Dynamin Mediates Caveolar Sequestration of Muscarinic Cholinergic Receptors and Alteration in NO Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Dynamin Mediates Caveolar Sequestration of Muscarinic Cholinergic Receptors and Alteration in NO Signaling The EMBO Journal Vol. 19 No. 16 pp. 4272±4280, 2000 Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling Chantal Dessy, Ralph A.Kelly1, phorylation of the agonist-stimulated receptor increases its Jean-Luc Balligand2 and Olivier Feron af®nity for arrestin, which sterically prevents further coupling with G-proteins, whereas sequestration reduces Department of Medicine, Unit of Pharmacology and Therapeutics, FATH 53.49, Universite Catholique de Louvain, Avenue E.Mounier, the access for membrane-impermeable agonists. 53, B-1200 Brussels, Belgium and 1Cardiovascular Division, Several authors have addressed the existence of a link Department of Medicine, Brigham and Women's Hospital and between GRK-dependent phosphorylation and internaliza- Harvard Medical School, Boston, MA 02115, USA tion of the m2 subtype of mAchR in heterologous 2Corresponding author expression systems (Tsuga et al., 1994; Pals-Rylaarsdam e-mail: [email protected] et al., 1995; Schlador and Nathanson, 1997). Although the extent of overexpression of each signal-transducing com- In cardiac myocytes, agonist binding to muscarinic ponent of the sequestration pathways may confound the acetylcholine receptors (mAchRs) leads to the target- interpretation of some of these studies, discrepancies in the ing of stimulated receptors to plasmalemmal micro- results also suggested the existence of cell type-speci®c domains termed caveolae. Here, we examined whether mechanisms for receptor internalization. Evidence for this translocation leads to mAchR internalization and distinct sequestration pathways was indeed provided alteration in downstream NO signaling. Differential recently by the ®nding that the m2 mAchR could binding of membrane-permeant and -impermeant be internalized by both arrestin/clathrin-dependent and mAchR radioligands on caveolae-enriched mem- -independent pathways (Pals-Rylaarsdam et al., 1997; branes revealed that carbachol stimulation of cardiac VoÈgler et al., 1998). These data underscore the plasticity myocytes induces sequestration of mAchRs through of the mechanisms of m2 mAchR traf®cking and justify caveolae ®ssion. GTP but not its non-hydrolyzable the growing interest in the processes of mAchR seques- analog GTPgS drove the further detachment of caveo- tration/desensitization in primary cells such as cardiac lae from myocyte sarcolemma. Also, incubation of myocytes where the m2 subtype is the predominant extracts of carbachol-stimulated myocytes with isoform. recombinant GTPase dynamin induced mAchR We have reported previously that in rat cardiac sequestration in budded caveolae, while dominant- myocytes, a large fraction of sarcolemmal m2 mAchR is negative K44A dynamin inhibited it. These data were targeted, upon agonist stimulation, to non-clathrin vesicles con®rmed by immuno¯uorescence microscopy on m2 termed caveolae (Feron et al., 1997a). Caveolae are small mAchR-expressing COS cells. Finally, repeated carba- ¯ask-shaped invaginations of the plasma membrane chol stimulations of mAchRs co-expressed in COS characterized by high levels of cholesterol, glycosphingo- cells with endothelial nitric oxide synthase (eNOS) lipids and lipid-anchored proteins (Anderson, 1998). and wild-type, but not mutant, dynamin led to a pro- These specialized lipid microdomains ensure the compart- gressive increase in mAchR sequestration and a mentation of a number of signaling proteins including the concurrent stabilization of the inhibitory eNOS± endothelial nitric oxide synthase (eNOS), various kinases caveolin complex. These ®ndings emphasize the role of and G-proteins (Anderson, 1998; Okamoto et al., 1998). In caveolae in mAchR traf®cking and NO signaling, and addition, a number of GPCRs including the B2 bradykinin, suggest that caveolae ®ssion may contribute to b-adrenergic, cholecystokinin, endothelin, angiotensin II G-protein-coupled receptor desensitization. and calcium-sensing receptors have been shown to be Keywords: caveolae/caveolin/dynamin/eNOS/mAchR located within caveolae in native conditions or upon agonist stimulation (for references see Anderson, 1998; Okamoto et al., 1998). However, these observations do not address the issue of whether the caveolar location of a Introduction speci®c GPCR is required to initiate its downstream