Crab Pagurus Longicarpus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Draft Dike Rock Managment Plan May 2015-JES-MS 06.06.15
!"#"$%&'()*+*!,+-.*/+(+)"0"(.*1$+(*-%,*.2"*!'3"*4%53*6(.",.'7+$*8,"+* 95,'&&:*;%+:.+$*4":",#"* <+*=%$$+>*;+$'-%,('+* ! ! ! ! ! "#$%&#!'()! "#*+,$!(-!./0#&1,/!'+2/%,*! "#$%&,!3%(/%0,$%*+4!5!6(&*,$0#+%(&! '1$%77*!8&*+%+2+%(&!(-!91,#&(:$#7;4! <&%0,$*%+4!(-!6#=%-($&%#>!'#&!?%,:(! ! @2&,!ABCD! ! 6#7*+(&,!6())%++,,E! 8*#F,==,!G#4>!<&%0,$*%+4!(-!6#=%-($&%#!H#+2$#=!I,*,$0,!'4*+,)!J6;#%$K! @,&&%-,$!')%+;>!L;M?M>!'1$%77*!8&*+%+2+%(&!(-!91,#&(:$#7;4! ! !"#$%!&$' ! !"#$%&'())*$+,-*.-/$0#*#'1#$2%+03$(*$,4#$,5$67$'#*#'1#*$(4$."#$84(1#'*(.9$,5$+-/(5,'4(-$28+3$ :-.;'-/$0#*#'1#$%9*.#<$2:0%3$#*.-=/(*"#>$=9$."#$8+$?,-'>$,5$0#@#4.*$.,$*;)),'.$;4(1#'*(.9A/#1#/$ '#*#-'&"B$#>;&-.(,4B$-4>$);=/(&$*#'1(&#C$$D$.#4A9#-'$'#1(#E$2F-9$GHHI3$,5$."#$%+0$(>#4.(5(#>$."-.$ ."#$'#*#'1#$5-&#*$#J.#'4-/$."'#-.*$.,$(.*$/,4@A.#'<$1(-=(/(.9$5',<$"#-19$);=/(&$;*#B$)-'.(&;/-'/9$(4$ ."#$*",'#/(4#K<-'(4#$),'.(,4$,5$."#$%+0B$-4>$'#&,<<#4>#>$."-.$."#$8+$%-4$L(#@,$.-M#$-$ *.',4@#'$',/#$(4$)',.#&.(4@$."#$4-.;'-/$'#*,;'&#*$/,&-.#>$E(."(4$."#$%+0C$$!"(*$>'-5.$<-4-@#<#4.$ )/-4$"-*$=##4$>#1#/,)#>$5,'$."#$-))',J(<-.#/9$NA-&'#$-'#-$',&M9$(4.#'.(>-/$),'.(,4$,5$."#$%+0$ M4,E4$-*$L(M#$0,&MC$!"#$);'),*#$,5$."(*$>'-5.$<-4-@#<#4.$)/-4$(*$.,$)',1(>#$-$<#&"-4(*<$5,'$ ."#$(4.#@'-.(,4$,5$(45,'<-.(,4$-4>$-$*.';&.;'#$5,'$."#$)',.#&.(,4B$<-4-@#<#4.B$-4>$;*#$,5$."#$ L(M#$0,&M$(4.#'.(>-/$-'#-$-4>$(.*$=(,/,@(&-/$-4>$)"9*(&-/$'#*,;'&#*C$$!"#$)/-4$(*$,'@-4(O#>$(4.,$ ."'##$)',@'-<$-'#-*P$D><(4(*.'-.(1#Q$0#*#-'&"B$R>;&-.(,4B$-4>$S;=/(&$%#'1(&#Q$-4>$T4.#'-@#4&9$ +,,'>(4-.(,4C$$U,-/*B$,=V#&.(1#*B$),/(&(#*B$-4>$(<)/#<#4.(4@$-&.(,4*$E#'#$>#1#/,)#>$5,'$."#*#$ -
On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions Title (Decapoda : Anomura) (With 33 Text-Figures and 7 Tables)
On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions Title (Decapoda : Anomura) (With 33 Text-figures and 7 Tables) Author(s) QUINTANA, Rodolfo; IWATA, Fumio Citation 北海道大學理學部紀要, 25(1), 25-85 Issue Date 1987-10 Doc URL http://hdl.handle.net/2115/27702 Type bulletin (article) File Information 25(1)_P25-85.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions (Decapoda: Anomura) By Rodolfo Quintana and Fumio Iwata Zoological Institute, Faculty of Science, Hokkaido University, Sapporo 060, Japan. (With 33 Text-figures and 7 Tables) Introduction Descriptive accounts of larvae of a number of Diogenidae and Paguridae species from different geographic regions have been given -among others-, by MacDonald, Pike and Williamson, (1957); Pike and Williamson (1960); Proven zano (1963; 1968a ); Makarov (1967); Roberts (1970; 1973); Biffar and Proven zano (1972); Nyblade and McLaughlin (1975); Hong (1981), but our knowledge of larvae of species of both families from Japan is still deficient. The list of anomuran crabs inhabiting the coasts of Hokkaido, northern Japan includes approximately 15 species of hermit crabs (Igarashi, 1970; Miyake, 1982), for which only some reports have been published on their larval stages, so that the larvae of several of these species (especially those of the genus Paguristes and approximately the 50% of the Pagurus species) remain so far unknown. Kurata (1964) described the larvae of several Pagurus species from the coasts of Hokkaido. In his carefully constructed plankton study, using mainly character- 1) Contribution No.1 from the Oshoro Marine Biological Station, Faculty of Science, Hokkaido University. -
SCAMIT Newsletter Vol. 8 No. 10 1990 February
