A Review of Crystallization Fouling in Heat Exchangers

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Crystallization Fouling in Heat Exchangers processes Review A Review of Crystallization Fouling in Heat Exchangers Jure Berce , Matevž Zupanˇciˇc , Matic Može and Iztok Golobiˇc* Faculty of Mechanical Engineering, University of Ljubljana, Aškerˇceva6, SI-1000 Ljubljana, Slovenia; [email protected] (J.B.); [email protected] (M.Z.); [email protected] (M.M.) * Correspondence: [email protected] Abstract: A vast majority of heat exchangers suffer from unwanted deposition of material on the surface, which severely inhibits their performance and thus marks one of the biggest challenges in heat transfer. Despite numerous scientific investigations, prediction and prevention of fouling remain unresolved issues in process engineering and are responsible for large economic losses and environmental damage. This review article focuses specifically on crystallization fouling, providing a comprehensive overview of the state-of-the-art of fouling in heat exchangers. The fundamentals of the topic are discussed, as the term fouling resistance is introduced along with distinct fouling behaviour, observed in laboratory and industrial environments. Insight into subsequent phases of the fouling process is provided, along with the accompanying microscale events. Furthermore, the effects of fluid composition, temperature, flow velocity, surface condition, nucleate boiling and composite fouling are comprehensively discussed. Fouling modelling is systematically reviewed, from the early work of Kern and Seaton to recently used artificial neural networks and computational fluid dynamics. Finally, the most common fouling mitigation approaches are presented, including design considerations and various on-line strategies, as well as off-line cleaning. According to our review, several topics require further study, such as the initial stage of crystal formation, the effects of ageing, the interplay of two or more fouling mechanisms and the underlying phenomena of several mitigation strategies. Citation: Berce, J.; Zupanˇciˇc,M.; Može, M.; Golobiˇc,I. A Review of Keywords: heat exchanger; fouling; energy efficiency; crystallization; fouling modelling; fouling mit- Crystallization Fouling in Heat igation Exchangers. Processes 2021, 9, 1356. https://doi.org/10.3390/pr9081356 Academic Editor: Weizhong Dai 1. Introduction Heat exchangers (HEs) are among the most widely used thermal devices and appear Received: 7 July 2021 Accepted: 29 July 2021 in various designs, such as shell and tube HEs, plate HEs, double pipe HEs. They can be Published: 1 August 2021 found in heating and refrigeration, power production and conversion, transport, chemical industry, waste heat recovery, petroleum and pharmaceutical industry, space applications Publisher’s Note: MDPI stays neutral or fluid treatment to name a few. As such, the entire HE market is valued in billions of euros, with regard to jurisdictional claims in and with increasing world population and energy demands it is expected to grow even published maps and institutional affil- larger. In several industrial and household heat transfer applications where HEs are found, iations. heat exchange fluids may contain certain amounts of dissolved or suspended material and can also provide a favourable environment for existence and growth of biological organisms. As a result, an unwanted accumulation of deposits on heat transfer surfaces, i.e., fouling, can occur. This induces a significant reduction of heat transfer coefficients Copyright: © 2021 by the authors. and causes changes in surface topography and flow geometry. In addition, substantial Licensee MDPI, Basel, Switzerland. pressure drops occur as a result of flow constriction and increased friction due to scale This article is an open access article formation, which can render a heat exchanger inoperable even sooner than the reduced distributed under the terms and thermal efficiency [1]. Substantial safety margins in the design, pre-treatment of fluids conditions of the Creative Commons and regular cleaning are thus needed to combat this problem, bringing about additional Attribution (CC BY) license (https:// costs and down-time. According to surveys [2,3], more than 90% of heat exchangers across creativecommons.org/licenses/by/ various industries are experiencing fouling problems. 4.0/). Processes 2021, 9, 1356. https://doi.org/10.3390/pr9081356 https://www.mdpi.com/journal/processes Processes 2021, 9, 1356 2 of 24 Processes 2021, 9, x FOR PEER REVIEW The effect of fouling on heat transfer equipment is generally described with2 addedof 25 thermal resistance as a result of the fouling layer. The calculation of the overall heat transfer coefficient U thus becomes: The effect of fouling on heat transfer equipment is generally described with added 1 1 A2 1 thermal resistance as a result= of the+ foulingRf,1 layer.