Quantification of Ash Sedimentation Dynamics Through Depolarisation

Total Page:16

File Type:pdf, Size:1020Kb

Quantification of Ash Sedimentation Dynamics Through Depolarisation www.nature.com/scientificreports OPEN Quantifcation of ash sedimentation dynamics through depolarisation imaging with Received: 26 June 2018 Accepted: 8 October 2018 AshCam Published: xx xx xxxx Ben Esse 1, Michael Burton 1, Matthew Varnam 1, Ryunosuke Kazahaya1,2, Paul A. Wallace3, Felix Von-Aulock3, Yan Lavallée 3, Giuseppe Salerno4, Simona Scollo4 & Hugh Coe1 Even modest ash-rich volcanic eruptions can severely impact a range of human activities, especially air travel. The dispersal of ash in these eruptions depends critically on aggregation and sedimentation processes – however these are difcult to quantify in volcanic plumes. Here, we image ash dynamics from mild explosive activity at Santiaguito Volcano, Guatemala, by measuring the depolarisation of scattered sunlight by non-spherical ash particles, allowing the dynamics of difuse ash plumes to be investigated with high temporal resolution (>1 Hz). We measure the ash settling velocity downwind from the main plume, and compare it directly with ground sampled ash particles, fnding good agreement with a sedimentation model based on particle size. Our new, cost-efective technique leverages existing technology, opening a new frontier of integrated ash visualisation and ground collection studies which could test models of ash coagulation and sedimentation, leading to improved ash dispersion forecasts. This will provide risk managers with improved data quality on ash location, reducing the economic and societal impacts of future ash-rich eruptions. Volcanic ash is a primary product of explosive volcanism which, while ofen beneftting the biosphere, generally poses a threat to human health and infrastructure1. Ash exposure can cause irritation to the nose, throat and eyes, as well as aggravating pre-existing health conditions such as asthma2. Heavy ash fall can also lead to building col- lapse, potentially injuring or killing those inside3. Ash is also a danger to other critical infrastructure, including electrical, water and transportation networks (especially air travel)4–7. Recent work has focussed on the key role of ash aggregation in controlling the dynamics of ash plumes8–10, and such processes are included in new mod- elling approaches11. Testing and validation of ash aggregation and sedimentation models is therefore an urgent requirement, but we have few tools capable of providing the empirical and reliable quantifcation of ash dynamics in the atmosphere. Existing ash detection methods include infrared imagery12–14, radar15,16 and LiDAR17,18, as well as combined analysis of acoustic signals and optical imagery19,20. Satellite UV instruments (such as OMI) have also been shown to be sensitive to ash21 – however little work has been done to date on ground based UV measurements. Two previous studies have used ground-based UV cameras for the observation of volcanic ash22,23, with a third meas- uring black carbon particles in ship emissions24. All three of these studies assume that absorption from the ash (or carbon particles) dominates the attenuation of the light passing through the plume and so do not explicitly detect ash. We note that for optically thick plumes refection from the surface or internal scattering within the plume would likely dominate over transmission. Ash particles are formed through explosive fragmentation of magma and are ofen very glassy in nature. Tey form sharp, irregular shapes that are hard to characterise morphologically25 and have complex interactions with radiation, leading to errors in ash mass retrievals26. Te non-sphericity of ash particles does have one advantage however: the depolarisation of scattered light. 1School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK. 2Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan. 3Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK. 4Istituto Nazionale di Geofsica e Vulcanologia, Osservatorio Etneo, sezione di Catania, Piazza Roma 2, 95123, Catania, Italy. Correspondence and requests for materials should be addressed to B.E. (email: [email protected]) SCIENTIFIC REPORTS | (2018) 8:15680 | DOI:10.1038/s41598-018-34110-6 1 www.nature.com/scientificreports/ Figure 1. Geography of Santiaguito. (a) Sketch map showing the location of Santiaguito in Central America (red circle). (b) Image of Caliente dome taken from the measurement location at the onset of an explosion (image taken by Ben Esse). (c) Satellite image of the area surrounding Santiaguito with the measurement and sample locations marked. Te dome complex can be seen to be growing from the collapse scar of Santa Maria. Te dotted white lines give the approximate feld of view of AshCam. Map data: Google, CNES/Airbus. Map generated with Google Earth version 7.1.8.3036 (https://www.google.com/earth/). Here, we present a new method for investigating the dynamics of ash plumes using ground-based UV-VIS