Expression, Regulation and Roles of Semaphorins and Their Receptors in Prostate and Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Expression, Regulation and Roles of Semaphorins and Their Receptors in Prostate and Prostate Cancer Thesis for the Doctor of Philosophy Award of a Research Degree From the University of London Veronlque Maxence BLANC Expression, regulation and roles of semaphorins and their receptors in prostate and prostate cancer Supervisors Professor John Masters, University College London Doctor Magali Williamson1, University College London Examiners Professor Paul Abel, Imperial College London Professor Fouad Habib, University of Edinburgh Prostate Cancer Research Centre (PCRC) Institute of Urology and Nephrology University College London (UCD 63-67 Riding House Street London W1W7EJ +44(0) 207 679 95971 1 UMI Number: U592524 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592524 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To Nicole and Yves, To Helene, Lucie and Marcel, To Erwann, 2 ACKNOWLEDGEMENTS I thank the Pilkington Trust for funding the following research project. I thank Professor John Masters and Doctor Magali Williamson for allowing and supervising my research work at the Prostate Cancer Research Centre (Institute of Urology and Nephrology, University College London), as well as for their support and supervision during completion. I thank all my colleagues for their encouragements and support, particularly Dr. Simon Bott, Dr. Charlotte Foley, Dr. Manit Araya, Dr. Aamir Ahmed, Dr. Andy Symes, Dr. Tharani Nitkunan, Dr. Joseph Nariculam, Dr. Jason Constantinou... I deeply thank all my friends for their support in this hard and long labour, to which they have largely contributed in one way or another, particularly Dr. Isabelle Bisson, Dr. Roger Tatoud, Dr. Rena Meimaridou, Dr. Tahirah Alam, Marthin Louis Vorster, Patrice Renault, Jennifer McNair Wilson... I dedicate this work to my parents, my grand parents, and especially to Erwann Thomassain, who has seen the worst of me during completion, and without whom, I would not have succeeded. Thank you for your continuous support and your confidence in my success. 3 Declaration that the work presented in the following thesis is my own I, V6ronique Maxence BLANC, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis (e.g. site-directed mutagenesis and subsequent stable transfection, SSCP, some figures in the introduction annotated with a reference). 4 ABSTRACT Prostate cancer (PCa) has become a major public health issue; it is the second most common cause of cancer-related death in the UK. PCa preferentially metastasises to the bone. Semaphorins are an important family of membrane bound or secreted signalling proteins, which control cell movement (or chemotaxis). They have a role in the nervous, immune and vascular systems, but have not previously been studied in prostate. To determine if semaphorins and their receptors are expressed in normal and pathological prostate, profiling experiments were performed by (q)RT-PCR in prostate cell lines and tissues. Results show that semaphorins and receptors are ubiquitously expressed, suggesting autocrine and paracrine regulation of semaphorin signalling in prostate; particularly an autocrine signalling of Semaphorin3A in bone metastasis derived cells. Results also show that expression of secreted semaphorins is regulated by hypoxia; which strongly downregulates semaphorin 3e in primary tumour derived cells, whereas semaphorin 3c is strongly upregulated. Particular focus was brought on semaphorin 3e, whose expression is strongly increased in epithelial cells derived from benign prostate hyperplasia, non-neoplastic tissue, and bone metastasis derived cells. A Semaphorin3E expression construct was made and the protein produced in mammalian cells to study its effects on cell morphology and adhesion by im mu nocytochemistry and adhesion assays. Results show that Semaphorin3E inhibits integrin-mediated cell adhesion while it initiates vinculin-mediated focal adhesion formation, which suggest that Semaphorin3E may play important regulatory roles in prostate cancer metastasis. The effects on cell movement of frequent missense mutations of PlexinBl receptor, associated with prostate primary tumours and metastases, was studied by migration assays. Results show that the three mutations of PlexinBl increase cell migration in absence of ligand Semaphorin4D, and further increase migration in its presence. Together these results suggest that semaphorin signalling has a key role in prostate cancer progression. 