+ RThewall calculation+ + Rf,2 of the overall heat trans(1)‐ U h1 A1 h2 fer coefficient U thus becomes: In Equation (1), h and A are the heat transfer coefficient and the heat transfer area 1 1 1 of the heat-exchanging fluids (subscripted, with 1 and 2), respectively,, while Rwall is(1) the thermal resistance of the wall, separating the two flows. Fouling resistance Rf comes from theIn deposit,Equation1, which h and accumulates A are the heat on one transfer or both coefficient sides of theand separating the heat transfer wall, depending area of the on theheat conditions‐exchanging present fluids in (subscripted the heat exchanger with 1 and (Figure 2), respectively,1). The term while can R bewall classified is the thermal as the differenceresistance betweenof the wall, reciprocal separating values the two of overall flows. heatFouling transfer resistance coefficients Rf comes prior from to the fouling de‐ posit, which accumulates on one or both sides of the separating wall, depending on the (Uc) and after fouling occurs (Uf) such that: conditions present in the heat exchanger (Figure. 1). The term can be classified as the dif‐ ference between reciprocal values of overall1 heat1 transfer1 coefficients prior to fouling (Uc) = − (2) and after fouling occurs (Uf) such that:R f Uf Uc 1 1 1 If one assumes constant values of U over the heat exchange area, the extra heat transfer(2) surface area needed to achieve the same performance is obtained as: If one assumes constant values of U over the heat exchange area, the extra heat transfer surface area needed to achieve theA samef = A performancec 1 + R f ·UC is obtained as: (3) 1 ∙ (3) Similarly, if one assumes a constant heat exchange area A, an increase in temperature differenceSimilarly, betweenif one assumes cold and a constant hot stream heat is exchange required area for theA, an same increase performance: in temperature dif‐ ference between cold and hot stream is required for the same performance: UC DTf = DTc 1 + R f ·UC = DTc (4) ∆ ∆1 ∙∆ Uf (4) ShouldShould neither neither of of the the discusseddiscussed parameters be adjusted adjusted to to accommodate accommodate fouling, fouling, the the heat heat exchangerexchanger will will experience experience aa deteriorationdeterioration of performance: QC (5) Q f = 1 ∙ (5) 1 + R f ·UC FigureFigure 1. 1.Schematic Schematic representationrepresentation of scaling in a heat exchanger. exchanger. TheThe processprocess of of fouling fouling can can be be classified classified into into six different six different types: types: (i) crystallization (i) crystallization foul‐ foulinging or scaling, or scaling, (ii) particulate (ii) particulate fouling, fouling, (iii) chemical (iii) chemical reaction reaction fouling, fouling,(iv) corrosion (iv) corrosion fouling, fouling,(v) biofouling (v) biofouling and (vi) and solidification (vi) solidification fouling; fouling; a combination a combination of various of variousmechanisms mechanisms is also ispossible also possible [4]. Out [4 of]. Outall fouling of all foulingtypes, crystallization types, crystallization fouling has fouling the most has harmful the most effect harmful on effectheat exchangers, on heat exchangers, which gives which merit gives to the merit emphasis to the placed emphasis on it placed in this onreview it in article. this review article.Depending on the heat transfer process and the accompanying fouling mechanisms, the observed fouling resistance can behave differently over time, as shown in Figure 2. This behaviour depends greatly on the strength of the formed deposit, i.e. weaker deposits generally exhibit an asymptotic fouling resistance, while hard and resilient ones have a Processes 2021, 9, 1356 3 of 24 Depending on the heat transfer process and the accompanying fouling mechanisms, Processes 2021, 9, x FOR PEER REVIEW 3 of 25 the observed fouling resistance can behave differently over time, as shown in Figure2 . This behaviour depends greatly on the strength of the formed deposit, i.e. weaker deposits gen- erally exhibit an asymptotic fouling resistance, while hard and resilient ones have a linear orlinear falling or rate falling tendency. rate tendency. The first threeThe first curves three in Figurecurves2 inshow Figure. idealized 2 show conditions, idealized while condi‐ thetions, saw-tooth while the represents saw‐tooth the represents oscillations, the due oscillations, to aging due induced to aging deposit induced break-off deposit [5], break that ‐ canoff be[5], found that can in some be found experimental in some experimental and industrial and data. industrial The three data. phases, The three visually phases, shown vis‐ inually Figure shown2, are in further Figure discussed 2, are further in the discussed
Recommended publications
  • Thermal Shock