imagery named “AshCam”. By measuring the intensity of light for two orthogonally polarised channels, deviations from the expected polarisation pattern of scattered sunlight can be used to infer the presence of ash. UV-VIS 27–30 cameras are widely used in volcano monitoring for measuring volcanic SO2 fuxes . Tese systems typically use two wavelength channels, one sensitive to SO2 and one not, to quantify the SO2 column amount in each pixel. Tis is usually achieved with either a single camera and a flter wheel, or two cameras with two diferent flters. By replacing the flters with two linear polarising ones these cameras can be modifed to measure ash, allowing AshCam to be easily integrated into existing monitoring networks. Te high frame rate (~1 Hz) of the cameras allows for the investigation of ash dynamics, for example the ash settling velocity, and individual flaments of ash can be tracked between frames, providing detailed quantifcation of ash velocities. We report on observations of mild explosive activity at Santiaguito Volcano, Guatemala. We show for the frst time that it is possible to measure the depolarising efect of ash through passive measurements of sunlight and demonstrate how these measurements can be used to investigate the dynamics of ash plumes. Results Field site. Santiaguito (14.7500° N, 91.5667° W, 2520 m) is an andesitic-dacitic lava dome complex in Guatemala (Fig. 1a) which formed afer the 1902 eruption and subsequent collapse of Santa Maria31,32. Santiaguito exhibits regular explosions approximately once every 26 minutes to two hours from the currently active vent feeding “Caliente” dome33,34 (Fig. 1b). Tis makes it an excellent natural laboratory for testing ash remote sens- ing techniques20,35. Te observations presented here were made on 18th January 2018 from an observation site approximately 4 km north-west from the dome (Fig. 1c). During the observation period two explosions occurred at 09:00 and 11:10 (local time), lasting approximately 1 and 10 minutes respectively. Here, we focus on the second explosion as a test case for AshCam due to its longer duration. Depolarisation images. Figure 2 shows examples of depolarisation images taken before, during and afer the explosion, as well as graphs showing the cross-section of the plume (blue line on the images). Te cross-sections are averaged vertically across ten pixels. Te explosion started with a smaller impulsive event, followed by a more prolonged ash emission that formed the main body of the explosion – a common feature at Santiaguito20,34,35. A full video of the depolarisation images for the explosion can be found in Supplementary Video S1. Images were acquired with a frequency of 0.2 Hz – although the cameras are capable of higher frame rates (5–15 Hz depending on acquisition quality settings), 0.2 Hz was chosen in the feld due to data storage prac- ticalities and to increase the image quality. Te main, optically-thick aerosol plume rising from the dome has a strong depolarisation ratio (~1.25) – however this is likely due to refections from the plume surface and multiple internal scattering within the optically thick plume itself. Tis means the dynamics of the ash cannot be separated from the other aerosols in the plume. We note that this result suggests direct observation of aerosol-rich plumes with SO2 cameras may be strongly afected by refected sunlight. Te ash settling out from the main plume could instead be readily observed as optically thin depolarisation features on the lef side of the images. We highlight that the fne settling ash was not clearly visible to the naked eye or with normal video recording equipment (see Supplementary Fig. S1). Te depolarisation signal (~1.1) is signifcantly above the background noise in the image (~1.01). Te background sky shows little change between the frames, remaining close to 1 throughout the explosion. A false signal can be seen in the top lef corner of frame (c) due to refections from low meteorological clouds. Additionally, an enhancement of the signal can be seen on the edge of the main plume and on the dome due to a slight spatial misalignment of the horizontally and vertically polarised images. SCIENTIFIC REPORTS | (2018) 8:15680 | DOI:10.1038/s41598-018-34110-6 2 www.nature.com/scientificreports/ Figure 2. Example depolarisation images before (a), during (b) and afer (c) an explosion at Santiaguito. Te timings are relative to the onset of the explosion. Te graphs depict the cross-sections indicated by the blue lines on the images. Te cross-sections are averaged across 10 pixels vertically. Main Plume Downwind Figure 3. Example fow map of the output from the optical fow 275 s afer the onset of the explosion. Te length of the arrows is proportional to the fow speed. Te white boxes show the main plume and downwind areas chosen for further analysis. Plume dynamics. Te plume dynamics were investigated using an optical fow algorithm (see methods section for details). Tis was achieved using the Farnebäck algorithm from the python OpenCV library.