5 INTRODUCTION The following thesis is divided into four chapters: (1 ) literature review, (2 ) materials and methods, (3 ) results and discussions, (4 ) conclusion and future work. (1 ) The 'literature review' chapter comprises three sections, (a ) The prostate and its pathologies, with emphasis on prostate adenocarcinoma, the second most common cause of death due to cancer in the UK. (b ) The theories of cancer progression, summarising the molecular-based theory of cancer, which describes nine cancer gene pathways, eventually all leading to activation of the hypoxia/HIFl pathway, which promotes angiogenesis and survival of the cancer cells, (c) The sema domain containing superfamily describes three family members with common and specific features, details the HGF and MET, and Semaphorin4D and PlexinBl signalling pathways, and summarise their roles in cell guidance and migration, invasive growth, and tumour angiogenesis. (2 ) The 'materials and methods' chapter is divided into two sections, (a ) materials and (b ) methods. (3 ) The 'results and discussions' chapter contains three sections, (a ) The first section resumes the results of expression profiling experiments under normoxic and hypoxic conditions in 10 prostate cell lines. Results show that semaphorins and their receptors are largely expressed in prostate cell lines, and that the expression of secreted semaphorins is strongly regulated by hypoxia, (b ) The second section summarises the study of three mutations of PlexinBl receptor, associated with prostate tumours and metastases. The mutations modulate cell migration in presence or absence of Semaphorin4D ligand, (c ) The last section describes the production of Semaphorin3E protein and its effects on cell phenotype and behaviour. Semaphorin3E inhibits pl-integrin-mediated cell adhesion and initiates vinculin-mediated cell motility, spreading. (4 ) Finally, the 'conclusions and future work' chapter summarises all findings and suggests further studies. 6 TABLE OF CONTENTS ABSTRACT................................................................................................................................5 INTRODUCTION....................................................................................................... 6 TABLE OF CONTENT.................................................................................................................7 LIST OF FIGURES.................................................................................................................. 10 LIST OF TABLES........................................................................ 12 LIST OF ABBREVIATIONS..................................................................................................... 13 GtiAPTElUi-LITERATURE-REYIEWt ...................... 1$ Section 1: The Prostate and Its pathologies .................................. 1. Role and structure of the prostate ................ 17 2. Pathologies of the prostate .........................................................................................................................17 3. Prostate cancer: risk factors, treatments, staging and grading .......................................................... 18 4. Molecular biology and genetics of prostate cancer ................................................................................19 Section 2: Theories of cancer progress/on...,., . .,.,20 1. Genetic alterations ......................................................................................................................... 21 a. Oncogenes, tumour suppressor genes and stability genes ................. ........................21 b. The nine cancer gene pathways ..........................................................................................................22 2. The hallmarks of cancer cells .................................................................................................................... 24 a. Acquiring self sufficiency in growth signals .......................................................................................24 b. Acquiring insensitivity to growth-inhibitory signals .........................................................................24 c. Acquiring resistance to programmed cell death (apoptosis) ...........................................................25 d. Acquiring unlimited proliferative potential (resistance to senescence) ........................................26 e. Acquiring sustained angiogenesis (VEGF secretion) .........................................................................27
Recommended publications
  • The Involvement of Rho Gtpases in Plexin Mediated Signal Transduction
    The Involvement of Rho GTPases in Plexin Mediated Signal Transduction Laura Turner A thesis submitted to the University of London for the degree of Doctor of Philosophy November 2003 MRC Laboratory for Molecular Cell Biology University of London Gower Street London WCIE 6BT ProQuest Number: U642461 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642461 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Plexins are a family of conserved transmembrane proteins. Together with neuropilins, they act as receptors for the semaphorin family of growth cone guidance molecules. Whilst it is clear that guidance involves cytoskeletal changes, little is known of the mechanisms via which plexins regulate growth cone morphology. Hints suggesting the involvement of Rho GTPases stem from observations of localised actin rearrangements elicited by plexins and semaphorins. This feeling is consolidated by the demonstration of the Rac dependent nature of plexin induced cellular responses. To investigate plexin mediated signal transduction, a heterologous assay for semaphorin induced collapse has been developed and characterised. Studies using jasplakinolide indicate that Sema3A-Fc induced collapse requires actin dissassembly.