Southern California Association of Marine Invertebrate Taxonomists 3720 Stephen White Drive San Pedro, California 90731 f frEBRMt February 1990 Vol. 8, No. 10 NEXT MEETING: Photis Workshop GUEST SPEAKERS SCAMIT Members DATE: Monday, 12 March 1990, 9:30 AM LOCATION; Cabrillo Marine Museum 3720 Stephen White Drive San Pedro, CA 90731 MINUTES FROM MEETING ON FEBRUARY 12, 1990 Pa 9H.r i d Meeting: Ms. Janet Haig, Allan Han cock Fou ndat ion, University of Southern California, hosted the pagu rid meet ing. Several problems concerning pagurid identi fication wer e di scussed. Ms. Haig agreed with us that several corre ctions a nd a ddit ions, listed in the previous newsletter, need to be made to the key (Haig, J. 1977. A preliminary key to the hermit c rabs of Cali- fornia. Proc. Taxonomic Standardization P rogram, So. Cali f. Coastal Water Research Project, Vol. 5, No . 2, pp. 13-22) . Don Cadien, Los Angeles County Sanitation Dist ricts, a gree d to rewri te this key, and Dean Pasko, Pt. Loma/City of San Die go, and Mas Dojiri, Hyperion Treatment Plant, plan to illustra te t he c haracters included in the key. Many of these illust rations will be gleaned from the literature, but a few, by necessi ty, will be or ig inal . When completed, the illustrated key to the species of Cali fornia hermit crabs will be distributed to SCAMIT members S CAM IT grate- fully acknowledges Janet Haig for hosting the meet ing and f o r her helpful suggestions on the key. -
To Down Load Appendix 1
APPENDIX 1 Chapter 1 Pictures of dominant species ................................................................................................................................. 2 Species inventory of micro-invertebrate species found ....................................................................................... 16 Bathymetry Map of Pleasant Bay ........................................................................................................................ 18 Eelgrass Locations in Pleasant Bay ..................................................................................................................... 19 Sidescan Map of Pleasant Bay ............................................................................................................................. 20 Chapter 2 Species inventory of macro-invertebrate and fish species by gear type .............................................................. 21 Chapter 3 Prey otoliths and hard parts recovered during seal scat processing ..................................................................... 24 1 Pictures of dominant species Disclaimer: biological samples were treated with ethanol and Rose Bengal in the laboratory to preserve the samples. Rose Bengal is a stain commonly used in microscopy and stains cell tissue a bright pink. This is useful in the visual detection of microscopic animals in sediment samples. An overwhelming majority of micro invertebrate species do not have common names. The common names used here are listed in Pollock’s “A Practical Guide -
Hepatopancreatic Endosymbionts in Coastal Isopods (Crustacea: Isopoda)
Marine Biology 2001) 138: 955±963 Ó Springer-Verlag 2001 M. Zimmer á J. P. Danko á S. C. Pennings A. R. Danford á A. Ziegler á R. F. Uglow á T. H. Carefoot Hepatopancreatic endosymbionts in coastal isopods Crustacea: Isopoda), and their contribution to digestion Received: 28 August 2000 / Accepted: 8 December 2000 Abstract Three isopod species Crustacea: Isopoda), phenolic compounds was most developed in one of the commonly found in the intertidal and supratidal zones more marine species, suggesting that this trait may have of the North American Paci®c coast, were studied with evolved independently in isopod species that consume a respect to symbiotic microbiota in their midgut glands phenolic-rich diet, whether in marine habitats or on hepatopancreas). Ligia pallasii Oniscidea: Ligiidae) land. contained high numbers of microbialsymbionts in its hepatopancreatic