    TEACHER INSTRUCTIONS Thermal Shock Objective: To illustrate thermal expansion and thermal shock. Background Information: In physics, thermal expansion is the tendency of matter to increase in volume or pressure when heated. For liquids and solids, the amount of expansion will normally vary depending on the material’s coefficient of thermal expansion. When materials contract, tensile forces are created. When things expand, compressive forces are created. Thermal shock is the name given to cracking as a result of rapid temperature change. From the laboratory standpoint, there are three main types of glass used today: borosilicate, quartz, and soda lime or flint glass. Borosilicate glass is made to withstand thermal shock better than most other glass through a combination of reduced expansion coefficient and greater strength, though fused quartz outperforms it in both respects. Some glass-ceramic materials include a controlled proportion of material with a negative expansion coefficient, so that the overall coefficient can be reduced to almost exactly zero over a reasonably wide range of temperatures. Improving the shock resistance of glass and ceramics can be achieved by improving the strength of the materials or by reducing its tendency to uneven expansion. One example of success in this area is Pyrex, the brand name that is well known to most consumers as cookware, but which is also used to manufacture laboratory glassware. Pyrex traditionally is made with a borosilicate glass with the addition of boron, which prevents shock by reducing the tendency of glass to expand. Demo description: Three different types of glass rods will be heated so that students can observe the amount of thermal shock that occurs.
    [Show full text]
  • Wastewater Technology Fact Sheet: Ammonia Stripping
    United States Office of Water EPA 832-F-00-019 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Ammonia Stripping DESCRIPTION Ammonia stripping is a simple desorption process used to lower the ammonia content of a wastewater stream. Some wastewaters contain large amounts of ammonia and/or nitrogen-containing compounds that may readily form ammonia. It is often easier and less expensive to remove nitrogen from wastewater in the form of ammonia than to convert it to nitrate-nitrogen before removing it (Culp et al., 1978). Ammonia (a weak base) reacts with water (a weak acid) to form ammonium hydroxide. In ammonia stripping, lime or caustic is added to the wastewater until the pH reaches 10.8 to 11.5 standard units which converts ammonium hydroxide ions to ammonia gas according to the following reaction(s): + - NH4 + OH 6 H2O + NH38 Source: Culp, et. al, 1978. Figure 1 illustrates two variations of ammonia FIGURE 1 TWO TYPES OF STRIPPING stripping towers, cross-flow and countercurrent. In TOWERS a cross-flow tower, the solvent gas (air) enters along the entire depth of fill and flows through the packing, as the alkaline wastewater flows it may be more economical to use alternate downward. A countercurrent tower draws air ammonia removal techniques, such as steam through openings at the bottom, as wastewater is stripping or biological methods. Air stripping may pumped to the top of a packed tower. Free also be used to remove many hydrophobic organic ammonia (NH3) is stripped from falling water molecules (Nutrient Control, 1983). droplets into the air stream, then discharged to the atmosphere.
    [Show full text]
  • Area Array Packages with Known Reliably and Mitigation Risks, Allowing Greater Processing Power in a Smaller Board Footprint and Lower System Weight
    National Aeronautics and Space Administration Reliability of CGA/LGA/HDI Package Board/Assembly (Revision A) Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California Jet Propulsion Laboratory California Institute of Technology Pasadena, California JPL Publication 12-3 2/12 National Aeronautics and Space Administration Reliability of CGA/LGA/HDI Package Board/Assembly (Revision A) NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California NASA WBS: 724297.40.43 JPL Project Number: 104593 Task Number: 40.49.02.02 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 http://nepp.nasa.gov This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration Electronic Parts and Packaging (NEPP) Program. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2013. California Institute of Technology. Government sponsorship acknowledged. Acknowledgments The author would like to acknowledge many people from industry and the Jet Propulsion Laboratory (JPL) who were critical to the progress of this activity. The author extends his appreciation to program managers of the National Aeronautics and Space Administration Electronics Parts and Packaging (NEPP) Program, including Michael Sampson, Ken LaBel, Drs. Charles Barnes and Douglas Sheldon for their continuous support and encouragement. ii OBJECTIVES AND PRODUCTS Commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions are now being considered for use in a number of National Aeronautics and Space Administration (NASA) electronic systems.