Recommended publications
  • Daytime Sky Polarization Calibration Limitations
    Daytime sky polarization calibration limitations David M. Harrington Jeffrey R. Kuhn Arturo López Ariste David M. Harrington, Jeffrey R. Kuhn, Arturo López Ariste, “Daytime sky polarization calibration limitations,” J. Astron. Telesc. Instrum. Syst. 3(1), 018001 (2017), doi: 10.1117/1.JATIS.3.1.018001. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 08 May 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 3(1), 018001 (Jan–Mar 2017) Daytime sky polarization calibration limitations David M. Harrington,a,b,c,* Jeffrey R. Kuhn,d and Arturo López Aristee aNational Solar Observatory, 3665 Discovery Drive, Boulder, Colorado 80303, United States bKiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg, Germany cUniversity of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, United States dUniversity of Hawaii, Institute for Astronomy Maui, 34 Ohia Ku Street, Pukalani, Hawaii 96768, United States eIRAP CNRS, UMR 5277, 14, Avenue E Belin, Toulouse, France Abstract. The daytime sky has recently been demonstrated as a useful calibration tool for deriving polarization cross-talk properties of large astronomical telescopes. The Daniel K. Inouye Solar Telescope and other large telescopes under construction can benefit from precise polarimetric calibration of large mirrors. Several atmos- pheric phenomena and instrumental errors potentially limit the technique’s accuracy. At the 3.67-m AEOS telescope on Haleakala, we performed a large observing campaign with the HiVIS spectropolarimeter to identify limitations and develop algorithms for extracting consistent calibrations. Effective sampling of the telescope optical configurations and filtering of data for several derived parameters provide robustness to the derived Mueller matrix calibrations.
    [Show full text]
  • Polarization (Waves)
    Polarization (waves) Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations.[1][2][3][4][5] In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave.[4] A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic [6] waves such as light and radio waves, gravitational waves, and transverse Circular polarization on rubber sound waves (shear waves) in solids. thread, converted to linear polarization An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization.