Muscarinic acetylcholine receptors (mAchRs) belong to signaling cascade or to mediate the receptor desensitiza- the superfamily of G-protein-coupled receptors (GPCRs) tion/resensitization process, or both. Recently, the latter that couple extracellular stimuli to plasmalemmal and hypothesis gained some ground from the ®nding that intracellular effectors including ion channels and enzymes dynamin, which is known to play a crucial regulatory role such as adenylate cyclase and phospholipases. Agonist in the processes of endocytosis through clathrin-coated stimulation of GPCRs also leads to adaptive changes that pits, is largely enriched in caveolae and promotes cholera serve to facilitate responsiveness of the cell to successive toxin B chain internalization through budded caveolae stimulations. This process is initiated by receptor desensi- (Henley et al., 1998; Oh et al., 1998). tization, which involves receptor phosphorylation by The inotropic and chronotropic state of the heart is GPCR kinases (GRKs) and its sequestration in specialized closely regulated by the parasympathetic system (in part cell compartments (Lefkowitz, 1998). Accordingly, phos- through the activation of eNOS; Balligand et al., 1993; 4272 ã European Molecular Biology Organization Caveolar ®ssion and mAchR sequestration Feron et al., 1998b), and the cardiac function is therefore highly dependent on the responsiveness to mAchR stimu- lation, which varies according to the degree of mAchR sequestration. In this study, we examined the subcellular mechanisms contributing to the sequestration of the m2 mAchR through the caveolar pathway in freshly isolated cardiac myocytes. We took advantage of the existence of membrane-permeant and -impermeant mAchR radio- ligands and of the distinct buoyant density of caveolar vesicles to demonstrate the GTP-driven budding of caveolae in cardiac myocytes exposed to the mAchR agonist carbachol. We also established the role of dynamin in promoting caveolar ®ssion and mAchR sequestration. Finally, using transfected COS-7 cells, we observed that agonist-induced dynamin-dependent sequestration of m2 mAchR diminishes the extent of activatability of eNOS, a downstream signaling target. Results Time-dependent mAchR sequestration in cardiac myocyte caveolae We ®rst examined the potential sequestration of mAchRs targeted to cardiac myocyte caveolae (upon agonist stimulation) by comparing the binding pattern of mem- brane-permeant and -impermeant mAchR radioligands. Following exposure to the muscarinic cholinergic agonist carbachol (100 mM) for 0±60 min, adult rat cardiac myocytes were washed extensively and the intact cells were then exposed for 3 h at 4°C to the radiolabeled lipophilic and hydrophilic mAchR antagonists [3H]QNB (quinuclidinyl benzylate) and [3H]NMS (N-methyl-scopo- lamine), respectively. Figure 1A shows that, whereas the Fig. 1. Carbachol-induced targeting and sequestration of mAchRs in [3H]QNB-speci®c binding did not reveal changes in total cardiac myocyte caveolae. (A) Time course of [3H]NMS (open squares) and [3H]QNB (®lled squares) binding to intact cardiac myocytes mAchR density, the fraction of receptors accessible to exposed to 100 mM carbachol. The data are expressed as a percentage 3 [ H]NMS progressively decreased with the time of agonist (means 6 SEM, n = 3) of the total speci®c binding determined at time exposure; a maximum of 26 6 3% of mAchRs appeared 0(*P <0.01 versus the corresponding [3H]QNB binding); the actual sequestrated after a 1 h exposure to carbachol. It is of note density of [3H]QNB-binding sites is 178 6 12 fmol/mg protein that in experiments performed on corresponding myocyte (n = 3). (B) Fractionation of cardiac myocytes. The distribution of caveolin-3 (cav-3) and eNOS between caveolae (CAV) and non- lysates in the presence of saponin (used to disrupt vesicle caveolae (NON-CAV) membrane-enriched fractions is shown; these membranes), we could completely restore the speci®c data represent the result of a typical fractionation experiment from binding of [3H]NMS (not shown), suggesting that 1 h after resting cardiac myocytes, as described in Materials and methods. carbachol exposure, sequestrated mAchRs were not (C)[3H]NMS (open columns) and [3H]QNB (black columns) binding to the caveolae-enriched fraction obtained from cardiac myocytes degraded and remained susceptible to be recycled. exposed to 100 mM carbachol for the indicated time. The data are In a subsequent series of experiments, following expressed as a percentage (means 