caeca. Numbers of endosymbionts were strongly reduced by ingestion of antibiotics. By contrast, Introduction the hepatopancreas of Idotea wosnesenskii Valvifera: Idoteidae) and Gnorimosphaeroma oregonense Sphae- Endosymbionts are well known to play a key role in the romatidea: Sphaeromatidae) did not contain any mic- digestive processes of many terrestrialspecies summa- robiota. Results of feeding experiments suggest that rized in Martin 1983; Slaytor 1992; Breznak and Brune microbialendosymbionts contribute to digestive pro- 1994); however, their role in marine invertebrate species cesses in L. pallasii, the most terrestrialof the three is poorly understood. While studies have shown that gut isopods that we studied. The acquisition of digestion- microbiota exist in some marine invertebrates, know- enhancing endosymbionts may have been an important ledge of their nutritional role is scanty cf. -
Synidotea Laevidorsalis Potential in RI COASTAL WATERS Asian Isopod Invader
GUIDE TO MARINE INVADERS Synidotea laevidorsalis Potential IN RI COASTAL WATERS Asian isopod Invader PHYSICAL DESCRIPTION • Small, flattened (from top to bottom), crustacean (Isopoda) • Body color mottled tan to brown • Body elongated, widest in middle (thorax), with females slightly wider than males • Blunt, concave tail (telson) • Can grow to 1.2 in (3 cm) in length eyes located on Synidotea laevidorsalis lateral surface (dorsal view, female) of head shown at 200% actual size SERTC / SCDNR SERTC Left: Dorsal view of female Above: Dorsal view of male body widest at central thorax HABITAT PREFERENCE 7 pairs of • Found in shallow, subtidal waters attached to docks, appendages pilings, ropes, and other submerged structures • Prefers calm, protected waters; brackish water to full seawater 1 cm concave telson • Often clings to algae and hydroids with 2 blunt points © Rob Gough, DFBW 1 2 3 4 5 6 7 8 GUIDE TO MARINE INVADERS Synidotea laevidorsalis Potential IN RI COASTAL WATERS Asian isopod Invader INVASION STATUS & ECOLOGICAL CONCERNS Synidotea laevidorsalis is native to the Western Pacific Ocean and has been introduced to Europe, South America, Australia, and the United States, including San Francisco Bay, South Carolina, and the Delaware Bayshore of New Jersey. A marine isopod, S. laevidorsalis must be submerged in water to breathe. S. laevidorsalis grows to about 3 cm in length and can be found on docks and pilings among seaweed and hydroids. This isopod is classified as an omnivorous scavenger, eating both dead and living material, particularly hydroids. The camouflage pattern on its body allows it to blend in with its environment, and the tiny claws on each leg help it cling to surfaces. -
Ecological Role of Marine Intertidal Hermit Crabs in California
Swarms of swift scavengers: ecological role of marine intertidal hermit crabs in California Mark E. Laidre1* and Alison L. Greggor1 1Department of Integrative Biology, University of California, Berkeley Running title: Swarms of swift scavengers Word count Abstract: 241 Main text (including references): 5,475 With 2 Tables and 4 Figures Electronic Supplementary Material (4 Supplementary Figures) *Corresponding author address: Department of Biological Sciences Dartmouth College The Class of 1978 Life Sciences Center 78 College Street Hanover, NH 03755 Phone: +1 (609) 751-8041, Fax: +1 (603) 646-1347 Email: [email protected] 1 Abstract 2 While marine hermit crabs are well known for being omnivorous filter feeders, less is 3 known about the role they may play as active carrion scavengers in intertidal ecosystems. 