    [Show full text]
  • Problem 9 - Optical Compass
    Team Brazil – University of Campinas Problem 9 - Optical Compass Maria Carolina Volpato and Denise Christovam 1 Team Brazil – University of Campinas Problem Statement Bees locate themselves in space using their eyes’ sensitivity to light polarization. Design an inexpensive optical compass using polarization effects to obtain the best accuracy. How would the presence of clouds in the sky change this accuracy? 2 Team Brazil – University of Campinas Visualization of the phenomenon Problem 9- Optical Compass 3 Team Brazil – University of Campinas Light Scattering Incident Scattered Backward Forward scattering scattering Scattered Light Incoming Light 4 Problem 9- Optical Compass Particle Team Brazil – University of Campinas Light Scattering Rayleigh Scattering Mie Scattering Conditions to Rayleigh scattering are satisfied! Problem 9- Optical Compass 5 Team Brazil – University of Campinas Linear Polarization ➔ For the observer at PMP polarization plane collapses into a line ➔ 90o from the source of light Problem 9- Optical Compass 6 Team Brazil – University of Campinas Mapping the sky ➔ Rayleigh sky model describes how the maximally polarized light stripe varies with rotation Degree of polarization at sunset or sunrise. https://en.wikipedia.org/wiki/Rayleigh_sky_model Problem 9- Optical Compass 7 Team Brazil – University of Campinas Materials and design ➔ Polarizing sheets ➔ Guillotine Paper Cutting Machine ➔ Adhesive tape ~ R$ 30.00 ($6.00) ➔ Cardboard A4 (120 g/m²) o 12 petals – 30 72 petals – 5o 18 petals – 20o Problem 9- Optical Compass
    [Show full text]
  • How Well Does the Rayleigh Model Describe the E-Vector Distribution of Skylight in Clear and Cloudy Conditions? a Full-Sky Polarimetric Study
    B. Suhai and G. Horva´th Vol. 21, No. 9/September 2004/J. Opt. Soc. Am. A 1669 How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study Bence Suhai and Ga´bor Horva´th Biooptics Laboratory, Department of Biological Physics, Lora´ nd Eo¨ tvo¨ s University, H-1117 Budapest, Pa´ zma´ ny se´ta´ ny 1, Hungary Received December 18, 2003; revised manuscript received April 5, 2004; accepted April 28, 2004 We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the ␪ ⌬␣ ϭ ͉␣ solar elevation angle s . Our maps display those celestial areas at which the deviation meas Ϫ ␣ ͉ ␣ ϭ ␣ Rayleigh is below the threshold thres 5°, where meas is the angle of polarization of skylight measured by ␣ full-sky imaging polarimetry, and Rayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of ⌬␣ ϭ 5°) the E-vector alignment of sky- ␪ Ͻ Ͻ ␪ light. Depending on s , r is high for clear skies, especially for low solar elevations (40% r 70% for s р 13°). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy con- ϭ ditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax 69% for ␪ ϭ s 0°).
    [Show full text]
  • Polarimetric Normal Recovery Under the Sky
    Shape from Sky: Polarimetric Normal Recovery Under The Sky Tomoki Ichikaway∗ Matthew Purriz∗ Ryo Kawaharay Shohei Nobuharay Kristin Danaz Ko Nishinoy y Kyoto University z Rutgers University https://vision.ist.i.kyoto-u.ac.jp/ https://www.ece.rutgers.edu/˜kdana/ Polarimetic Images Angle of Degree of Surface Normal Shading Under the Sky Linear Polarization Linear Polarization Figure 1: We introduce a novel method for reconstructing fine geometry of non-Lambertian objects from passive observations under the sky. The method fully leverages the polarimetric properties of sky and sun light encoded in the reflection by the surface to recover the surface normal at each pixel. Abstract sion and in surrounding areas including robotics, extended reality (XR), and medicine. The challenge of this 2D to 3D The sky exhibits a unique spatial polarization pattern by inverse problem lies in the combination surface reflectance scattering the unpolarized sun light. Just like insects use and incident illumination that generates the complex ap- this unique angular pattern to navigate, we use it to map pearance of a given geometry. pixels to directions on the sky. That is, we show that the In this work, we are interested in recovering the fine ge- unique polarization pattern encoded in the polarimetric ap- ometry represented by per-pixel surface normals. Surface pearance of an object captured under the sky can be de- normal recovery can be interpreted as decoding the incident coded to reveal the surface normal at each pixel. We de- illumination from its reflectance-modulated pixel intensity. rive a polarimetric reflection model of a diffuse plus mir- If we know the spatial pattern of the illumination (e.g., three ror surface lit by the sun and a clear sky.