    [Show full text]
  • Meta-Analysis of Gene Expression in Individuals with Autism Spectrum Disorders
    Meta-analysis of Gene Expression in Individuals with Autism Spectrum Disorders by Carolyn Lin Wei Ch’ng BSc., University of Michigan Ann Arbor, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Bioinformatics) The University of British Columbia (Vancouver) August 2013 c Carolyn Lin Wei Ch’ng, 2013 Abstract Autism spectrum disorders (ASD) are clinically heterogeneous and biologically complex. State of the art genetics research has unveiled a large number of variants linked to ASD. But in general it remains unclear, what biological factors lead to changes in the brains of autistic individuals. We build on the premise that these heterogeneous genetic or genomic aberra- tions will converge towards a common impact downstream, which might be reflected in the transcriptomes of individuals with ASD. Similarly, a considerable number of transcriptome analyses have been performed in attempts to address this question, but their findings lack a clear consensus. As a result, each of these individual studies has not led to any significant advance in understanding the autistic phenotype as a whole. The goal of this research is to comprehensively re-evaluate these expression profiling studies by conducting a systematic meta-analysis. Here, we report a meta-analysis of over 1000 microarrays across twelve independent studies on expression changes in ASD compared to unaffected individuals, in blood and brain. We identified a number of genes that are consistently differentially expressed across studies of the brain, suggestive of effects on mitochondrial function. In blood, consistent changes were more difficult to identify, despite individual studies tending to exhibit larger effects than the brain studies.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Peripheral Nerve Single Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research | Development Peripheral Nerve Single Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth https://doi.org/10.1523/ENEURO.0066-20.2020 Cite as: eNeuro 2020; 10.1523/ENEURO.0066-20.2020 Received: 24 February 2020 Revised: 20 April 2020 Accepted: 23 April 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Toma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Peripheral Nerve Single Cell Analysis Identifies Mesenchymal Ligands that Promote 2 Axonal Growth 3 4 Jeremy S. Toma1, Konstantina Karamboulas1*, Matthew J. Carr 1,2*, Adelaida Kolaj1,3, Scott A. 5 Yuzwa1, Neemat Mahmud 1,3, Mekayla A. Storer1, David R. Kaplan1,2,4 and Freda D. Miller1-4 6 7 Program in Neurosciences and Mental Health1, Hospital for Sick Children, Toronto, Canada 8 M5G 1L7, Institute of Medical Sciences2, Departments of Physiology3 and Molecular Genetics4, 9 University of Toronto, Toronto, Canada M5G 1A8. 10 11 *These authors contributed equally. 12 13 Abbreviated Title: scRNA-seq identifies nerve ligands 14 Author Contributions: JST, DRK and FDM designed research; JST, MJC, AK, and NM 15 performed research; JST, KK, SAY, NM, MAS and FDM analyzed data; and JST, DRK and 16 FDM wrote the paper.
    [Show full text]
  • Contribution of Copy Number Variants to Schizophrenia from a Genome-Wide Study of 41,321 Subjects
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects Marshall, Christian R.; Howrigan, Daniel P.; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wu, Wenting; Greer, Douglas S.; Antaki, Danny; Shetty, Aniket; Holmans, Peter A.; Pinto, Dalila Total number of authors: 263 Published in: Nature Genetics Link to article, DOI: 10.1038/ng.3725 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Marshall, C. R., Howrigan, D. P., Merico, D., Thiruvahindrapuram, B., Wu, W., Greer, D. S., Antaki, D., Shetty, A., Holmans, P. A., Pinto, D., Gujral, M., Brandler, W. M., Malhotra, D., Wang, Z., Fuentes Fajarado, K. V., Maile, M. S., Ripke, S., Agartz, I., Albus, M., ... Sebat, J. (2017). Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 49(1), 27-35. https://doi.org/10.1038/ng.3725 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Correspondence on Lovell Et Al.: Identification of Chicken Genes Previously Assumed to Be Evolutionarily Lost
    Bornelöv et al. Genome Biology (2017) 18:112 DOI 10.1186/s13059-017-1231-1 CORRESPONDENCE Open Access Correspondence on Lovell et al.: identification of chicken genes previously assumed to be evolutionarily lost Susanne Bornelöv1,2, Eyal Seroussi3, Sara Yosefi3, Ken Pendavis4, Shane C. Burgess4, Manfred Grabherr1,5, Miriam Friedman-Einat3* and Leif Andersson1,6,7* Please see related Research article: http://dx.doi.org/10.1186/s13059-014-0565-1 and Please see response from Lovell et al: https://www.dx.doi.org/ 10.1186/s13059-017-1234-y Abstract broilers and layers (Additional file 1: Table S1), were used for de novo transcriptome assembly and identifi- Through RNA-Seq analyses, we identified 137 genes that cation of novel genes. are missing in chicken, including the long-sought-after The initial set of 588,683 transcripts obtained using nephrin and tumor necrosis factor genes. These genes Trinity [5] was reduced to 257,700 after removing tran- tended to cluster in GC-rich regions that have poor scripts that were expressed at low levels. We mapped coverage in genome sequence databases. Hence, the the transcripts to the chicken reference genome build occurrence of syntenic groups of vertebrate genes that consistent with the previous studies [1, 2] using Blat and have not been observed in Aves does not prove the Blast, and retained 8395 sequences without alignments. evolutionary loss of such genes. These transcripts were then characterized on the basis of sequence similarity to known genes in other vertebrates using the Trinotate pipeline (https://trinotate.github.io), A recent paper reported that 274 protein-encoding genes which searches for sequences encoding known protein were missing from sequencing data from 60 bird species domains, transmembrane domains, and signal peptides [1].