6 SEM, n = 3) of the total amount exposure to carbachol (0±60 min), myocytes were lysed of [3H]NMS- or [3H]QNB-speci®c binding determined in the in a carbonate-containing buffer and fractionated by CAV + NON-CAV fractions at time 0 (*P <0.01 versus the isopycnic centrifugation into caveolar and non-caveolar corresponding [3H]QNB binding). membrane fractions (see Materials and methods). The isolation of caveolar membranes from the remaining sarcolemmal and internal membranes was validated by of total cell receptors after 15 min of carbachol exposure; using subcellular compartment-speci®c markers. Figure 1B this effect was observed independently of the radioligand shows that caveolin-3 and >90% of eNOS
Recommended publications
  • Clathrin-Independent Pathways of Endocytosis
    Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Clathrin-Independent Pathways of Endocytosis Satyajit Mayor1, Robert G. Parton2, and Julie G. Donaldson3 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, and Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India 2The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Queensland 4072, Brisbane, Australia 3Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 Correspondence: [email protected] There are many pathways of endocytosis at the cell surface that apparently operate at the same time. With the advent of new molecular genetic and imaging tools, an understanding of the different ways by which a cell may endocytose cargo is increasing by leaps and bounds. In this review we explore pathways of endocytosis that occur in the absence of clathrin. These are referred to as clathrin-independent endocytosis (CIE). Here we primarily focus on those pathways that function at the small scale in which some have distinct coats (caveolae) and others function in the absence of specific coated intermediates. We follow the trafficking itineraries of the material endocytosed by these pathways and finally discuss the functional roles that these pathways play in cell and tissue physiology. It is likely that these pathways will play key roles in the regulation of plasma membrane area and tension and also control the availability of membrane during cell migration. he identification of many of the components Consequently, CME has remained a pre- Tinvolved in clathrin-mediated endocytosis dominant paradigm for following the uptake (CME) and their subsequent characterization of material into the cell.
    [Show full text]
  • Palmitoylation: Implications for Nitric Oxide Signaling
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 6448-6453, June 1996 Cell Biology Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implications for nitric oxide signaling (endothelial nitric oxide synthase/signal transduction/vascular biology/N-myristoylation) GUILLERMO GARC1A-CARDENA*, PHIL OHt, JIANwEI LIu*, JAN E. SCHNITZERt, AND WILLIAM C. SESSA*t *Molecular Cardiobiology Program and Department of Pharmacology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536; and tDepartment of Pathology, Harvard Medical School, Beth Israel Hospital, 330 Brookline Avenue, Boston, MA 02215 Communicated by Vincent T. Marchesi, Yale Univeristy, New Haven, CT, March 13, 1996 (received for review February 5, 1996) ABSTRACT The membrane association of endothelial insoluble membranes (TIM), suggesting that caveolae are nitric oxide synthase (eNOS) plays an important role in the signal processing centers (2-11). Additionally, caveolae have biosynthesis of nitric oxide (NO) in vascular endothelium. been implicated in other important cellular functions, includ- Previously, we have shown that in cultured endothelial cells ing endocytosis, potocytosis, and transcytosis (12, 13). and in intact blood vessels, eNOS is found primarily in the Endothelial nitric oxide synthase (eNOS) is a peripheral perinuclear region of the cells and in discrete regions of the membrane protein that metabolizes L-arginine to nitric oxide plasma membrane, suggesting trafficking of the protein from (NO). NO is a short-lived free radical gas involved in diverse the Golgi to specialized plasma membrane structures. Here, physiological and pathological processes. Endothelial-derived we show that eNOS is found in Triton X-100-insoluble mem- NO is an important paracrine mediator of vascular smooth branes prepared from cultured bovine aortic endothelial cells muscle tone and is an inhibitor of leukocyte adhesion and and colocalizes with caveolin, a coat protein of caveolae, in platelet aggregation (14, 15).