    [Show full text]
  • Ocean Wave Slope and Height Retrieval Using Airborne Polarimetric Remote Sensing
    OCEAN WAVE SLOPE AND HEIGHT RETRIEVAL USING AIRBORNE POLARIMETRIC REMOTE SENSING A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics By Rebecca Baxter, M.S. Washington, DC April 17, 2012 Copyright 2012 by Rebecca Baxter All Rights Reserved ii OCEAN WAVE SLOPE AND HEIGHT RETRIEVAL USING AIRBORNE POLARIMETRIC REMOTE SENSING Rebecca Baxter, M.S. Thesis advisors: Edward Van Keuren, Ph.D. Brett Hooper, Ph.D. ABSTRACT Ocean wave heights are typically measured at select geographic locations using in situ ocean buoys. This dissertation has developed a technique to remotely measure wave heights using imagery collected from a polarimetric camera system mounted on an airborne platform, enabling measurements over large areas and in regions devoid of wave buoys. The technique exploits the polarization properties of Fresnel reflectivity at the ocean surface to calculate wave slopes. Integrating the slope field produces a measurement of significant wave height. In this dissertation, I present experimental data collection and analysis of airborne remotely sensed polarimetric imagery collected over the ocean using Areté Associates’ Airborne Remote Optical Spotlight System-MultiSpectral Polarimeter, as well as modeled results of the expected radiance and polarization at the sensor. The modeling incorporates two sources of radiance/polarization: surface reflected sky radiance and scattered path radiance. The latter accounts for a significant portion of the total radiance and strongly affects the polarization state measured at the sensor. After laying the groundwork, I describe my significant wave height retrieval algorithm, apply it to the polarimetric data, and present the results.
    [Show full text]
  • Arxiv:1105.2615V1
    Version of November 14, 2018 A Preprint typeset using LTEX style emulateapj v. 11/10/09 DERIVING TELESCOPE MUELLER MATRICES USING DAYTIME SKY POLARIZATION OBSERVATIONS David M. Harrington1, J. R. Kuhn2, and Shannon Hall3 1Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822 2Institute for Astronomy Maui, University of Hawaii, 34 Ohia Ku St., Pukalani, HI, 96768 and 3Department of Astronomy, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362 Version of November 14, 2018 ABSTRACT Telescopes often modify the input polarization of a source so that the measured circular or linear output state of the optical signal can be signficantly different from the input. This mixing, or polar- ization “cross-talk”, is defined by the optical system Mueller matrix. We describe here an efficient method for recovering the input polarization state of the light and the full 4 × 4 Mueller matrix of the telescope with an accuracy of a few percent without external masks or telescope hardware mod- ification. Observations of the bright, highly polarized daytime sky using the Haleakala 3.7m AEOS telescope and a coud´espectropolarimeter demonstrate the technique. Subject headings: Astronomical Techniques, Astronomical Instrumentation, Data Analysis and Tech- niques 1. INTRODUCTION illumination of the telescope optics during target obser- Spectropolarimetry is a powerful tool which may be vations. enhanced by efficient techniques for telescope-detector The new technique presented here is designed to yield polarization calibration. Unfortunately, it is common the full Mueller matrix calibration of many telescope- for modern altitude-azimuth telescopes with multiple polarimeter systems with an accuracy of a few percent.
    [Show full text]
  • A Central Complex Model of Dung Beetle Celestial Menotaxis
    A central complex model of dung beetle celestial menotaxis Ramsey H. El-Naggar MInf Project (Part 2) Report Master of Informatics School of Informatics University of Edinburgh 2018 Acknowledgements First and foremost, I’d like to thank my supervisor Professor Barbara Webb for her continuous support, patience and motivation throughout both years of the project. I might not always have been the best student, but I couldn’t have asked for a better supervisor. Next, I’d like to thank Professor Marie Dacke of Lund University for organising the field trip to Johannesburg, and for allowing me to accompany her and her team. Profes- sor Dacke also provided insightful conversation and constant cheer and motivation in the face of unfortunate weather conditions. The thanks extend to the rest of the team: James Foster, Adrian Bell, and Lana Khaldy of Lund University, Assistant Professor Orit Peleg of the University of Colorado Boulder, and in particular Professor Marcus Byrne of the University of the Witwatersrand, for insightful discussions, assistance with experiments, and taking fantastic photographs and videos. The working environ- ment is only as fun as the people in it, and I’d like to thank everyone there for making the field trip one of the major highlights of my university experience. The field trip to Johannesburg to collect results for this project was financially sup- ported by alumni and friends of the University of Edinburgh through an Innovation Initiative Grant, and I’d like to thank all those who make such grants possible by do- nating to the Edinburgh Fund. Finally, a special thanks to Garry Ellard for his patient and tireless technical support throughout both years of the project – there would be no robot without Garry.