4 Prior studies have revealed that intertidal hermit crabs can be attracted to chemical cues 5 from predated gastropods. Yet their attraction is usually assumed to be driven primarily 6 by the availability of new shells rather than by food. We conducted field experiments to 7 assess hermit crabs’ potential role as generalist carrion scavengers on the California 8 coast, examining their speed of attraction and the size of the aggregations they formed in 9 response to chemical cues from freshly smashed gastropods and mussels, both of which 10 indicated available carrion. Compared to all other marine species, hermit crabs (including 11 Pagurus samuelis, Pagurus hirsutiusculus, and Pagurus granosimanus) were the fastest 12 to arrive at the provisioning sites, and they also dominated the provisioning sites, forming 13 aggregations of up to 20 individuals, which outcompeted all other scavengers for carrion. -
Chapter 8 Benthic Assessment of Marine Areas of Particular
Chapter 8 Benthic assessment of marine areas of particular ecological importance within the German Baltic Sea EEZ Michael L. Zettlera and Fritz Gosselckb a Baltic Sea Research Institute, Rostock b Institute for Applied Ecology, Broderstorf Abstract The Habitats Directive is one of the main legal tools of the European Union to preserve biodiversity by maintaining and restoring natural habitats, and establishing a network of protected sites (NATURA 2000). One point of interest is the characterisation of marine habitats to localise the areas that fulfil the protection targets. Of the habitats listed in Annex I of the Habitats Directive, mainly reefs and sandbanks are relevant in the case of German Baltic offshore waters. Along a strong salinity gradient (5 to 25 psu), four planned offshore Marine Protected Areas (MPAs) within the German Exclusive Economic Zone (EEZ) of the Baltic Sea were thoroughly investigated in this study. More than 250 locations were analysed using a combination of standard sampling methods, underwater video technique, and measurement of abiotic factors (salinity, oxygen, sediment parameters). The areas of interest were the Odra Bank (Oderbank), Adler Ground (Adlergrund), Kadet Trench (Kadetrinne), and Fehmarn Belt (Fehmarnbelt). The characteristic living communities (macrophytes, such as algae and sea grass, and macrozoobenthos such as worms, bivalves and crustaceans) for the different habitat types in these areas were characterised. Due to different salinity regimes, the benthic colonisation is different as well. In the Baltic Sea, with its decreasing salinity from west to east, the number of marine species declines, too. In the present study, altogether approximately 350 macrozoobenthic species and approximately 20 macrophytes were identified. -
Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida
SHRIMPS, LOBSTERS, AND CRABS OF THE ATLANTIC COAST OF THE EASTERN UNITED STATES, MAINE TO FLORIDA AUSTIN B.WILLIAMS SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1984 © 1984 Smithsonian Institution. All rights reserved. Printed in the United States Library of Congress Cataloging in Publication Data Williams, Austin B. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Rev. ed. of: Marine decapod crustaceans of the Carolinas. 1965. Bibliography: p. Includes index. Supt. of Docs, no.: SI 18:2:SL8 1. Decapoda (Crustacea)—Atlantic Coast (U.S.) 2. Crustacea—Atlantic Coast (U.S.) I. Title. QL444.M33W54 1984 595.3'840974 83-600095 ISBN 0-87474-960-3 Editor: Donald C. Fisher Contents Introduction 1 History 1 Classification 2 Zoogeographic Considerations 3 Species Accounts 5 Materials Studied 8 Measurements 8 Glossary 8 Systematic and Ecological Discussion 12 Order Decapoda , 12 Key to Suborders, Infraorders, Sections, Superfamilies and Families 13 Suborder Dendrobranchiata 17 Infraorder Penaeidea 17 Superfamily Penaeoidea 17 Family Solenoceridae 17 Genus Mesopenaeiis 18 Solenocera 19 Family Penaeidae 22 Genus Penaeus 22 Metapenaeopsis 36 Parapenaeus 37 Trachypenaeus 38 Xiphopenaeus 41 Family Sicyoniidae 42 Genus Sicyonia 43 Superfamily Sergestoidea 50 Family Sergestidae 50 Genus Acetes 50 Family Luciferidae 52 Genus Lucifer 52 Suborder Pleocyemata 54 Infraorder Stenopodidea 54 Family Stenopodidae 54 Genus Stenopus 54 Infraorder Caridea 57 Superfamily Pasiphaeoidea 57 Family Pasiphaeidae 57 Genus -
