air traffic control (ATC) to “After the go-around, the flight crew declared an conduct the VOR (VHF omnidirectional radio) emergency and made an uneventful landing on approach to Runway 19R.
    [Show full text]