    [Show full text]
  • Factors Impacting EGR Cooler Fouling – Main Effects and Interactions
    Emissions Controls Technologies, Part 2 Factors Impacting EGR Cooler Fouling – Main Effects and Interactions 16th Directions in Engine-Efficiency and Emissions Research Conference Detroit, MI – September, 2010 Dan Styles, Eric Curtis, Nitia Ramesh Ford Motor Company – Powertrain Research and Advanced Engineering John Hoard, Dennis Assanis, Mehdi Abarham University of Michigan Scott Sluder, John Storey, Michael Lance Oakridge National Laboratory Page 1 DEER 2010 Benefits and Challenges of Cooled EGR • Benefits • Challenges Enables more EGR flow More HC’s/SOF Cooler intake charge temp More PM Reduces engine out NOx More heat rejection by reduced peak in-cylinder More condensation temps HC/PM deposition in cooler (fouling) degraded heat transfer and higher flow resistance Increasing EGR Rate PM Increasing EGR Cooling NOx After 200 hr. Fouling Test Page 2 DEER 2010 What is EGR Cooler Fouling? • Deposition of Exhaust Constituents on EGR Cooler Walls Decreases heat transfer effectiveness and increases flow restrictiveness Page 3 DEER 2010 Previous DEER Conferences • DEER 2007 Benefits of an EGR catalyst for EGR Cooler Fouling Reduction • DEER 2008 Overview of EGR Cooler Fouling Literature Search Results of initial controlled fouling experiment High gas flow velocities reduce exhaust constituent trapping efficiency Low coolant temperatures increase Hydrocarbon condensation An oxidation catalyst is only marginally helpful at eliminating the heavier Hydrocarbons that are likely to condense in an EGR cooler • DEER 2009 Further
    [Show full text]
  • Investigation of Fouling Mechanisms on Ion Exchange Membranes During Electrolytic Separations
    INVESTIGATION OF FOULING MECHANISMS ON ION EXCHANGE MEMBRANES DURING ELECTROLYTIC SEPARATIONS By Matthew James Edwards A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford, MS 2019 Approved by: __________________________________ Advisor: Dr. Alexander M. Lopez _________________________________ Reader: Dr. Adam Smith __________________________________ Reader: Dr. John H. O’Haver i Ó 2019 Matthew James Edwards ALL RIGHTS RESERVED ii DEDICATION I would like to dedicate this Capstone Project to my parents, Michael and Nidia Edwards. Their support and commitment to my education has been unfailing for as long as I can remember. I am thankful for everything they have done. It is with their help that I am privileged to attend The University of Mississippi, and I will forever be grateful. iii ACKNOWLEDGEMENTS I would first like thank Dr. Alexander M. Lopez and The University of Mississippi Chemical Engineering Department for the opportunity to work on this research project. The guidance, patience, and willingness to work with and teach an undergraduate student has been beneficial and inspiring to me during my time here at Ole Miss. Second, I would like to thank Dr. Paul Scovazzo for providing guidance on how to write this thesis and for allowing me to use his lab and equipment as well. I would also like to thank all the graduate students of the Chemical Engineering Department, primarily Saloumeh Kolahchyan. The willingness to take the time to answer my questions, to guide me in how use all the equipment in the lab, and to show me how to follow lab protocols required for the completion of my thesis research.
    [Show full text]
  • An Analysis of Water for Water-Side Fouling Potential Inside Smooth
    AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS by Ian Tubman A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering in the Department of Mechanical Engineering Mississippi State, Mississippi December 2002 AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS by Ian Tubman Approved: _________________________ ________________________ Louay Chamra Rogelio Luck Associate Professor of Associate Professor and Mechanical Engineering Graduate Coordinator of the (Director of Thesis) Department of Mechanical Engineering _________________________ ________________________ B.Keith Hodge Carl A. James Professor of Assistant Research Professor Mechanical Engineering of Mechanical Engineering (Committee Member) (Committee Member) _________________________ A. Wayne Bennett Dean of the James Worth Bagley College of Engineering Name: Ian Tubman Date of Degree: May 10, 2003 Institution: Mississippi State University Major Field: Mechanical Engineering Major Professor: Dr. Louay Chamra Title of Study: AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS Pages in Study: 100 Candidate for Degree of Master of Science This thesis investigates the potential for fouling in plain and augmented tubes in cooling tower applications. Three primary factors that affect fouling potential are examined: inside tube geometry, water velocity, and water quality. This paper presents a literature survey for in general precipitation fouling, particulate fouling, cooling water fouling, and fouling in enhanced tubes.