Invertebrate ID Guide
11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................ -
2020 Interim Receiving Waters Monitoring Report
POINT LOMA OCEAN OUTFALL MONTHLY RECEIVING WATERS INTERIM RECEIVING WATERS MONITORING REPORT FOR THE POINTM ONITORINGLOMA AND SOUTH R EPORTBAY OCEAN OUTFALLS POINT LOMA 2020 WASTEWATER TREATMENT PLANT NPDES Permit No. CA0107409 SDRWQCB Order No. R9-2017-0007 APRIL 2021 Environmental Monitoring and Technical Services 2392 Kincaid Road x Mail Station 45A x San Diego, CA 92101 Tel (619) 758-2300 Fax (619) 758-2309 INTERIM RECEIVING WATERS MONITORING REPORT FOR THE POINT LOMA AND SOUTH BAY OCEAN OUTFALLS 2020 POINT LOMA WASTEWATER TREATMENT PLANT (ORDER NO. R9-2017-0007; NPDES NO. CA0107409) SOUTH BAY WATER RECLAMATION PLANT (ORDER NO. R9-2013-0006 AS AMENDED; NPDES NO. CA0109045) SOUTH BAY INTERNATIONAL WASTEWATER TREATMENT PLANT (ORDER NO. R9-2014-0009 AS AMENDED; NPDES NO. CA0108928) Prepared by: City of San Diego Ocean Monitoring Program Environmental Monitoring & Technical Services Division Ryan Kempster, Editor Ami Latker, Editor June 2021 Table of Contents Production Credits and Acknowledgements ...........................................................................ii Executive Summary ...................................................................................................................1 A. Latker, R. Kempster Chapter 1. General Introduction ............................................................................................3 A. Latker, R. Kempster Chapter 2. Water Quality .......................................................................................................15 S. Jaeger, A. Webb, R. Kempster, -
Ix. References
IX. REFERENCES BAXTER, K. N., C. H. FURR, JR., and E. SCOTT. 1988. The commercial bait shrimp fishery in Galveston Bay, Texas, 1959-87. Mar. Fish. Rev., 50(2):20- 28. BESSETTE, C. 1985. Growth, distribution and abundance of juvenile penaeid shrimp in Galveston Bay. M.S. Thesis submitted to University of Houston, Department of Biology. Houston, TX. 132 p. BLACKBURN, C. J., and S. K. DAVIS. 1992. Bycatch in the Alaska region: Problems and management measures ~ historic and current. In, R. W. Schoning, R.W. Jacobson, D. L. Alverson, T. H. Gentle, and J. Auyong (editors), Proceedings Of The National Industry Bycatch Workshop, February 4-6, 1992, Newport, OR. Natural Resources Consultants. Seattle, WA. pp. 88-105. CAMPBELL, R. P., C. HONS, and L. M. GREEN. 1991. Trends in fmfish landings of sport-boat anglers in Texas marine waters, May 1974 - May 1990. Texas Parks and Wildlife Department, Management Data Ser. No. 75. 209 p. DAILEY, J. A., J. C. KANA, AND L. W. MCEACHRON. 1991. Trends in relative abundance of selected finfishes and shellfishes along the Texas Coast: November 1975 - December 1990. Texas Parks and Wildlife Department, Management Data Ser. No. 74, 128 p. DE DIEGO, M.E. 1984. Description of three ecology studies on brown shrimp Penaeus aztecus and white shrimp P. setiferus conducted by the National Marine Fisheries Service, Galveston, Texas. Paper submitted in partial fulfillment of M. Ag. Thesis. Texas A&M University, Department of Wildlife and Fisheries Science (Aquaculture). December 1984. 30 pp. DIVITA, R., M. CREEL, and P. F. SHERIDAN. 1983. Foods of coastal fishes during brown shrimp Penaeus aztecus, migration frm Texas estuaries (June - July 1981).