    [Show full text]
  • Palmitoylation of Caveolin-1 and Its Importance for Structural and Functional Plasticity
    Palmitoylation of Caveolin-1 and its importance for structural and functional plasticity A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Katherine R. Tonn IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Paul G. Mermelstein November 2018 © Katherine R. Tonn Eisinger 2018 Acknowledgments I would like to thank my adviser, Dr. Paul Mermelstein, for his mentorship, training, support, and scientific flexibility. Infinite thanks to past and present members of the Mermelstein and Meisel Labs, especially Dr. Brittni Peterson, Dr. Kelsey Moore, Dr. Laura Been, Dr. Luis Martinez, Dr. Valerie Hedges, and Dr. John Meitzen, for being a source of scientific inspiration and friendship. I could not have asked for a better friend and lab colleague than Dr. Kellie Gross, whose input has kept me sane and made me a better scientist. Thanks also to stellar undergrads Kerry Trotter, Julia Dworsky, and Sam Swanson for their help and energy. Thanks to the many people who collaborated or helped in some way on the experiments presented in this thesis, including Dr. Mark Thomas, Dr. Lorene Lanier, Dr. Mark Dell’Acqua, Dr. Kevin Woolfrey, Dr. Brian Head, Dr. Jing Tong, and Dr. John Meitzen. In particular, I am extremely grateful for the collaboration of Dr. Lorene Lanier, whose enthusiasm helped reinvigorate me and this project. Finally, thanks to the members of my thesis committee, Drs. Harry Orr, Timothy Ebner, Anna Lee, and Robert Meisel, for their encouragement and guidance. i Dedication For Mom, my first and most important example of what it is to be smart, versatile, and kind.
    [Show full text]
  • Endothelial Plasmalemma Vesicle–Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells
    Endothelial Plasmalemma Vesicle−Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells This information is current as Raul Elgueta, Dan Tse, Sophie J. Deharvengt, Marcus R. of September 26, 2021. Luciano, Catherine Carriere, Randolph J. Noelle and Radu V. Stan J Immunol 2016; 197:3970-3981; Prepublished online 14 October 2016; doi: 10.4049/jimmunol.1501859 Downloaded from http://www.jimmunol.org/content/197/10/3970 Supplementary http://www.jimmunol.org/content/suppl/2016/10/13/jimmunol.150185 Material 9.DCSupplemental http://www.jimmunol.org/ References This article cites 64 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/197/10/3970.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Endothelial Plasmalemma Vesicle–Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells Raul Elgueta,*,† Dan Tse,‡,1 Sophie J.
    [Show full text]
  • Novel Missense Mutation in the Caveolin-3 Gene in a Belgian Family
    1349 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2003.028217 on 16 August 2004. Downloaded from SHORT REPORT Novel missense mutation in the caveolin-3 gene in a Belgian family with rippling muscle disease P Y K Van den Bergh, J M Ge´rard, J A Elosegi, M U Manto, C Kubisch, B G H Schoser ............................................................................................................................... J Neurol Neurosurg Psychiatry 2004;75:1349–1351. doi: 10.1136/jnnp.2003.028217 too small’’). The patient was diagnosed as having fibromyal- Rippling muscle disease (RMD) is a rare muscle disorder gia, which led to secondary depression and loss of her job. characterised by muscle stiffness, exercise induced myalgia, Muscle weakness and pigmenturia were absent. The medical and cramp-like sensations. It is genetically heterogeneous history was remarkable for mild hypothyroidism, peptic and can be acquired, but most cases show autosomal oesophagitis, and tobacco related asthmatiform bronchitis dominant inheritance due to mutations in the caveolin-3 with emphysema. At age 38, she had a neurological work-up. (CAV3) gene. We report a novel heterozygous missense The cranial nerves, muscle bulk, muscle strength, and deep mutation in CAV3 in a Belgian family with autosomal tendon reflexes were normal, and plantar responses were dominant RMD. flexor. Tapping with the reflex hammer or with the finger on A 40 year old woman complained of fatigue, exercise the muscles provoked an immediate, short lasting, forceful induced muscle pain, and muscle cramps since the age of 35. contraction and/or painful local mounding lasting for several Neurological examination revealed percussion induced seconds. PIRCs were most pronounced in the sternocleido- rapid muscle contractions (PIRCs) and localised muscle mastoid, deltoid, biceps, brachioradialis, finger and wrist mounding on percussion; muscle rippling was not observed.