    [Show full text]
  • Text Mining Applied to Molecular Biology
    Text mining applied to molecular biology Rob Jelier The financial contributions of the WikiProfessional Initiative, the BAZIS foundation and SUWO, the Urological Research Foundation, for the publication of this thesis is gratefully acknowledged. Jelier R. Text-mining applied to molecular biology. PhD Thesis Erasmus University Rotterdam | with summary in Dutch. Cover design by the author, inspired by the work of Tord Boontje and Piet Mondriaan. ISBN: 978-90-8559-335-5 This thesis was typeset by the author with LATEX 2". c R. Jelier, 2007 Text mining applied to molecular biology Text mining toegepast voor de moleculaire biologie Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op donderdag 10 januari 2008 om 16.00 uur door Rob Jelier geboren te Dirksland Promotiecommissie Promotor Prof. dr. J. van der Lei Copromotoren Dr. ir. J.A. Kors Dr. ir. G.W. Jenster Overige leden Prof. dr. C.M. van Duijn Prof. dr. G.J.B. van Ommen Prof. dr. P.J. van der Spek The studies described in this thesis were performed when the author was a member of the Biosemantics group, department of Medical Informatics, Erasmus MC, the Netherlands. Acknowledgments Over the past few years I've frequently been asked, in one way or another: \Why do you forgo the spoils of capitalism for a mostly solitary life behind a computer?". Well, because science is fun. I feel it's a privilege to have the freedom to not constrain my curiosity, to play around a bit, to see how far I can push myself.
    [Show full text]
  • A Contribution of Novel Cnvs to Schizophrenia from a Genome-Wide Study of 41,321 Subjects
    bioRxiv preprint doi: https://doi.org/10.1101/040493; this version posted February 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium Christian R. Marshall1*, Daniel P. Howrigan2,3*, Daniele Merico1*, Bhooma Thiruvahindrapuram1, Wenting Wu4,5, Douglas S. Greer4,5, Danny Antaki4,5, Aniket Shetty4,5, Peter A. Holmans6,7, Dalila Pinto8,9, Madhusudan Gujral4,5, William M. Brandler4,5, Dheeraj Malhotra4,5,10, Zhouzhi Wang1, Karin V. Fuentes Fajarado4,5, Stephan Ripke2,3, Ingrid Agartz11,12,13, Esben Agerbo14,15,16, Margot Albus17, Madeline AleXander18, Farooq Amin19,20, Joshua Atkins21,22, Silviu A. Bacanu23 ,Richard A. Belliveau Jr3, Sarah E. Bergen3,24, Marcelo Bertalan16,25, Elizabeth Bevilacqua3, Tim B. Bigdeli23, Donald W. Black26, Richard Bruggeman27, Nancy G. Buccola28, Randy L. Buckner29,30,31, Brendan Bulik-Sullivan2,3, William Byerley32, Wiepke Cahn33, Guiqing Cai8,34, Murray J. Cairns21,35,36, Dominique Campion37, Rita M. Cantor38, Vaughan J. Carr35,39, Noa Carrera6, Stanley V. Catts35,40, Kimberley D. Chambert3, Wei Cheng41, C. Robert Cloninger42, David Cohen43, Paul Cormican44, Nick Craddock6,7, Benedicto Crespo-Facorro45,46, James J. Crowley47, David Curtis48,49, Michael Davidson50, Kenneth L, Davis8, Franziska Degenhardt51,52, Jurgen Del Favero53, Lynn E. DeLisi54,55, Ditte Demontis16,56,57, Dimitris Dikeos58, Timothy Dinan59, Srdjan Djurovic11,60, Gary Donohoe44,61, Elodie Drapeau8, Jubao Duan62,63, Frank Dudbridge64, Peter Eichhammer65, Johan Eriksson66,67,68, Valentina Escott-Price6, Laurent Essioux69, Ayman H.
    [Show full text]
  • Mouse Sema4c Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Sema4c Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Sema4c conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Sema4c gene (NCBI Reference Sequence: NM_001126047 ; Ensembl: ENSMUSG00000026121 ) is located on Mouse chromosome 1. 15 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 15 (Transcript: ENSMUST00000114991). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Sema4c gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-292F21 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a targeted mutation exhibit exencephaly, neonatal lethality, and abnormal cerebellum morphology. Exon 2 starts from about 100% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 1938 bp, and the size of intron 2 for 3'-loxP site insertion: 1531 bp. The size of effective cKO region: ~609 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 5 15 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Sema4c Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]