    [Show full text]
  • Performance of a Novel Green Scale Inhibitor
    E3S Web of Conferences 266, 01019 (2021) https://doi.org/10.1051/e3sconf/202126601019 TOPICAL ISSUES 2021 Performance of a novel green scale inhibitor Leila Mahmoodi1, M. Reza Malayeri2, Farshad Farshchi Tabrizi3 1Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz Uni- versity, Iran 2Technische Universität Dresden, Dresden, Germany 3Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz Uni- versity, Iran Abstract:Many aspects of oilfield scale inhibition with green scale inhibi- tors (SIs) have remained untouched. For instance, the discharge of large amounts of produced water containing various types of hazardous chemi- cals, such as SIs into the environment has become a major concern. In- stead, environmental regulators encourage operators to look for greener SIs. In this study, the performance of a green SI was investigated using PHREEQC simulation. For a specific case study, two brines are considered to mix incompatibly to estimate the critical mixing ratio that has the high- est tendency to scaling. Subsequently, for 50/50 mixing ratio as the critical value, theoptimal dosage of SI and its performance in the presence of two different rocks were investigated such that 450 mg/L SI would be consi- dered as optimal value. Moreover, the simulated results show that more SI adsorption on calcite would be predicted, compared to dolomite. 1 Introduction In the oil and gas industry, one of the primary production problems is mineral deposition resulting from the water-flooding, incompatible water mixing, and/or hydro-fracturing processes that are applied to maintain sustainable hydrocarbon production in oil, gas, or gas-condensate fields [1].
    [Show full text]
  • MATERIAL SCIENCE Module 3 Thermal Shock Thermal Shock DOE-HDBK-1017/2-93 TABLE of CONTENTS
    Department of Energy Fundamentals Handbook MATERIAL SCIENCE Module 3 Thermal Shock Thermal Shock DOE-HDBK-1017/2-93 TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. ii LIST OF TABLES ................................................... iii REFERENCES .................................................... iv OBJECTIVES ..................................................... v THERMAL STRESS ................................................ 1 Thermal Shock ............................................... 1 Summary ................................................... 5 PRESSURIZED THERMAL SHOCK .................................... 6 Definition ................................................... 6 Evaluating Effects of PTS ....................................... 6 Locations of Primary Concern ..................................... 8 Summary ................................................... 8 Rev. 0 Page i MS-03 LIST OF FIGURES DOE-HDBK-1017/2-93 Thermal Shock LIST OF FIGURES Figure 1 Stress on Reactor Vessel Wall .................................... 4 Figure 2 Heatup Stress Profile .......................................... 7 Figure 3 Cooldown Stress Profile ........................................ 7 MS-03 Page ii Rev. 0 Thermal Shock DOE-HDBK-1017/2-93 LIST OF TABLES LIST OF TABLES Table 1 Coefficients of Linear Thermal Expansion ............................ 2 Rev. 0 Page iii MS-03 REFERENCES DOE-HDBK-1017/2-93 Thermal Shock REFERENCES Academic Program for Nuclear Power Plant Personnel, Volume
    [Show full text]
  • Thermal Shock-Resistant Cement
    BNL-101087-2012-IR Thermal Shock-resistant Cement T. Sugama, T. Pyatina, S. Gill February 2012 Sustainable Energy Technologies Department/Energy Conversion Group Brookhaven National Laboratory U.S. Department of Energy DOE office of Energy Efficiency and Renewable Energy Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Corrosion Science 173 (2020) 108828