    [Show full text]
  • Membrane Capacitance Recordings Resolve Dynamics and Complexity Of
    www.nature.com/scientificreports OPEN Membrane capacitance recordings resolve dynamics and complexity of receptor-mediated endocytosis in Received: 22 October 2018 Accepted: 20 August 2019 Wnt signalling Published: xx xx xxxx Vera Bandmann1, Ann Schirin Mirsanaye1, Johanna Schäfer1, Gerhard Thiel1, Thomas Holstein2 & Melanie Mikosch-Wersching1,2 Receptor-mediated endocytosis is an essential process in signalling pathways for activation of intracellular signalling cascades. One example is the Wnt signalling pathway that seems to depend on endocytosis of the ligand-receptor complex for initiation of Wnt signal transduction. To date, the roles of diferent endocytic pathways in Wnt signalling, molecular players and the kinetics of the process remain unclear. Here, we monitored endocytosis in Wnt3a and Wnt5a-mediated signalling with membrane capacitance recordings of HEK293 cells. Our measurements revealed a swift and substantial increase in the number of endocytic vesicles. Extracellular Wnt ligands specifcally triggered endocytotic activity, which started immediately upon ligand binding and ceased within a period of ten minutes. By using specifc inhibitors, we were able to separate Wnt-induced endocytosis into two independent pathways. We demonstrate that canonical Wnt3a is taken up mainly by clathrin-independent endocytosis whereas noncanonical Wnt5a is exclusively regulated via clathrin-mediated endocytosis. Our fndings show that membrane capacitance recordings allow the resolution of complex cellular processes in plasma membrane signalling pathways in great detail. Wnt signalling is a highly-conserved signalling pathway with important functions in development, tissue-homeostasis, stem cell biology and many diseases, including cancer. Afer three decades of dedicated research we have come to understand many of the fundamental components of Wnt signalling pathways.
    [Show full text]
  • Snapshot: Caveolae, Caveolins, and Cavins Nicholas Ariotti and Robert G
    704 Cell SnapShot: Caveolae, Caveolins, and Cavins Nicholas Ariotti and Robert G. Parton 154 Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia , August 1,2013©2013 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.cell.2013.07.009 ORGAN/ COMPONENTS DISEASE AND TISSUE-SPECIFIC CAVEOLAR COMPLEXES TISSUE CELLULAR PROCESS Rippling muscle disease Caveolin3 Striated muscle fiber Limb girdle muscular dystrophy Muscle Cavin1 skeletal and Cardiomyopathy Cavin4 cardiac Mechanoprotection Cav1 (heart) T-tubule formation Caveolin1 Lipodystrophy Caveolin2 Lipotoxicity Adipose Cavin1 Fatty acid regulation tissue Cavin2 Insulin signaling Cavin3 Mechanoprotection Atherosclerosis Caveolin1 Inammation Caveolin2 Lung Pulmonary hypertension and other Cavin1 Adipocyte Pulmonary brosis endothelia Cavin2 Mechanosensation Cavin3 Signaling Fatty liver Hepatocellular carcinoma Caveolin1 LIPID DROPLET Liver Lipid metabolism Caveolin2 Carbohydrate metabolism Liver regeneration Caveolin1 Autism Brain Cavin1 Schizophrenia Cavin3 LOW EXPRESSION HIGH EXPRESSION Capillary GENERAL CELLULAR CONTEXT ENDOCYTOSIS MECHANOPROTECTION SIGNALING See online version for legend and references. and legend for version online See Membrane stretch LUMEN Cavin complex Caveola EHD2 eNOS Ca2+ inactive Rab5 Dynamin2 EARLY ENDOSOME Intracellular targets MVB/ Caveolin 1 Caveolin 2 Caveolin 3 Dynamin2 late endosome eNOS Cavin1 Cavin2 Cavin3 Cavin4 eNOS EHD2 active SnapShot: Caveolae, Caveolins, and Cavins Nicholas Ariotti and Robert G. Parton Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia Caveolae, submicroscopic bulb-shaped plasma membrane pits, are an abundant feature of many mammalian cells (Parton and del Pozo, 2013). Caveolae and the major proteins of caveolae, caveolins (Rothberg et al., 1992), and cavins (Hill et al., 2008), are linked to a number of human diseases such as muscular dystrophy, cardiomyopathy, and lipodys- trophy (see Glossary) (Bruno et al., 1993; Fernández et al., 2006; Hayashi et al., 2009).