    [Show full text]
  • Daytime Sky Polarization Calibration Limitations
    Daytime Sky Polarization Calibration Limitations David M. Harringtona,b,c, Jeffrey R. Kuhnd, and Arturo L´opez Aristee aNational Solar Observatory, 3665 Discovery Drive, Boulder, CO, 80303, USA bKiepenheuer-Institut f¨ur Sonnenphysik, Sch¨oneckstr. 6, D-79104 Freiburg, Germany cInst. for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA dInst. for Astronomy Maui, University of Hawaii, 34 Ohia Ku St., Pukalani, HI, 96768, USA eIRAP - CNRS UMR 5277. 14, Av. E Belin. Toulouse. France ABSTRACT The daytime sky has been recently demonstrated as a useful calibration tool for deriving polarization cross-talk properties of large astronomical telescopes. The Daniel K Inouye Solar Telescope (DKIST) and other large tele- scopes under construction can benefit from precise polarimetric calibration of large mirrors. Several atmospheric phenomena and instrumental errors potentially limit the techniques accuracy. At the 3.67m AEOS telescope on Haleakala, we have performed a large observing campaign with the HiVIS spectropolarimeter to identify limita- tions and develop algorithms for extracting consistent calibrations. Effective sampling of the telescope optical configurations and filtering of data for several derived parameters provide robustness to the derived Mueller matrix calibrations. Second-order scattering models of the sky show that this method is relatively insensitive to multiple-scattering in the sky provided calibration observations are done in regions of high polarization degree. The technique is also insensitive to assumptions about telescope induced polarization provided the mirror coat- ings are highly reflective. Zemax-derived polarization models show agreement between the functional dependence of polarization predictions and the corresponding on-sky calibrations. Keywords: Instrumentation: polarimeters – Instrumentation: detectors – Techniques: polarimetric – Tech- niques – spectroscopic – Methods: observational 1.
    [Show full text]
  • Polarization-Assisted Navigation and Water Vapor
    Projektarbeit Polarization-Assisted Navigation and Water Vapor Detection Realized with MEMS Ausgeführt am Institut für Angewandte Physik der technischen Universität Wien unter der Anleitung von Frau Prof.Dipl.-Ing.Dr.techn.Ille C. Gebeshuber und Herrn Univ.Prof. Mag.rer.nat. Dipl.-Ing. Dr.techn. Friedrich Aumayr durch Herrn Oliver Futterknecht Wehlistraße 366/2/2 A-1020 Wien Contents 1 Motivation 1 2 Polarization-Assisted Navigation Reference: [2, (Bence Suhai and G´abor Horv´ath,2004)]; [8, (Wikipedia(en), 2012)] 2 2.1 Polarization Vision in Humans Reference: [3, (Wikipedia(de), 2012)] ......................... 5 2.1.1 Techniques Vikings used for Nautical Navigation Reference: [10, (Leif K. Karlsen, www.nordskip.com/navnotes.pdf)] . 6 2.2 Detectors for Polarized Skylight in Insects Reference: [4, (Labhart T. and Meyer E. P.)]; [5, (Labhart T. et al)] . 8 2.2.1 Compound eye of the honeybee Reference: [6, (Brines M. L. and Gould J. L., 1982)]; [7, (Valera F. G. and Witanen W., 1970)]; [11, (Rossel S. and Wehner R., 1982)] . 10 2.2.2 What does an insect see Reference: [13, (Horridge A., 2009)]; [12, (Wehner R., 1982)] . 13 2.3 Realisation of polarization navigation in MEMS Reference: [15, (Scott A.M. and Lewin A.C. and Ridley K.D., 2008)]; [17, (en.wikipedia. org, 2012)] ....................................... 14 2.3.1 Problems with the scattering within the atmosphere Reference: [17, (en.wikipedia.org,2011)] .................... 15 2.4 A further skylight linked concept for ground navigation Reference: [16, de.wikipedia.org, 2012] ......................... 18 2.4.1 Posibility of visualizing the wavelength of the sunbeam Reference: [16, de.wikipedia.org, 2012] ....................