    Corrosion Science 173 (2020) 108828 Contents lists available at ScienceDirect Corrosion Science journal homepage: www.elsevier.com/locate/corsci The oxidation effect on the cracking behavior of a Co-based alloy under thermal shocks T Junxia Wena,b,c,d, Rui Caoa,b,*, Hongyan Chee, Hao Donge, Haiyan Zhanga,b, Yingjie Yana,b, Yanfei Gaoc,**, Peter K Liawc,** a State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China b School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China c Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA d School of Mechanical and Electrical Engineering, Liuzhou Vocational & Technical College, Liuzhou 545006, Guangxi, China e Advanced Technology & Materials Limited Company, China Iron & Steel Research Institute Group, Beijing, 100081, China ARTICLE INFO ABSTRACT Keywords: Oxidation and cracking behavior during thermal-shock experiments of a new Co-based alloy were analyzed in Co-based alloy the present work. Comparing to the static conditions, the oxidation behavior during thermal shocks is stress- Thermal shock assisted and crack-accelerated. Cracks during the thermal shocks were initiated from the sample surfaces and Oxidation their growth are driven by various stresses, including those induced by volume change, mismatch of coefficients Crack of thermal expansion (CTEs), and temperature gradient between the matrix and the internal oxides. It is found Thermal fatigue that the crack propagation correlates to these stresses in the classic Paris’ law. 1. Introduction also different from that in the static oxidation. The cyclic oxidation behavior of the Co-based alloy has been well investigated by Barrett The Co-based alloy has a good combination of high-temperature and Lowel [13].
    [Show full text]
  • Fouling Factors: a Survey of Their Application in Today's Air Conditioning and Refrigeration Industry
    AHRI Guideline E (formerly ARI Guideline E) 1997 GUIDELINE for Fouling Factors: A Survey Of Their Application In Today's Air Conditioning And Refrigeration Industry IMPORTANT SAFETY RECOMMENDATIONS It is strongly recommended that the product be designed, constructed, assembled and installed in accordance with nationally recognized safety requirements appropriate for products covered by this guideline. ARI, as a manufacturers' trade association, uses its best efforts to develop guidelines employing state-of-the-art and accepted industry practices. However, ARI does not certify or guarantee safety of any products, components or systems designed, tested, rated, installed or operated in accordance with these guidelines or that any tests conducted under its standards will be non-hazardous or free from risk. Note: This guideline supersedes ARI Guideline E-1988. Price $10.00 (M) $20.00 (NM) ©Copyright 1997, by Air-Conditioning, Heating, and Refrigeration Institute Printed in U.S.A. Registered United States Patent and Trademark Office TABLE OF CONTENTS SECTION PAGE Section 1. Purpose ...................................................................................................................... 1 Section 2. Scope ......................................................................................................................... 1 Section 3. Definitions................................................................................................................. 1 Section 4. Background ..............................................................................................................
    [Show full text]
  • Selective Catalytic Reduction (SCR) Are
    EPA/452/B-02-001 Section 4 NOx Controls EPA/452/B-02-001 Section 4.2 NOx Post- Combustion i Introduction Nitrogen oxides (NOx) are gaseous pollutants that are primarily formed through combustion process. While flue gas is within the combustion unit, about 95% of the NOx exists in the form of nitric oxide (NO). The balance is nitrogen dioxide (NO2), which is unstable at high temperatures. Once the flue gas is emitted into the atmosphere, most of the NOx is ultimately converted to NO2. NOx in the atmosphere reacts in the presence of sunlight to form ozone (O3), one of the criteria pollutants for which health-based National Ambient Air Quality Standards have been established. Since ozone formation requires sunlight and high temperatures, ozone formation is greatest in summer months. NOx is generated in one of three forms; fuel NOx, thermal NOx, and prompt NOx. Fuel NOx is produced by oxidation of nitrogen in the fuel source. Combustion of fuels with high nitrogen content such as coal and residual oils produces greater amounts of NOx than those with low nitrogen content such as distillate oil and natural gas. Thermal NOx is formed by the fixation of ° ° molecular nitrogen and oxygen at temperatures greater than 3600 F (2000 C). Prompt NOx forms from the oxidation of hydrocarbon radicals near the combustion flame and produces an insignificant amount of NOx. Selective Noncatalytic Reduction (SNCR) and Selective Catalytic Reduction (SCR) are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O).
    [Show full text]