    [Show full text]
  • Comprehensive Analysis of Lncrna‑Associated Cerna Network Reveals the Novel Potential of Lncrna, Mirna and Mrna Biomarkers in Human Rectosigmoid Junction Cancer
    ONCOLOGY LETTERS 21: 144, 2021 Comprehensive analysis of lncRNA‑associated ceRNA network reveals the novel potential of lncRNA, miRNA and mRNA biomarkers in human rectosigmoid junction cancer QIANSHI ZHANG1*, ZHEN FENG1*, SHASHA SHI2, YU ZHANG3 and SHUANGYI REN1 Departments of 1Gastrointestinal Surgery, 2Ultrasound and 3Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China Received March 11, 2020; Accepted November 20, 2020 DOI: 10.3892/ol.2020.12405 Abstract. Although accumulating evidence has confirmed gene 20) and three mRNAs (sodium‑ and chloride‑dependent the potential biological functions of long non‑coding RNAs taurine transporter, fibroblast growth factor 13 and tubulin (lncRNAs) as competitive endogenous RNAs (ceRNAs) in polyglutamylase TTLL7) were significantly associated with colorectal tumorigenesis and progression, few studies have OS (P<0.05). Additionally, two lncRNAs (KCNQ1OT1 focused on rectosigmoid junction cancer. In the present and MIR17HG) interacted with most of the DEmiRNAs. study, a comprehensive analysis was conducted to explore Notably, two top‑ranked miRNAs (hsa‑miR‑374a‑5p and lncRNA‑mediated ceRNA implications and their potential hsa‑miR‑374b‑5p) associated networks were identified to be value for prognosis. lncRNA, microRNA (miR/miRNA) markedly associated with the pathogenesis. Furthermore, four and mRNA expression profiles were downloaded from DEmRNAs (caveolin‑1, MET, filamin‑A and AKT3) were The Cancer Genome Atlas database. Subsequently, a enriched in the Kyoto Encylopedia of Gene and Genomes lncRNA‑miRNA‑mRNA regulatory network was constructed pathway analysis, as well as being included in the ceRNA to evaluate the functions of these differentially expressed genes network. In summary, the present results revealed that a on overall survival (OS) for rectosigmoid junction cancer.
    [Show full text]
  • Structure and Function of SNARE and SNARE-Interacting Proteins
    Quarterly Reviews of Biophysics 38, 1 (2006), pp. 1–47. f 2005 Cambridge University Press 1 doi:10.1017/S0033583505004051 Printed in the United Kingdom First published online 9 December 2005 Structure and functionof SNARE and SNARE-interacting proteins Axel T. Brunger Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305, USA Abstract. This review focuses on the so-called SNARE (soluble N-ethyl maleimide sensitive factor attachment protein receptor) proteins that are involved in exocytosis at the pre-synpatic plasma membrane. SNAREs play a role in docking and fusion of synaptic vesicles to the active zone, as well as in the Ca2+-triggering step itself, most likely in combination with the Ca2+ sensor synaptotagmin. Different SNARE domains are involved in different processes, such as regulation, docking, and fusion. SNAREs exhibit multiple configurational, conformational, and oliogomeric states. These different states allow SNAREs to interact with their matching SNARE partners, auxiliary proteins, or with other SNARE domains, often in a mutually exclusive fashion. SNARE core domains undergo progressive disorder to order transitions upon interactions with other proteins, culminating with the fully folded post-fusion (cis) SNARE complex. Physiological concentrations of neuronal SNAREs can juxtapose membranes, and promote fusion in vitro under certain conditions. However, significantly more
    [Show full text]
  • Modulation of the Caveolin-3 Localization to Caveolae and STAT3 to Mitochondria by Catecholamine-Induced Cardiac Hypertrophy in H9c2 Cardiomyoblasts
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 41, No. 4, 226-235, April 2009 Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts Kyuho Jeong*, Hayeong Kwon*, amine-induced cardiac hypertrophy. Chanhee Min and Yunbae Pak1 Keywords: cardiomegaly; caveolae; caveolin-3; cell Department of Biochemistry nucleus; heart; isoproterenol; mitochondria; phenyl- Division of Applied Life Science (BK21), PMBBRC ephrine; STAT3 transcription factor Environmental Biotechnology National Core Research Center Gyeongsang National University Jinju 660-701, Korea Introduction 1Corresponding author: Tel, 82-55-751-5961; Fax, 82-55-759-9363; E-mail, [email protected] Hypertension is major risk factors for cardiac da- mage, ischemia, myocardial infarction, and conge- *These authors contributed equally to this work. stive heart failure (Zampaglione et al., 1996). In DOI 10.3858/emm.2009.41.4.025 response to increased demands for cardiac work caused by various pathologic stresses, heart adapts Accepted 20 November 2008 through compensatory hypertrophy of myocytes. Abbreviations: Akt, protein kinase B; CsA, cyclosporin A; GPCR, Thus, cardiac hypertrophy is recognized in many G protein-coupled receptor; ISO, isoproterenol; PE, phenylephrine; cardiovascular diseases, such as hypertension, RTK, receptor tyrosine kinase; STAT3, signal transducers and acti- vascular disease, and myocardial infarction, and is vator of transcription 3 an independent risk factor for cardiac morbidity and mortality. Hypertrophic stimuli induce an in- crease in cell size in the absence of cell division through Ca2+ signaling and activation of PKC, Abstract MAPK and PKB/ Akt (Watanabe et al., 2001; Dorn and Force, 2005), and are accompanied by We investigated the effect of phenylephrine (PE)- and increased protein synthesis with reprogramming of isoproterenol (ISO)-induced cardiac hypertrophy on gene expression (Takeo et al., 2000).