    [Show full text]
  • Coding of Sky-Compass Information in Neurons of the Anterior Optic Tubercle of the Desert Locust Schistocerca Gregaria
    Coding of sky-compass information in neurons of the anterior optic tubercle of the desert locust Schistocerca gregaria Kodierung von Himmelskompassinformationen in Neuronen des anterioren optischen Tuberkels der Wustenheuschrecke¨ Schistocerca gregaria Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universit¨at Marburg vorgelegt von Keram Pfeiffer aus M¨onchengladbach Marburg/Lahn 2006 Coding of sky-compass information in neurons of the anterior optic tubercle of the desert locust Schistocerca gregaria Kodierung von Himmelskompassinformationen in Neuronen des anterioren optischen Tuberkels der WustenheuschreckeÄ Schistocerca gregaria Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-UniversitÄat Marburg vorgelegt von Keram Pfei®er aus MÄonchengladbach Marburg/Lahn 2006 Vom Fachbereich Biologie der Philipps-UniversitÄat Marburg als Dissertation am 2006 angenommen. Erstgutachter: Prof.Dr.Uwe Homberg Zweitgutachterin: Frau Apl. Prof. Dr. Monika Stengl Tag der mundlichenÄ PrufungÄ am 2006. Contents ErklÄarung: Eigene BeitrÄage und verÄo®entlichte Teile der Arbeit 1 Zusammenfassung 3 Literatur 8 Introduction 11 Polarized light . 11 Perception of polarized light . 11 Reflected, polarized light . 12 Polarized sky-light . 12 Spectral cues . 13 Polarization-sensitive interneurons . 13 Time compensation . 15 References 16 Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain 19 Coding of spatial directions via time-compensated combination of celestial compass cues 35 RESULTS . 38 LoTu1 neurons . 38 TuTu1 neurons . 39 Distribution of tuning types . 40 Diurnal attenuation of tuning . 41 DISCUSSION . 42 METHODS . 43 Electrophysiology . 43 Stimulation . 44 Data evaluation . 44 Statistics . 45 References 45 SUPPORTING ONLINE MATERIAL .
    [Show full text]
  • Robot and Insect Navigation by Polarized Skylight
    Robot and Insect Navigation by Polarized Skylight F. J. Smith and D. W. Stewart School of Electronics, Electrical Engineering and Computer Science, Queens University Belfast, Belfast, N. Ireland Keywords: Polarization, Skylight, Navigation, Clouds, POL, Robotic Navigation. Abstract: A study of a large number of published experiments on the behaviour of insects navigating by skylight has led to the design of a system for navigation in lightly clouded skies, suitable for a robot or drone. The design is based on the measurement of the directions in the sky at which the polarization angle, i.e. the angle χ between the polarized E-vector and the meridian, equals ±π/4 or ±(π/4 + π/3) or ±(π/4 - π/3). For any one of these three options, at any given elevation, there are usually 4 such directions and these directions can give the azimuth of the sun accurately in a few short steps, as an insect can do. A simulation shows that this compass is accurate as well as simple and well suited for an insect or robot. A major advantage of this design is that it is close to being invariant to variable cloud cover. Also if at least two of these 12 directions are observed the solar azimuth can still be found by a robot, and possibly by an insect. 1 INTRODUCTION approximate map for the polarized sky, a map which the insect can use as a compass (Rossel, 1993). The That many insects can use the polarization in variation in E-vector orientation has also been traced skylight to navigate was first discovered in within the central complex of the brain of an insect experiments with bees by Karl von Frisch (1949).
    [Show full text]