    [Show full text]
  • Caveolin-1 Expression in Schwann Cells
    GLIA 27:39–52 (1999) Caveolin-1 Expression in Schwann Cells DANIEL D. MIKOL,* HOYLOND L. HONG, HSIN-LIN CHENG, AND EVA L. FELDMAN Department of Neurology, University of Michigan, Ann Arbor, Michigan KEY WORDS caveolae; cholesterol; differentiation; myelin; nerve ABSTRACT Caveolae are non-clathrin-coated invaginations of the plasma mem- brane, which are present in most cell types. An integral component of caveolae is the caveolin family of related proteins, which not only forms the structural framework of caveolae, but also likely subserves its functional roles, including regulation of signal transduction and cellular transport, in particular, cholesterol trafficking. Although caveolae have been identified ultrastructurally in the peripheral nervous system (PNS), caveolin expression has not previously been studied. To date, three caveolin genes have been reported. Here, we show for the first time that caveolin-1 is expressed by Schwann cells (SC) as well as several SC-derived cell lines. Caveolin-1 is enriched in the buoyant, detergent-insoluble membranes of rat sciatic nerve (SN) and SC, a hallmark of the caveolar compartment. Caveolin-1 exists as both soluble and insoluble forms in rat SN and SC, and localizes to SC cytoplasm and abaxonal myelin. SC caveolin-1 decreases after axotomy, when SC revert to a premyelinating phenotype. We speculate that caveolin-1 may regulate signal transduction and/or cholesterol transport in myelinating SC. GLIA 27:39–52, 1999. ௠ 1999 Wiley-Liss, Inc. INTRODUCTION A number of functions are proposed for caveolae: (1) the uptake of small molecules such as folate into cells, a Caveolae are plasma membrane microdomains that process known as potocytosis (Anderson et al., 1992); can invaginate to form 50–100 nm vesicles, and are (2) the transcytosis of molecules such as low density enriched in cholesterol, glycosphingolipids, a variety of lipoprotein across cells (Simionescu, 1983); (3) polar- signaling molecules, and the caveolins, a family of ized trafficking of proteins, especially in epithelial cells 18–24 kD proteins.
    [Show full text]
  • Three Ways to Make a Vesicle
    REVIEWS THREE WAYS TO MAKE A VESICLE Tomas Kirchhausen Cargo molecules have to be included in carrier vesicles of different forms and sizes to be transported between organelles. During this process, a limited set of proteins, including the coat proteins COPI, COPII and clathrin, carries out a programmed set of sequential interactions that lead to the budding of vesicles. A general model to explain the formation of coated vesicles is starting to emerge but the picture is more complex than we had imagined. ENDOCYTIC PATHWAY Transport of proteins and lipids along the ENDOCYTIC or energy dependent and includes sorting of cargo to the Macromolecules are taken up SECRETORY PATHWAYS is a hallmark of eukaryotic cells. The forming coat. Coat propagation, the second step in the by invagination of the plasma membrane fluxes along these pathways are very large process, couples further addition of coat components membrane. They first arrive in and rapid. A FIBROBLAST kept in resting conditions in a and additional recruitment of cargo with invagination of early endosomes, then late endosomes, and finally tissue culture plate internalizes an amount of mem- the underlying membrane. When formation of the coat lysosomes, where they are brane equivalent to the whole surface area of the cell in ends, the vesicle buds by scission of the neck connecting degraded by hydrolases. one hour. Inside the cell, it often takes only seconds for a the deeply invaginated membrane to the donor surface. carrier vesicle to move from the donor membrane to This is a relatively simple step for COPI- and COPII- SECRETORY PATHWAY the acceptor organelle.
    [Show full text]